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Abstract: In energy detection for cognitive radio spectrum sensing, the noise variance is usually
assumed given, by which a threshold is set to guarantee a desired constant false alarm rate (CFAR)
or a constant detection rate (CDR). However, in practical situations, the exact information of noise
variance is generally unavailable to a certain extent due to the fact that the total noise consists
of time-varying thermal noise, receiver noise, and environmental noise, etc. Hence, setting the
thresholds by using an estimated noise variance may result in different false alarm probabilities from
the desired ones. In this paper, we analyze the basic statistical properties of the false alarm probability
by using estimated noise variance, and propose a method to obtain more suitable CFAR thresholds for
energy detection. Specifically, we first come up with explicit descriptions on the expectations of the
resultant probability, and then analyze the upper bounds of their variance. Based on these theoretical
preparations, a new method for precisely obtaining the CFAR thresholds is proposed in order to
assure that the expected false alarm probability can be as close to the predetermined as possible. All
analytical results derived in this paper are testified by corresponding numerical experiments.

Keywords: energy detection; noise variance; spectrum sensing

1. Introduction

Cognitive radio [1–4] is a potential technology to realize flexible and efficient usage of frequency
spectrum, and is a promising approach in dealing with the spectrum scarcity in future wireless
communication networks. However, a key step to make it a reality is to effectively address some
estimation issues, such as transmitter power estimation [5] and monitoring in wireless networks.
Spectrum sensing is among the most important ones, which aims to detect whether licensed spectrum
is accessible. Some existing spectrum sensing methods in the literature are by way of matched filtering,
waveform-based sensing [6], cyclostationary-based sensing [7,8], and energy detection [9–12], etc.
Clearly, energy detection is the most popular way to perform spectrum sensing.

In this paper, the energy detection scheme is carried out under the framework shown in Figure 1,
which is a generation of the detection scheme described in [13]. The similar part is that the input
signal x(t) is first passing a Band-Pass Filter (BPF) and next the signal is digitized by an analog to
digital converter (ADC), then, a simple square and average device is used to estimate the received
signal energy. For a real input signal, the estimated energy, u = 1

M ∑M
k=1 x2

k , is then compared with
a threshold, λ, to decide if a signal is present (H1) or not (H0). The threshold for energy detection
used in [13] is constructed using the information of noise variance and signal-to-noise ratio. In the
proposed framework shown by Figure 1, the noise variance is estimated from another available channel,
σ̂2

n = 1
N ∑N

k=1 n2
k , and then the estimated noise variance is used to construct the detection threshold.
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This setting of detection is more applicable, since the real complicated noise is derived from various
sources and thus its variance may change from time to time. Though the method using estimated
noise variance to construct the threshold has been proposed in the literature, e.g., [14–17], they did not
analyze the effect caused by using the estimation variance. An interesting double threshold detection
method is presented in [18] using exact noise variance to separate three cases of detection: spectrum
free, spectrum occupied and not certain. In this paper, we will calculate the expectation of the detection
event by using the estimated variance and thus a much more accurate threshold may be derived for
detection.
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EP̂f a and establishing an upper bound for EP̂2
f a, which well answers the first issue and the second80

partly. Moreover, with an approximation of EP̂f a based on an estimated distribution of the resulted81

threshold λ̂ f a, the third question is analyzed for some special cases. Nevertheless, some new CFAR82

thresholds for energy detection are proposed by confirming that EP̂f a equals to the predesigned false83

alarm probability Pf a.84

The rest of this paper is organized as follows. The model setting and hypothesis testing of energy85

detection by a known noise variance is introduced in Section 2, where the CFAR thresholds are derived86

in an exact way and an approximating way, respectively, by assuming Gaussian signals. Section 387

numerically investigates the selection of CFAR based on an estimated noise variance to set a CFAR88

threshold. In Section 4, we analyze some basic statistical properties of the resulted probability of false89

alarm P̂f a given by (21) along with ˆ̃Pf a, the estimated case given by (24). Specifically, we come up90

with explicit descriptions for the expectations of P̂f a and ˆ̃Pf a by Theorems 1 and 3, respectively, and91

some discussions on the corresponding properties. In Section 5, upper bounds on EP̂2
f a and E ˆ̃P2

f a are92

derived by Theorems 5 and 6, respectively, due to the difficulty in finding the exact explicit forms by93

any known special functions. In Section 6, new CFAR thresholds are proposed, aiming to assure that94

EP̂f a or E ˆ̃Pf a equals to the predetermined false alarm probability Pf a. Concluding remarks and future95

research are listed in Section 7. All analytical results derived in this paper are regarding to CFAR96

thresholds. However, as a matter of fact, similar results also hold for the CDR case.97

2. Model Setting and Hypothesis Testing with Known Noise Variance98

Spectrum sensing is an important task for a secondary user in a cognitive radio network in order
to determine whether a licensed band is currently occupied by a primary user or not. This is can be
formulated into a binary hypothesis testing problem: [13,20]:

x(k) =

{
n(k), H0(vacant),
s(k) + n(k), H1(occupied),

(1)

where s(k), n(k), and x(k) represents the primary user’s signal, the noise, and the received signal,
respectively. The noise is assumed to be Gaussian random process of zero mean and variance σ2

n ,
whereas the signal is also assumed to be iid Gaussian random process of zero mean and variance of σ2

s .
The signal to noise ratio is defined as the ratio of signal variance to the noise variance

SNR = σ2
s /σ2

n . (2)

The test statistics generated from the energy detector as shown in Fig. 1 is

u =
1
M

M

∑
k=1

x2
k . (3)
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Figure 1. Energy detector using estimated noise variance by available similar channel. The noise
variance is estimated by σ̂2

n = 1
N ∑N

k=1 n2
k from other available similar channel. Then the empirical

average energy u = 1
M ∑M

k=1 x2
k is detected by principle CFAR or CDR with the threshold λ̂ using the

estimated noise variance σ̂2
n .

Figure 1. Energy detector using estimated noise variance by available similar channel. The noise
variance is estimated by σ̂2

n = 1
N ∑N

k=1 n2
k from the other available similar channel. Then the empirical

average energy u = 1
M ∑M

k=1 x2
k is detected by principle constant false alarm rate (CFAR) or constant

detection rate (CDR) with the threshold λ̂ using the estimated noise variance σ̂2
n .

The threshold is determined typically based on two principles: constant false alarm rate (CFAR)
and constant detection rate (CDR), which will be further explained in Section 2. In both cases, the noise
variance (power) is generally supposed to be known to determine the threshold, as shown in [19,20].
However, noise variance may vary significantly in both temporal and spatial dimension due to
the fact that the total noise is composed of thermal noise, receiver noise, and environmental noise.
Generally, one may take the estimated noise variance, to some certain extent, as the noise variance in
the calculation of the threshold in energy detection accordingly. The following two examples are given
in [13] for practical performance of energy detection. One example is that a certain channel is reserved
for special applications by spectrum regulators. The special channel can only be used to estimate noise
variance, and can never be used by a secondary user. For instance, channel 37 (from 608 to 614 MHz)
in FCC is used in very few occasions but for radioastronomy. Another example is the detection of DTV
pilot signals, in which the noise variance can be estimated from some frequency bin not corresponding
to the pilot frequency under the low SNR scenario. In both examples, a threshold is computed from
the estimated noise variance based on CFAR or CDR principles. Then, the threshold is used in the
subsequent detection to determine whether a signal is present or not by comparing with the detected
energy from the channel of interest or from the known pilot frequency bin.

What are the encountered problems for detection using estimated noise variance? For CFAR
principle, the resultant false alarm rate P̂f a may not be guaranteed as the preassigned level Pf a. Since
the resultant rate P̂f a is actually a random variable. Indeed, the estimated noise variance σ̂2

n is a random
variable. Thus the CFAR threshold, denoted by λ̂ f a, using variance σ̂2

n is also a random variable, which
implies that the resulted probability of false alarm for energy detection, denoted as P̂f a, is also a
random variable. Obviously, it is generally impossible to expect that P̂f a equals the preassigned Pf a.
Let us show a simple example here for demonstration of the theoretical results. Let M = 60, N = 30, if
we want to set a threshold by the standard energy detection method (replacing the noise variance by
its estimation) to guarantee EP̂f a = 0.05, the preassigned false alarm rate to set the threshold should
be cautious and it is found by Theorem 1 that it should be approximately P0

f a = 0.00033955, which
is much smaller than the desired rate 0.05. However, if the sample number N increases to 100, the
preassigned false alarm rate could be P0

f a = 0.0129. As the sample number N increases, the preassigned
rate approaches to 0.05 itself.

In this paper we analyze the difference between Pf a and EP̂f a. It is found in [13] that the
expectation of P̂f a, which is actually calculated using an approximated random variable therein,
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is greater than Pf a for some predesigned Pf a, say, 0.01, which is shown in Figure 2 therein. Hence, to
make a proper choice of the threshold, it is critical to answer the following questions:

• What is the expectation of P̂f a?
• What is the variance of P̂f a? (equivalently, the second moment of EP̂2

f a)

• What is the limitation of EP̂f a for a fixed Pf a as N, the number of samples used to estimate the
noise variance, and M, the number of samples used to perform detection, tend to infinity?

Although a part of these issues, e.g., the first and third for the case of M = N, have been tackled
and initially studied in [13]. Yet, the study failed to find an explicit form for EP̂f a, which leaves a large
space for further advance. Motivated by this, we investigate the problems by explicitly describing
EP̂f a and establishing an upper bound for EP̂2

f a, which well answers the first issue and the second

partly. Moreover, with an approximation of EP̂f a based on an estimated distribution of the resulted
threshold λ̂ f a, the third question is analyzed for some special cases. Nevertheless, some new CFAR
thresholds for energy detection are proposed by confirming that EP̂f a equals to the predesigned false
alarm probability Pf a.

The rest of this paper is organized as follows. The model setting and hypothesis testing of energy
detection by a known noise variance is introduced in Section 2, where the CFAR thresholds are derived
in an exact way and an approximating way, respectively, by assuming Gaussian signals. Section 3
numerically investigates the selection of CFAR based on an estimated noise variance to set a CFAR
threshold. In Section 4, we analyze some basic statistical properties of the resulted probability of false
alarm P̂f a given by (21) along with ˆ̃Pf a, the estimated case given by (24). Specifically, we come up

with explicit descriptions for the expectations of P̂f a and ˆ̃Pf a by Theorems 1 and 3, respectively, and

some discussions on the corresponding properties. In Section 5, upper bounds on EP̂2
f a and E ˆ̃P2

f a are
derived by Theorems 5 and 6, respectively, due to the difficulty in finding the exact explicit forms
by any known special functions. In Section 6, new CFAR thresholds are proposed, aiming to assure
that EP̂f a or E ˆ̃Pf a equals to the predetermined false alarm probability Pf a. Concluding remarks and
future research are listed in Section 7. All analytical results derived in this paper are regarding CFAR
thresholds. However, as a matter of fact, similar results also hold for the CDR case.

2. Model Setting and Hypothesis Testing with Known Noise Variance

Spectrum sensing is an important task for a secondary user in a cognitive radio network in order
to determine whether a licensed band is currently occupied by a primary user or not. This is can be
formulated into a binary hypothesis testing problem: [13,20]:

x(k) =

{
n(k), H0(vacant),
s(k) + n(k), H1(occupied),

(1)

where s(k), n(k), and x(k) represents the primary user’s signal, the noise, and the received signal,
respectively. The noise is assumed to be Gaussian random process of zero mean and variance σ2

n ,
whereas the signal is also assumed to be iid Gaussian random process of zero mean and variance of σ2

s .
The signal to noise ratio is defined as the ratio of signal variance to the noise variance

SNR = σ2
s /σ2

n . (2)

The test statistics generated from the energy detector as shown in Figure 1 are

u =
1
M

M

∑
k=1

x2
k . (3)
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Under the hypotheses H0 and H1, the test statistic u is a random variable whose probability
density function (PDF) is chi-square distributed. Let us denote a chi-square distributed random
variable X with M degrees of freedom as X ∼ χ2

M, and recall its PDF as

fχ(x, M) =





1
2M/2Γ(M/2)

xM/2−1e−x/2, for x > 0,

0, otherwise,
(4)

where Γ(·) denotes Gamma function, given in (15).
Clearly, under hypothesis H0, Mu/σ2

n ∼ χ2
M; and Mu/σ2

t ∼ χ2
M under H1 with σ2

t = (1+ SNR)σ2
n .

Thus, the PDF of test statistics u, given by test, is

fu(x) ∼
{

σ2
n

M fχ(
xσ2

n
M , M), under H0;

σ2
t

M fχ(
xσ2

t
M , M), under H1.

(5)

When M is sufficiently large, we can approximate the PDF of u using Gaussian distribution:

f̃u(x) ∼
{
N (σ2

n , 2σ4
n/M), under H0;

N (σ2
t , 2σ4

t /M), under H1.
(6)

For a given threshold λ, the probability of false alarm is given by

Pf a = prob[u > λ|H0] = Γ
(

M
2

,
Mλ

2σ2
n

)
, (7)

where Γ(a, x) is the upper incomplete gamma function in (16). In addition, its approximating form of
Pf a corresponding to distribution (6) for large M is

P̃f a = Q
(

λ− σ2
n

σ2
n/
√

M/2

)
, (8)

where Q(·) is defined in (14).
If the required probability of false alarm rate (Pf a) is predetermined, the threshold (λ f a) can be set

accordingly by

λ f a =
2σ2

n
M

Γ−1
(

M/2, Pf a

)
, (9)

where Γ−1(a, x) is the inverse function of Γ(a, x). Furthermore, for the approximation case:

λ̃ f a = σ2
n

(
1 +

Q−1(Pf a)√
M/2

)
, (10)

where Q−1(x) is the inverse function of Q(x).
Similarly, under hypothesis H1, for a given threshold λ, the probability of detection is given by

Pd = prob[u > λ|H1] = Γ
(

M
2

,
Mλ

2σ2
t

)
, (11)

where Γ(a, x) is the upper incomplete gamma function. So, we derive the threshold to achieve a target
probability of detection at the required signal level or SNR:

λd =
2σ2

n(1 + SNR)
M

Γ−1 (M/2, Pd) . (12)



J. Sens. Actuator Netw. 2019, 8, 28 5 of 22

Furthermore, the corresponding approximating case is

λ̃d = σ2
n(1 + SNR)

(
1 +

Q−1(Pd)√
M/2

)
. (13)

The probability of false alarm is fixed to a small value (e.g., 5%) if it is required to guarantee a reuse
probability of the unused spectrum, and meanwhile the detection probability should be maximized as
much as possible. This is referred to as constant false alarm rate (CFAR) principle [13,19]. On the other
hand, if it is required to guarantee a non-interference probability to the primary users, the probability
of detection should be set to a high level (e.g., 95%) and the probability of false alarm should be
minimized as much as possible. This is called the constant detection rate (CDR) principle [13,19]. By
the similarity of (9) and (12), it is clear that the derivation of the threshold values for CFAR and CDR
are similar, so the analytic results derived by assuming CFAR based detection can be applied to CDR
based detection with minor modifications and vice versa. From now on, we will mainly focus on the
discussion of CFAR threshold, since similar conclusions follow directly by minor changes.

Let us introduce some special functions and related notations for ease of reading. The complement
of the standard normal distribution function is often denoted as Q(x), i.e.,

Q(x) =
∫ ∞

x

1√
2π

e−
t2
2 dt, (14)

and is simply referred to as Q-function, in the context of engineering. This represents the tail probability
of the standard Gaussian distribution. The Gamma function and regularized upper incomplete Gamma
function are defined as

Γ(k) =
∫ ∞

0
tk−1e−tdt, (15)

Γ(k, x) =
1

Γ(k)

∫ ∞

x
tk−1e−tdt (16)

for k > 0, respectively. The more complicated Beta function and Beta distribution function are
respectively listed below

B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt, (17)

B(x, a, b) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt. (18)

for a > 0, b > 0 and x ∈ [0, 1]. A well-known relation between Beta and Gamma function is

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

.

We simply use Q−1(x), Γ−1(k, x) and B−1(x, a, b) to present the inverse functions of Q(x), Γ(k, x) and
B(x, a, b) respectively.

3. Energy Detection Performance Using Estimated Noise Variance

As already mentioned in the introduction, the exact noise variance is generally unavailable;
even historic records are sometimes out of use, due to timely changes of thermal conditions and
environmental conditions, and so on. So, practically the threshold values in (9) and (12), or the
approximating cases (10) and (13), are usually calculated from an estimated noise variance σ̂2

n to a
certain extent. In this section, we numerically study the performance of energy detection by replacing
the noise variance in these formulas by an estimated noise variance σ̂2

n . Specifically, we investigate the
difference EP̂f a − Pf a by numerical experiments.
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We want to find out the performance of energy detection by simply replacing the exact noise
variance σ2

n in (9) and (12) with the estimated noise variance σ̂2
n , i.e., calculate the thresholds as

λ̂ f a =
2σ̂2

n
M

Γ−1
(

M/2, Pf a

)
, (19)

λ̂d =
2σ̂2

n(1 + SNR)
M

Γ−1 (M/2, Pd) , (20)

and then by (7) and (11) respectively the resulted performance probabilities are

P̂f a = prob[u > λ̂ f a|H0] = Γ

(
M
2

,
Mλ̂ f a

2σ2
n

)
, (21)

P̂d = prob[u > λ̂d|H1] = Γ

(
M
2

,
Mλ̂d

2σ2
t

)
. (22)

Similarly, in the approximating case, the CFAR threshold λ̃ f a by replacing with the estimated
noise variance σ̂2

n is

ˆ̃λ f a = σ̂2
n

(
1 +

Q−1(Pf a)√
M/2

)
, (23)

which is corresponding to (10). Thus the resulted performance probability is

ˆ̃Pf a = prob[u > ˆ̃λ f a] = Q

( ˆ̃λ f a − σ2
n

σ2
n/
√

M/2

)
. (24)

Due to the CFAR and CDR principles having an essentially similar structure, we actually
investigate the CFAR case only, i.e., by formulas (19) and (21) to check the evolvement of EP̂f a
as the predetermined Pf a varying from 0 to 1, or for a fixed Pf a as the number of samples tends to
infinity. A technical treatment of estimating EP̂f a in the following experiments is replacing it by the

corresponding empirical average P̂ f a over a class of sample paths.

Example 1. We first investigate the difference between EP̂f a and the predesigned Pf a as Pf a changes along the
interval [0, 1] with M and N fixed. In model (1), let σ2

n = 1 and M = 60. Consider a given false alarm rate
Pf a, we use N = 30 iid Gaussian noises to estimate the variance σ̂2

n , and then substitute σ̂2
n in (19) to derive the

threshold λ̂ f a. The energy detection performance by the obtained threshold λ̂ f a is evaluated by the corresponding
false alarm probability P̂f a by (21). As aforementioned, it is important to check whether EP̂f a = Pf a. In order to
estimate EP̂f a, repeat independently the aforementioned procedure and calculation for 600 times to calculate the
average false alarm probability

P̂ f a =
1

600

600

∑
i=1

P̂f a(ωi)

to serve as an empirical approximation of EP̂f a, where P̂f a(ωi) denotes the calculated probability along the i-th
sample path ω(i). We let Pf a = 0, 0.05, . . . , 1, totally 21 points, to do an experiment. The result is shown in

Figure 2a, where P̂ f a is plotted by ’+’. We see that P̂ f a > Pf a when Pf a is close to 0, while P̂ f a < Pf a when Pf a
is near 1.

Example 2. This time we investigate the difference between EP̂f a and the predesigned Pf a with a fixed Pf a as
M = N tends to infinity. Still let σ2

n = 1 in model (1). With the same procedure of Example 1 to calculate
P̂ f a by 600 independent sample paths. We let Pf a = 0.05 and 0.95 respectively, and M = N = 1, 2, . . . , 100

to do an experiment. The result is shown in Figure 2b, where P̂ f a for Pf a = 0.05 is plotted by thick line, and



J. Sens. Actuator Netw. 2019, 8, 28 7 of 22

Pf a = 0.95 by ordinary line. We see that P̂ f a > Pf a when Pf a = 0.05, and P̂ f a < Pf a when Pf a = 0.95.

Furthermore, it seems that P̂ f a, and thus EP̂f a, for a fixed Pf a has a limitation as M = N tends to infinity.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Example 1

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1 P
fa

=0.95

P
fa

=0.05

(b) Example 2

Figure 2. Plots of Examples 1 and 2. (a) Average false alarm probability P̂ f a > Pf a vs. Pf a =

0, 0.05, . . . , 1. (b) P̂ f a vs. M = N = 1, 2, . . . , 100.

The phenomena discovered by these numerical experiments will be explained in the next two
sections by developing an exact formula for EP̂f a and an upper bound for its variance. Nevertheless,
the case for approximating CFAR threshold has also been analyzed meanwhile.

4. Calculations of EP̂f a and E ˆ̃Pf a

In this section, we will derive explicit formulas for the expectation of P̂f a given by (19) and (21)

with respect to predesigned false alarm probability Pf a, and the expectation of ˆ̃Pf a given by (23) and
(24). Moreover, some basic properties are deduced analytically and numerically, which further explains
some discoveries in the former section.

Denote Y = 1
N ∑N

k=1 Y2
k as the estimated noise variance from the reference channel (Ch0) known

to be vacant, where N is the number of samples used to estimate noise variance. Denote u by (3) as
the energy detection test statistics from the channel of interest (Ch1). Here we assume the number of
samples, as aforementioned, used to perform spectrum sensing is M.

Notice that the estimated noise variance, Y = 1
N ∑N

k=1 Y2
k , is a random variable itself, the

probability of false alarm or detection is conditioned on one observation of the random variable,
e.g., y. Let us consider the case of CFAR. By (7) and (19), the probability of false alarm can be written as

P̂f a = prob[u > λ̂ f a] = Γ
(

M
2

,
y
σ2

n
Γ−1

(
M/2, Pf a

))
, (25)

where λ̂ f a is the threshold value calculated from (19) by given false alarm probability Pf a, and y is a
realization of random variable Y.

Since P̂f a given by (25) is a random variable depending on y, it is natural to consider its expectation
with respect to y. Let us summarize a theoretical result regarding EP̂f a as a theorem below.

Theorem 1. When using estimated threshold λ̂ f a of CFAR given by (19) for model (1), we have

EP̂f a = B
(

N
N + 2x

,
N
2

,
M
2

)
, (26)
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where x = Γ−1
(

M/2, Pf a

)
and Beta distribution B(x, a, b) is defined by (18).

Proof of Theorem 1. By integrating (25) over the PDF of Y, the expected probability of false alarm can
be derived as

EP̂f a = EΓ
(

M
2

,
y
σ2

n
Γ−1

(
M/2, Pf a

))

=
∫ ∞

0
Γ
(

M
2

,
t
N

Γ−1
(

M/2, Pf a

))
fχ (t, N) dt, (27)

where we use the fact t = Ny/σ2
n ∼ χ2

N in the second step. Letting x = Γ−1
(

M/2, Pf a

)
, we derive

EP̂f a =
∫ ∞

0
Γ (M/2, tx/N) fχ (t, N) dt

=
∫ ∞

0

1
Γ(M/2)

∫ ∞

tx/N
sM/2−1e−sds

1
2N/2Γ(N/2)

tN/2−1e−t/2dt. (28)

Differentiating by x, we have

d(EP̂f a)

dx
=

−1
Γ(M

2 )Γ(N
2 )2

N/2

∫ ∞

0

(
tx
N

)M/2−1
e−

tx
N

t
N

tN/2−1e−t/2dt

=
−xM/2−1(1/N)M/2

Γ(M
2 )Γ(N

2 )2
N/2

∫ ∞

0
t

M+N
2 −1e−(

x
N + 1

2 )tdt. (29)

Introduce transformation u =
(

x
N + 1

2

)
t. By the fact that x > 0, we proceed as

d(EP̂f a)

dx
=
−xM/2−1(1/N)M/2

Γ(M
2 )Γ(N

2 )2
N/2

· 1
(

x
N + 1

2

)M+N
2

∫ ∞

0
u

M+N
2 −1e−udu

=
−xM/2−1(1/N)M/2

2N/2
(

x
N + 1

2

)M+N
2
·

Γ(M+N
2 )

Γ(M
2 )Γ(N

2 )

=
−xM/2−1(1/N)M/2(1/2)N/2

B(M
2 , N

2 )
(

x
N + 1

2

)M+N
2

, (30)

where B(M
2 , N

2 ) is Beta function in (17). Integrating (30) over (x, ∞), by noticing EP̂f a = 0 for x = ∞ in
(27), we derive

EP̂f a =
∫ ∞

x

uM/2−1(1/N)M/2(1/2)N/2

B(M
2 , N

2 )
(

u
N + 1

2

)M+N
2

du. (31)

Let w = 2u
N . The integral turns to be

EP̂f a =
1

B(M
2 , N

2 )

∫ ∞

2x
N

w
M
2 −1

(w + 1)
M+N

2
dw

=
1

B(M
2 , N

2 )

∫ N
N+2x

0
s

N
2 −1(1− s)

M
2 −1ds

= B
(

N
N + 2x

,
N
2

,
M
2

)
, (32)
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where B(x, a, b) is the Beta distribution function in (18). In the second step, we use the transformation
w = 1

s − 1.

Based on Theorem 1, we conclude a further theoretical discovery as the following theorem, which
is actually being pointed out in the numerical experiments of the former section.

Theorem 2. There exists a p0 ∈ (0, 1) such that

EP̂f a > Pf a for Pf a ∈ (0, p0), EP̂f a < Pf a for Pf a ∈ (p0, 1), (33)

where EP̂f a is defined by (27), and can be calculated by (26).

Proof. Let Pf a = p to be brief. Introduce a function ψ(p) = EP̂f a − p. By (26), we have

ψ′(p) =
d
(

B
(

N
N+2x , N

2 , M
2

))

dx
· dx

dp
− 1

=
1

B(N
2 , M

2 )

(
N

N + 2x

) N
2 −1 ( 2x

N + 2x

)M
2 −1
· 2NΓ(M/2)x1−M

2 ex

(N + 2x)2 − 1

=
C(M, N)ex

(N + 2x)
M+N

2
− 1, (34)

where C(M, N) =
Γ( M+N

2 )

Γ( N
2 )

N
N
2 2

M
2 . By the fact x = Γ−1 (M/2, p), i.e., p = Γ(M/2, x), we have used the

following calculation

dx
dp

=
1
dp
dx

=
−Γ(M/2)

x
M
2 −1e−x

in the above second step. Note x = ∞ when p = 0, so ψ′(0) > 0 by (34). Note further x = 0 if
p = 1, by (34) we have ψ′(1) > 0. Together with the fact that ψ(0) = ψ(1) = 0, we know that ψ′ is
negative somewhere.

To find more information about the sign of ψ′(x), we recall the famous Stirling’s approximation
formula for Gamma function (see page 400 of [21]):

Γ(n + 1) =
√

2πn
(n

e

)n
eλn (35)

where 1
12n+1 < λn < 1

12n , and an inequality (see page 88 of [21]):

(
1 +

1
n

)n+α

≤ e ≤
(

1 +
1
n

)n+β

, (36)

where α ≤ 1
ln2 − 1 = 0.4427 · · · and β ≥ 1

2 .
By (35), we get

C(M, N) = eθ

√
M + N − 2

N − 2
(M + N − 2)

M+N
2 −1N

N
2

(N − 2)
N
2 −1e

M
2

with θ ∈
(

−6M−1
(6(M+N)−11)(6N−12) , −6M+1

(6(M+N)−12)(6N−11)

)
. Thus,

ψ′(p) = eθ

√
M + N − 2

N − 2
(M + N − 2)

M+N
2 −1N

N
2

(N + 2x)
M+N

2 (N − 2)
N
2 −1

ex−M
2 − 1.
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By (36),

(
N

N − 2

) N
2 −1

=

(
1 +

2
N − 2

) N−2
2

< e.

Together with the facts that eθ < 1 and

N√
(N − 2)(M + N − 2)

< 1

for M ≥ 6, we declare that the derivative of ψ(p) at p, corresponding x = M
2 − 1, i.e.,

ψ′
(

Γ−1(M
2 , M

2 − 1)
)
< 0.

On the other hand, by noticing the increase rates of function ex and (N + 2x)
M+N

2 in (34), we know
that ψ′(p) at most has two zeros in (0, 1). Hence, we conclude that ψ′(p) starts as a positive value
ψ′(0) > 0, then decreases to a negative minimum, and finally increases to a positive value ψ′(1) > 0.
This means that ψ(p) starts as 0 increases to a positive maximum, and then decreases to negative
minimum, finally increases to 0, which is just the assertion desired.

Now let us consider the counterparts for the approximating threshold of CFAR criterion, i.e., the
expectation of ˆ̃Pf a given by (23) and (24).

Theorem 3. When using estimated threshold ˆ̃λ f a of CFAR given by (23) for model (1), we have

E ˆ̃Pf a = Q

(
x
√

N/2√
A(x)

)
−Q

(√
N
2

)
, (37)

where A(x) = x2 + x
√

2M + M+N
2 and x = Q−1

(
Pf a

)
.

Remark 1. Based on Theorem 3, we now consider the limitation of E ˆ̃Pf a as M and N tend to infinity for fixed

Pf a. By (37), for a fixed x = Q−1
(

Pf a

)
, we have

lim
M,N→∞

E ˆ̃Pf a = Q

(
x√

1 + µ

)
. (38)

if M = µN. Thus, if M = N tends to infinity, we derive the discovery in [13]:

lim
M=N→∞

E ˆ̃Pf a = Q
(

x√
2

)
. (39)

These properties also hold for EP̂f a since the distribution of P̂f a tends to be the distribution of ˆ̃Pf a.

Proof of Theorem 3. Integrating (24) with respect to y, and noticing that y ∼ N (σ2
n , 2σ4

n/N), we have

E ˆ̃Pf a =
∫

R
Q

(
y(1 + Q−1(Pf a)/

√
M/2)− σ2

n

σ2
n/
√

M/2

)
1√

2πσ2
n/
√

N/2
e
− (y−σ2

n)
2

4σ4
n/N dy. (40)

Letting x = Q−1(Pf a) and t = (y− σ2
n)/σ2

n . we derive

E ˆ̃Pf a =
∫

R
Q(t
√

M/2 + (t + 1)x)
√

N/2√
2π

e−
Nt2

4 dt. (41)
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For simplicity, introduce α =
√

M/2 and β =
√

N/2. Differentiating ¯̃Pf a over x, we get

d(E ˆ̃Pf a)

dx
=
∫

R

∂Q(αt + tx + x)
∂x

β√
2π

e−
(βt)2

2 dt

= −
∫

R

t + 1√
2π

e−
(αt+tx+x)2

2
β√
2π

e−
(βt)2

2 dt

= − β

2π

∫

R
(1 + t) exp

{
−1

2
[x2 + 2xt(x + α) + At2]

}
dt, (42)

where A(x) = (x + α)2 + β2 and hereafter denote A sometimes for brief. It follows

d(E ˆ̃Pf a)

dx
= − β

2π

∫

R
(1 + t) exp

{
−1

2

[
A
(

t +
x(x + α)

A

)2

+
(βx)2

A

]}
dt

= − β

2π
e−

(βx)2
2A

∫

R

(
1 + u− x(x + α)

A

)
e−

A
2 u2

du

= − β

2π
e−

(βx)2
2A

(
1− x(x + α)

A

) ∫

R
e−

A
2 u2

du

= − β

2π
e−

(βx)2
2A

(
1− x(x + α)

A

)
·
√

2π

A

= − β√
2π

e−
(βx)2

2A
αx + α2 + β2

A
√

A

= − 1√
2π

e−
(βx)2

2A ·
(

βx√
A

)′
. (43)

In the second step we use the transformation u = t + x(x+α)
A to simplify the expression.

Now integrating (43) over (x, ∞), and by the fact that E ˆ̃Pf a = 0 for x = ∞ in (40), we find

E ˆ̃Pf a =
∫ ∞

x

1√
2π

e−
(βv)2

2A(v) ·
(

βv√
A(v)

)′
dv

=
∫ ∞

x

1√
2π

e−
(βv)2

2A(v) d

(
βv√
A(v)

)
. (44)

Let us study the function φ(x) = βx√
A(x)

before introducing a transformation. Clearly,

lim
x→−∞

φ(x) = −β, lim
x→∞

φ(x) = β, φ′(x) =
1

A
√

A
(αx + α2 + β2).

Note A > 0 and denote x0 = − α2+β2

α , we derive φ′(x) < 0 for x < x0, and φ′(x) > 0 for x > x0. Thus,
φ(x) has one unique minimum at x0. Hence, φ(x) increases from the minimum to −β as x → −∞, and
increases from the minimum to β as x → ∞.

Now introduce a transformation for (44) as w = φ(v). Based on the above analysis for function
φ(·), if the integration region [x, ∞) ⊆ [x0, ∞), then the region for w turns to be [φ(x), β); otherwise,
the region for v can be divided into two monotonic parts as [x, x0] and [x0, ∞), and thus, the regions
for w are [φ(x), φ(x0)] and [φ(x0), β). Then, for the case x ≥ x0, by the fact that ¯̃Pf a = 0 for x = ∞ in
(41), we proceed (44) as

E ˆ̃Pf a =
∫ β

φ(x)

1√
2π

e−
w2
2 dw = Q(φ(x))−Q(β). (45)
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For the case x < x0, similarly,

E ˆ̃Pf a =

(∫ φ(x0)

φ(x)
+
∫ β

φ(x0)

)
1√
2π

e−
w2
2 dw

= Q(φ(x))−Q(β).

These finish the proof.

Corresponding to Theorem 2, we also have:

Theorem 4. There exists a p̃0 ∈
(

0, 1
2

)
such that

E ˆ̃Pf a > Pf a for Pf a ∈ (0, p̃0), E ˆ̃Pf a < Pf a for Pf a ∈ ( p̃0, 1), (46)

where E ˆ̃Pf a can be calculated by (37). Furthermore, the critical point p̃0 is close to 1
2 for large M, N.

Remark 2. By Theorem 4, we know that E ˆ̃Pf a = Pf a at a point close to p = 1
2 . This property holds for EP̂f a

since the distribution of P̂f a tends to that of ˆ̃Pf a.

Proof. Let Pf a = p to be brief. Introduce a function

ϕ(p) = E ˆ̃Pf a − p = Q

(
x
√

N/2√
A(x)

)
−Q

(√
N
2

)
−Q(x),

where x = Q−1(p). So, we have

dϕ

dp
= − 1√

2π
e−

(βx)2
2A ·

(
βx√

A

)′
· dx

dp
− 1

=
αx + α2 + β2

A
√

A
βe

x2(x+α)2
2A − 1,

where x = Q−1(p), A = (x + α)2 + β2, α =
√

M/2, and β =
√

N/2. Clearly, x = ∞ is corresponding
to p = 0, thus, ϕ′(0) > 0. Together with the facts that ϕ(0) = 0 and ϕ( 1

2 ) = −Q(β) < 0, we know that
there exists a p̃0 ∈ (0, 1

2 ) such that ϕ( p̃0) = 0. When x < 0, corresponding to p > 1
2 , clearly,

β√
A

< 1

for x < 0, we have Q
(

xβ/
√

A
)
−Q(β) < 0, and thus ϕ(p) < 0 for p > 1

2 , which finishes the proof of
the first assertion.

By (38), i.e.,

lim
M=µN→∞

E ˆ̃Pf a = Q

(
x√

1 + µ

)
,

we have

lim
M=µN→∞

ϕ(p) = Q

(
x√

1 + µ

)
−Q(x).

Thus, for large M and N, we know that the zero of ϕ(p), i.e., p̃0, is close to p = 1
2 , which is

corresponding to x = 0. This finishes the second assertion.
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Now let us do some numerical experiments to detect the practicality of these theoretical results.
Under the same setting of Example 1, we plot P̂ f a by ’+’, and EP̂f a and E ˆ̃Pf a as the predesigned

Pf a ∈ [0, 1] in Figure 3a. We see that EP̂f a serves better as the mean value of P̂ f a than E ˆ̃Pf a, which

coincides with the fact that the latter is an approximating case. If M, N is sufficiently large, E ˆ̃Pf a
approximates EP̂f a close as desired. Let us analyze more deeply the graphs in Figure 3a by the discovery

in Remark 1. Let M = µN, the approximation of EP̂f a and E ˆ̃Pf a is Q(Q−1(Pf a)/
√

1 + µ) when
M = µN is large. Clearly, Q(Q−1( 1

2 )/
√

1 + µ) = 1
2 by noticing Q−1( 1

2 ) = 0. Graphically, this means
the curves of EP̂f a and E ˆ̃Pf a with respect to Pf a ∈ [0, 1] pass across the diagonal line in Figure 4 around
Pf a =

1
2 for sufficiently large M, N. If M >> N, i.e., µ close to 0, then Q(Q−1(Pf a)/

√
1 + µ) ≈ Pf a. In

this case, the graphs of EP̂f a and E ˆ̃Pf a with respect to Pf a ∈ [0, 1] is close to the diagonal line.

On the other hand, in Figure 3b we plot P̂ f a, EP̂f a and E ˆ̃Pf a under the same setting of Example 2

for Pf a = 0.05. Again, we see that EP̂f a serves better as the mean value of P̂ f a than the approximation

E ˆ̃Pf a. As M = N changes from 1 to 100, EP̂f a and E ˆ̃Pf a seem tend to the value of the upper straight
line in Figure 3b, i.e., Q(Q−1(0.05)/

√
2) = 0.1124 · · · , which justifies the observation in Remark 1.

In conclusion, the theoretical discoveries in the above four theorems and two remarks have been
verified in these numerical experiments.
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fa

 ≤ 1

 

EP̂fa

Eˆ̃P fa

(a) Pf a = 0, 0.05, . . . , 1.
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(b) M = N = 1, 2, . . . , 100.

Figure 3. The plot of P̂ f a by ’+’, EP̂f a and E ˆ̃Pf a under setting of Pf a = 0, 0.05, . . . , 1 and M = N =

1, 2, . . . , 100. (a) The plot of P̂ f a by ’+’, EP̂f a and E ˆ̃Pf a vs Pf a = 0, 0.05, . . . , 1. (b) The plot of P̂ f a, EP̂f a

and E ˆ̃Pf a vs. M = N = 1, 2, . . . , 100, under Pf a = 0.05.

5. Upper Bounds of EP̂2
f a and E ˆ̃P2

f a

After the calculations of EP̂f a and E ˆ̃Pf a, it is meaningful to have some information about the

average deviations of P̂f a and ˆ̃Pf a from their expectations. Technically, it is found very difficult to

find explicit forms for EP̂2
f a and E ˆ̃P2

f a by existing special functions. We have to try to find some upper

bounds instead. By the facts that P̂f a ∈ [0, 1] and ˆ̃Pf a ∈ [0, 1], we have obvious upper bounds as

EP̂2
f a ≤ EP̂f a ≤ 1 and E ˆ̃P2

f a ≤ E ˆ̃Pf a ≤ 1.

Thus, the more sharp upper bounds of EP̂2
f a and E ˆ̃P2

f a should be less than EP̂f a and E ˆ̃Pf a respectively.
For this target, let us list two propositions and two lemmas for technical preparation.

From the proofs of Theorems 1 and 3, we actually have the following two general results
respectively.
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Proposition 1. For a real differentiable function ψ : [0, ∞)→ [0, ∞),

d
dx

∫ ∞

0
Γ(m, tψ(x))

1
Γ(n)

tn−1e−tdt = − 1
B(n, m)

ψm−1(x)ψ′(x)
(1 + ψ(x))m+n

=
1

B(n, m)
(1− φ(x))m−1 (φ(x))n−1 φ′(x), (47)

where φ(x) = 1
1+ψ(x) and m > 0, n > 0.

Proposition 2. For two real differentiable functions ψ(x) and ϕ(x),

d
dx

∫

R
Q(tψ(x) + ϕ(x))e−

t2
2 dt = − exp

{
− ϕ2(x)

2(1 + ψ2(x))

}(
ϕ(x)√

1 + ψ2(x)

)′
. (48)

We need two more inequalities regarding Gaussian and Gamma distributions respectively as
follows. The proofs have been listed in Appendix A.

Lemma 1. For k ≥ 1 and x > 0,

Γ2(k, x) ≤ Γ(k, 2
1
k x). (49)

Lemma 2. For ∀x ∈ (−∞,+∞),

Q2(x) < Q(
√

2x). (50)

By Proposition 1 and Lemma 1, we develop an upper bound for EP̂2
f a in the following.

Theorem 5. Let x = Γ−1
(

M/2, Pf a

)
, then an upper bound for EP̂2

f a is

B(P̂2
f a)

∆
= B

(
N

N + 21+2/Mx
,

N
2

,
M
2

)
. (51)

Remark 3. Note that

0 <
N

N + 21+2/Mx
<

N
N + 2x

for x > 0, we know that the upper bound in (51) for EP̂2
f a is really lower than EP̂f a.

Proof of Theorem 5. By (25), we find an upper bound for the the expectation of squared probability
of false alarm as

EP̂2
f a = EΓ2

(
M
2

,
y
σ2

n
Γ−1

(
M/2, Pf a

))

=
∫ ∞

0
Γ2 (M/2, tx/N) fχ (t, N) dt, (52)

where we use the notations: t = Ny/σ2
n and x = Γ−1

(
M/2, Pf a

)
. By Lemma 1, for a ∈ (0, 1) we derive

EP̂2
f a =

∫ ∞

0
Γ2 (M/2, tx/N) fχ (t, N) dt

≤
∫ ∞

0
Γ(M/2, 22/Mtx/N)

tN/2−1e−t/2

2N/2Γ(N/2)
dt ∆

= B(P̂2
f a). (53)
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In order to use Proposition 1, introduce a transformation u = t/2. Then, we proceed (53) as

B(P̂2
f a) =

∫ ∞

0
Γ
(

M/2, 21+2/Mtx/N
) uN/2−1e−u

Γ(N/2)
du. (54)

Clearly, corresponding to Proposition 1, ψ(x) = 21+2/Mx
N in (54). Thus, by Proposition 1, we derive

B(P̂2
f a) = B

(
N

N + 21+2/Mx
,

N
2

,
M
2

)
.

By Proposition 2 and Lemma 2, we develop an upper bound for E ˆ̃P2
f a in the following.

Theorem 6. Let x = Q−1
(

Pf a

)
, then an upper bound for E ˆ̃P2

f a is

B( ˆ̃P2
f a)

∆
= Q

( √
2βx√

β2 + 2(x + α)2

)
−Q(β), (55)

where α =
√

M/2 and β =
√

N/2.

Remark 4. Note that
√

2βx√
β2 + 2(x + α)2

>
βx√

β2 + (x + α)2
> 0

for x > 0, we know that the upper bound in (55) for E ˆ̃P2
f a is really lower than E ˆ̃Pf a for Pf a ∈ [0, 1

2 ].

Proof of Theorem 6. Letting x = Q−1(Pf a), t = (y− σ2
n)/σ2

n , and recalling the notations α =
√

M/2
and β =

√
N/2. By (24), we derive

E ˆ̃P2
f a =

∫

R
Q2(αt + xt + x)

β√
2π

e−
β2t2

2 dt. (56)

By Lemma 2, we proceed as

E ˆ̃P2
f a ≤

∫

R
Q
(√

2(αt + xt + x)
) β√

2π
e−

β2t2
2 dt ∆

= B( ˆ̃P2
f a). (57)

Introduce transformation u = βt, and thus t = u
β . Hence, we derive

B( ˆ̃P2
f a) =

∫

R
Q
(√

2
[
(α + x)

u
β
+ x
])

e−
u2
2

√
2π

du. (58)

Clearly, corresponding to Proposition 2, ψ(x) =
√

2(α + x)/β and ϕ(x) =
√

2x. By the fact

lim
x→+∞

ϕ(x)√
1 + ψ2(x)

= lim
x→+∞

√
2βx√

β2 + 2(x + α)2
= β

and Proposition 2, we have the formula (55).
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Now let us do two numerical experiments corresponding to examples in Section 3 to check how
the two upper bounds work. The average squared false alarm probability is calculated over 600 sample
paths by

P̂2
f a =

1
600

600

∑
i=1

P̂2
f a(ωi)

to serve as an empirical approximation of EP̂2
f a, where P̂f a(ωi) denotes the calculated probability along

the i-th sample path ω(i). Under the same setting of Example 1, we plot P̂2
f a by ’+’, B(P̂2

f a) and B( ˆ̃P2
f a)

as Pf a changes from 0 to 1 in Figure 4a. It seems that B(P̂2
f a) is the better one, especially in the case

Pf a >
1
2 . Under the same setting of Example 2, by letting Pf a = 0.05 we plot P̂2

f a, B(P̂2
f a) and B( ˆ̃P2

f a)

for M = N = 1, . . . , 100 in Figure 4b. The two upper bounds seem not quite satisfied since both of
them do not tend to P̂2

f a as M (or N) tends to infinity.
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Figure 4. The plot of approximation of EP̂2
f a and E ˆ̃P2

f a and their upper bounds. (a) The plot of P̂2
f a

by ’+’, B(P̂2
f a) and B( ˆ̃P2

f a) vs. Pf a = 0, 0.05, . . . , 1. (b) The plot of P̂2
f a by ’+’, B(P̂2

f a) and B( ˆ̃P2
f a) vs.

M = N = 1, . . . , 100.

6. New Thresholds Based on EP̂f a and E ˆ̃Pf a

In this section we derive new thresholds to guarantee the expectation EP̂f a = Pf a or in the

approximation formula version, E ˆ̃Pf a = Pf a, by the help of Theorems 1 and 3, respectively.
The threshold λ̂ f a given by (19) constructed by using estimated noise variance is actually a

random variable itself. This leads to the fact that the resulted false alarm probability P̂f a given by (21)
is generally different from the predesigned probability Pf a. It is found in Theorem 1 that the expected
value of P̂f a is probably different from the predesigned probability Pf a. For instance, let Pf a = 0.05
and M = 60, N = 30 as in Example 1, by Theorem 1,

EP̂f a = B
(

30
30 + 2Γ−1 (30, 0.05)

, 15, 30
)
= 0.2065 · · ·

for the threshold given by (19), i.e., λ̂ f a = 2σ̂2
n

M Γ−1 (30, 0.05) , where σ̂2
n is estimated by N = 30

independent observations. Obviously, the resulted expectation EP̂f a = 0.2065 · · · is much bigger than
the predesigned false alarm probability Pf a = 0.05. This means the threshold is selected too low to
guarantee the predesigned false probability Pf a = 0.05 in an average sense. If we want the expectation
EP̂f a = 0.05, the preassigned probability P0

f a for energy detection should be suitably smaller. Next

we analyze how small the preassigned probability P0
f a should be and then derive a new threshold to

guarantee EP̂f a = Pf a.
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For a given alarm level Pf a, say 0.05, in order to derive a threshold to guarantee EP̂f a = Pf a, it is
found that the x in (26) should be

x =
N
2

(
1

B−1(Pf a, N/2, M/2)
− 1

)

by solve the target equation. Then by x = Γ−1
(

M/2, P0
f a

)
described in Theorem 1, the preassigned

initial threshold for energy detection should be P0
f a = Γ (M/2, x). In other words, due to the fact

that the noise variance is estimated by finite samples of noise, if we still want the false alarm rate
less than Pf a, we may need to be more cautious to select the threshold for energy detection. For the
simple example discussed above, i.e., M = 60, N = 30, if we want EP̂f a = 0.05, the preassigned false
alarm rate should be approximately P0

f a = 0.00033955, which is much smaller than the desired rate
0.05. However, if the sample number N increases to 100, the preassigned false alarm rate could be
P0

f a = 0.0129. As the sample number N increases, the preassigned rate approaches to 0.05 itself.

It is plotted in Figure 5a how the cautious preassigned false alarm rate P0
f a should be under the

setting M = 60 and N = 30, 100, for the sequence Pf a = 0, 0.05, . . . , 1. It is clearly shown in the figure
that the preassigned false alarm rate P0

f a should be much smaller than the value Pf a is designed to be.

As the sample number N for estimation increases, the preassigned false alarm rate P0
f a approaches to

the value of Pf a.
Consequently, by the value of x the derived new threshold is given by

λ̂new
f a =

2σ̂2
n

M
x =

Nσ̂2
n

M

(
1

B−1(Pf a, N/2, M/2)
− 1

)
, (59)

where B−1(x, a, b) denotes the inverse function of B(x, a, b). By formula (26), we have

E(prob[u > λ̂new
f a ]) = Pf a.

This means by this new threshold the expected false alarm probability is just the predesigned false
alarm probability Pf a. Hence, this new threshold is more accurate to serve as CFAR threshold for
energy detection when using estimated noise variance.

Similarly, for a given alarm level Pf a, say 0.05, we derive a threshold to guarantee E ˆ̃Pf a = Pf a.
Denote γ = Q−1(Q(β) + Pf a). It can be solved by (26) that

xnew =
αγ2 + βγ

√
∆

β2 − γ2

with γ = Q−1(Q(β) + Pf a), ∆ = α2 + β2 − γ2, α =
√

M/2 and β =
√

N/2. Observe that Q(γ) =

Q(β) + Pf a > Q(β), it follows that γ < β. Then by x = Q−1
(

P0
f a

)
stated in Theorem 3, it is clear that

the preassigned false alarm rate should be P0
f a = Q(xnew). It is plotted in Figure 5b how the cautious

preassigned false alarm rate P0
f a should be under the setting M = 60 and N = 30, 100, for the sequence

Pf a = 0.05, 0.10, . . . , 0.95. It is clearly shown in the figure that the preassigned false alarm rate P0
f a

should be much smaller than the value Pf a is designed to be. As the sample number N for estimation
increases, the preassigned false alarm rate P0

f a approaches to the value of Pf a.
Consequently, by the value of xnew the derived new threshold is given by

ˆ̃λnew
f a = σ̂2

n

(
1 +

xnew√
M/2

)
. (60)
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Then, by Theorem 3, we have

E(prob[u > ˆ̃λnew
f a ]) = Pf a.

Hence, this new threshold is much more accurate in an average sense than the empirical threshold
simple replacement for energy detection when using estimated noise variance.
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(a) By Theorem 1. (b) By Theorem 3.

Figure 5. The plot of preassigned false alarm rate P0
f a to guarantee EP̂f a = Pf a and E ˆ̃Pf a = Pf a by

Theorems 1 and 3 respectively. (a) Preassigned rate derived by Theorem 1 to guarantee EP̂f a = Pf a. (b)

Preassigned rate derived by Theorem 1 to guarantee E ˆ̃Pf a = Pf a.

7. Conclusions

When using noise variance to set a CFAR threshold of energy detection for spectrum sensing, the
derived threshold itself is a random variable. Thus, the resulted probability of false alarm is probably
different from the predetermined false alarm probability Pf a. In this paper, we analyze some basic
statistical properties of the resulted probability of false alarm P̂f a given by (21) and its approximating

case ˆ̃Pf a given by (24), and then some more suitable CFAR thresholds of energy detection are proposed.

Specifically, we first deduce explicit descriptions for the expectations of P̂f a and ˆ̃Pf a by Theorems
1 and 3 respectively in Section 4, and then some straightforward properties are established. These
actually answer the first question we proposed in the introduction. Second, two upper bounds of
EP̂2

f a and E ˆ̃P2
f a are derived by Theorems 5 and 6 respectively in Section 5, due to the difficulty to find

exact explicit forms by known special functions. These answer the second question proposed in the
introduction partially as well. Third, with the help of Theorem 3, the limitation of EP̂f a or E ˆ̃Pf a for
M = µN as M or N tends to infinity is analyzed in Remark 1, which answers partly the third question
in the introduction. Finally, new CFAR thresholds are proposed by assuring that EP̂f a or E ˆ̃Pf a equals
the predetermined false alarm probability Pf a in Section 6. All analytical results derived in this paper
are regarding the CFAR threshold. However, as a matter of fact, similar results hold for the CDR case.

For further consideration, it is of interest to describe explicitly EP̂2
f a and E ˆ̃P2

f a. This means that a
more cautious thresholds setting is possible. Observe that the CFAR and CDR thresholds are considered
separately in this paper, it is crucial to consider CFAR and CDR thresholds synchronously in energy
detection to achieve low false alarm probability and high detection probability simultaneously.
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Appendix A

Proof of Lemma 1. Clearly, 2
1
k ∈ (1, 2), and we use a instead of 2

1
k below for brief.

Define φ(x) = Γ2(k, x)− Γ(k, ax). Clearly,

φ(0) = 0, lim
x→+∞

φ(x) = 0, (A1)

and

φ′(x) = −2Γ(k, x)
xk−1e−x

Γ(k)
+

a(ax)k−1e−ax

Γ(k)

=
2xk−1e−x

Γ(k)

(
e(1−a)x − Γ(k, x)

)

∆
=

2xk−1e−x

Γ(k)
φ1(x). (A2)

We use the fact ak = 2 in the above second step. Clearly, φ1(0) = 0 and limx→∞ φ1(x) = 0. Let us point
out a basic fact: for k > 0 and x > k + 1,

Γ(k, x) <
1

Γ(k)
xke−x, (A3)

which can be proved by basic calculus. Thus, for x > k + 1, we have

φ1(x) > e(1−a)x − 1
Γ(k)

xke−x = e−x
(

e(2−a)x − 1
Γ(k)

xk
)

, (A4)

which means φ1(x) > 0 when x > x0 with a sufficiently large point x0. Now let us consider the
derivative of φ1 below.

φ′1(x) = (1− a)e(1−a)x +
xk−1e−x

Γ(k)

= e−x

(
xk−1

Γ(k)
− (a− 1)e(2−a)x

)
∆
= e−xφ2(x). (A5)

We find that φ2(0) = −(a− 1) < 0 and limx→∞ φ2(x) = −∞. Due to the fact that φ1(x) has positive
value for x > x0, starting at φ1(0) = 0, we know that its derivative φ′1(x) must be positive somewhere
between 0 and x0, and thus for φ2(x). This assertion holds for the i-th derivative of φ2(x), denoted as
φ
(i)
2 (x), if the order of the first term is positive. This is because the starting points are all φ

(i)
2 (0) = 0.

If k is a positive integer, then the (k− 1)-th and k-th derivatives are

φ
(k−1)
2 (x) = 1− (a− 1)(2− a)k−1e(2−a)x,

φ
(k)
2 (x) = −(a− 1)(2− a)ke(2−a)x < 0.

Notice further that φ
(k−1)
2 (0) = 1− (a− 1)(2− a)k−1 > 0 and limx→∞ φ

(k−1)
2 (x) = −∞, we know that

φ
(k−1)
2 (x) starts at a positive value and then decreases monotonically to −∞. This further means that

φ
(k−2)
2 (x) starts from 0 to a positive local maximum and then decreases monotonically to −∞, and so

on until φ′2(x). Thus, φ2(x) increases piecewise monotonically from φ2(0) < 0 to a positive maximum
and then decreases to −∞. Then φ′1(x) changes its sign twice, i.e., from negative to positive and
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then negative. Hence, φ1(x) decreases from 0 to a negative minimum and then increases to positive
maximum and then decreases to 0. This further holds for φ′(x), which means the sign of φ′(x) changes
from negative to positive once. Finally, we know that φ(x) decreases from φ(0) = 0 to a negative
minimum and then increases to 0. This means φ(x) < 0 as desired.

When k is not an integer, the [k]-th and ([k] + 1)-th derivatives are

φ
([k])
2 (x) =

(k− 1) · · · (k− [k])xk−[k]−1

Γ(k)
− (a− 1)(2− a)[k]e(2−a)x,

φ
([k]+1)
2 (x) =

(k− 1) · · · (k− [k]− 1)xk−[k]−2

Γ(k)
− (a− 1)(2− a)[k]e(2−a)x < 0.

Notice further that φ
([k])
2 (0) = +∞ and limx→∞ φ

([k])
2 (x) = −∞, we know that φ

([k])
2 (x) decreases

monotonically from +∞ to −∞ as x moves from 0 to ∞. The rest of the reasoning is similar to the
above case.

Proof of Lemma 2. Define ψ(x) = Q2(x)−Q(
√

2x). Clearly,

lim
x→−∞

ψ(x) = 0, lim
x→+∞

ψ(x) = 0, (A6)

and

ψ′(x) = −2Q(x)
1√
2π

e−
x2
2 +

√
2√

2π
e−x2

=
1√
2π

e−x2
(√

2− 2Q(x)e
x2
2

)

∆
=

1√
2π

e−x2
ψ1(x). (A7)

Let us study ψ1(x) first. Obviously, ψ1(0) =
√

2− 1 > 0. By the facts that Q(−∞) = 1 and

e
x2
2 −−−−→

x→−∞
+∞, we have limx→−∞ ψ1(x) = −∞. Notice further the monotonicity of Q(x) and e

x2
2 as

x → −∞, the sign of function ψ1(x) changes once from negative to positive as x moves from −∞ to 0.
It is left to consider the sign of ψ1(x) when x > 0. By the following inequality

Q(x) <
1

x
√

2π
e−

x2
2 (A8)

for x > 0, we derive

Q(x)e
x2
2 <

1
x
√

2π
.

Hence, for ψ1(x) > 0, it is sufficient to require

√
2− 2

x
√

2π
> 0,

which is equivalent to x > 1√
π

. This means ψ1(x) > 0 for x > 1√
π

. Now only the case for 0 < x ≤ 1√
π

is left. This can be analyzed directly as following: for 0 < x ≤ 1√
π

,

ψ1(x) >
√

2− e
x2
2 ≥
√

2− e
1

2π = 1.4142 · · · − 1.1725 · · · = 0.2417 · · · > 0.

Here the approximating calculation in the last step is carried out by Matlab.
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In conclusion, ψ1(x) changes its sign once from negative to positive as x moves from −∞ to
∞. Thus, by (A7), ψ′(x) change from negative to positive as x moves from −∞ to ∞, and the sign
changes only once. This means ψ(x) has only one local minimum. Together with (A6), the assertion
follows directly.
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