
Journal of

Actuator Networks
Sensor and

Article

An Availability-Enhanced Service Function Chain
Placement Scheme in Network
Function Virtualization

Yansen Xu 1,* and Ved P. Kafle 1,2

1 Department of Informatics, The University of Electro-Communications, Chofu 182-8585, Japan;
kafle@nict.go.jp

2 Network Science and Convergence Device Tech Lab, National Institute of Information and Communications
Technology, Koganei 184-8795, Japan

* Correspondence: yansen.xu@uec.ac.jp

Received: 26 April 2019; Accepted: 12 June 2019; Published: 14 June 2019
����������
�������

Abstract: A service function chain (SFC) is an ordered virtual network function (VNF) chain for
processing traffic flows to deliver end-to-end network services in a virtual networking environment.
A challenging problem for an SFC in this context is to determine where to deploy VNFs and how to
route traffic between VNFs of an SFC on a substrate network. In this paper, we formulate an SFC
placement problem as an integer linear programing (ILP) model, and propose an availability-enhanced
VNF placing scheme based on the layered graphs approach. To improve the availability of SFC
deployment, our scheme distributes VNFs of an SFC to multiple substrate nodes to avoid a single
point of failure. We conduct numerical analysis and computer simulation to validate the feasibility of
our SFC scheme. The results show that the proposed scheme outperforms well in different network
scenarios in terms of end-to-end delay of the SFC and computation time cost.

Keywords: service function chain; network function virtualization; software-defined networking;
resource management; network management

1. Introduction

The fifth generation (5G) mobile communication system is designed to have the capacities of
providing enhanced mobile broadband (eMBB), ultra-reliable and low latency (URLLC), and massive
machine-type communication (mMTC) [1]. These capacities can provide an enabling environment
for emerging applications such as self-driving vehicles, high-definition videos, and internet of
things [2]. To realize these capacities in the 5G system, network function virtualization (NFV) [3] and
software-defined networking (SDN) [4] have been considered as enabling technologies. By leveraging
NFV and SDN, virtual network functions (VNFs) can be installed, removed, or migrated dynamically to
adapt to the dynamic network resource requirements due to changes in network topology or network
traffic load. In this context, the VNFs are commonly placed in a chain of a specific order in the substrate
network. The chained VNFs form a service function chain (SFC) [5] and process traffic flows to deliver
end-to-end network services, such as firewall, network address translation (NAT), and content caching.

The SFC deployment problem is to decide about where to deploy VNFs and how to route data
traffic through the VNFs in the substrate network, so that the computing resources such as CPU and
memory, and network resources such as link bandwidth and buffer capacity, are efficiently utilized
and the service requirements are met. Figure 1 shows an example of an SFC deployment problem.
The upper graph is an SFC composed of two VNFs between source node and destination node, and the
bottom graph is a substrate network with six substrate nodes on which the SFC can be deployed.

J. Sens. Actuator Netw. 2019, 8, 34; doi:10.3390/jsan8020034 www.mdpi.com/journal/jsan

http://www.mdpi.com/journal/jsan
http://www.mdpi.com
https://orcid.org/0000-0003-1715-8085
http://dx.doi.org/10.3390/jsan8020034
http://www.mdpi.com/journal/jsan
https://www.mdpi.com/2224-2708/8/2/34?type=check_update&version=2

J. Sens. Actuator Netw. 2019, 8, 34 2 of 16

J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 2 of 16

Though SFC is regarded as an enabling technology for flexible management of service and
application traffic in the virtualized environment [6], several challenges must be addressed in the
deployment of an SFC [7]. This paper focuses on the challenges of consistent ordering of VNFs,
maintaining desired end-to-end latency and reliability in an SFC.

Figure 1. An example of service function chain (SFC) deployment on substrate network.

Keeping the specified order of VNFs in an SFC is critical for some SFCs to realize the network
service, such as an encryption function must come before the decryption function, or intrusion
detection system (IDS) must inspect the payloads before compression or encryption [8,9].

Maintaining a low end-to-end latency of traffic flowing through an SFC is important for mission
critical applications such as factory automation [10]. While NFV and SDN techniques offer a great
freedom for network operators to deploy network functions and allocate resources across the whole
substrate network [11], an uncareful deployment of network functions could cause the flow to
traverse a long path, or the same path back-and-forth, and result in a high end-to-end latency [12],
which is not acceptable.

The other challenge in the SFC deployment is to achieve reliability in end-to-end service delivery
[7,11], which is critical for applications such as automated driving. In the process of SFC deployment,
one substrate network node can host several types of VNF services by deploying several virtual
machines in the same substrate node. Thus, it is possible that more than one VNF of an SFC could get
deployed on the same physical node. Although this type of collocation of several VNFs can help in
minimizing the deployment cost, the unbalanced resource utilization among substrate network
nodes would increase the risk of node failure under high loads [13]. This will result in a single point
failure, which may take a longer time to recover as it may require restarting VNFs or their
reconfiguration. Furthermore, since VNFs in an SFC are required to be placed in a specific order for
processing the traffic flow of an intended service, if multiple disordered VNFs are placed on the same
substrate network, the traffic flow must travel back-and-forth in the substrate network, which
increases the end-to-end service latency and the risk of forming loops.

In this paper, we; therefore, propose an availability-enhanced SFC placement scheme by
deploying VNFs, in a distributed manner, on different substrate nodes with the objective of avoiding
a single point failure and increasing the reliability of network services. This scheme also guarantees
the order of the VNFs and end-to-end latency of the SFC.

The contributions of this work are as follows.
1. We formulate the problem of service function chain placement as an integer linear

programing (ILP) optimization problem with the objective of minimizing end-to-end delay of an SFC.
2. We propose a heuristic algorithm to improve availability by distributing VNFs on multiple

substrate nodes on the basis of a layered graph approach.
3. We carry out simulation to evaluate the performance of the availability-enhanced scheme

in terms of availability, end-to-end delay, and computation time cost on different topologies.
The rest of this paper is organized as follows. Section 2 discusses the related works on SFC

placement and routing. In Section 3, we formulate the SFC routing problem in an ILP model, and
introduce the layered graph approach for deploying an SFC. In Section 4, we propose a distributed

Figure 1. An example of service function chain (SFC) deployment on substrate network.

Though SFC is regarded as an enabling technology for flexible management of service and
application traffic in the virtualized environment [6], several challenges must be addressed in the
deployment of an SFC [7]. This paper focuses on the challenges of consistent ordering of VNFs,
maintaining desired end-to-end latency and reliability in an SFC.

Keeping the specified order of VNFs in an SFC is critical for some SFCs to realize the network
service, such as an encryption function must come before the decryption function, or intrusion detection
system (IDS) must inspect the payloads before compression or encryption [8,9].

Maintaining a low end-to-end latency of traffic flowing through an SFC is important for mission
critical applications such as factory automation [10]. While NFV and SDN techniques offer a great
freedom for network operators to deploy network functions and allocate resources across the whole
substrate network [11], an uncareful deployment of network functions could cause the flow to traverse
a long path, or the same path back-and-forth, and result in a high end-to-end latency [12], which is
not acceptable.

The other challenge in the SFC deployment is to achieve reliability in end-to-end service delivery [7,11],
which is critical for applications such as automated driving. In the process of SFC deployment,
one substrate network node can host several types of VNF services by deploying several virtual
machines in the same substrate node. Thus, it is possible that more than one VNF of an SFC could get
deployed on the same physical node. Although this type of collocation of several VNFs can help in
minimizing the deployment cost, the unbalanced resource utilization among substrate network nodes
would increase the risk of node failure under high loads [13]. This will result in a single point failure,
which may take a longer time to recover as it may require restarting VNFs or their reconfiguration.
Furthermore, since VNFs in an SFC are required to be placed in a specific order for processing the traffic
flow of an intended service, if multiple disordered VNFs are placed on the same substrate network,
the traffic flow must travel back-and-forth in the substrate network, which increases the end-to-end
service latency and the risk of forming loops.

In this paper, we; therefore, propose an availability-enhanced SFC placement scheme by deploying
VNFs, in a distributed manner, on different substrate nodes with the objective of avoiding a single
point failure and increasing the reliability of network services. This scheme also guarantees the order
of the VNFs and end-to-end latency of the SFC.

The contributions of this work are as follows.

1. We formulate the problem of service function chain placement as an integer linear programing
(ILP) optimization problem with the objective of minimizing end-to-end delay of an SFC.

2. We propose a heuristic algorithm to improve availability by distributing VNFs on multiple
substrate nodes on the basis of a layered graph approach.

3. We carry out simulation to evaluate the performance of the availability-enhanced scheme in terms
of availability, end-to-end delay, and computation time cost on different topologies.

The rest of this paper is organized as follows. Section 2 discusses the related works on SFC
placement and routing. In Section 3, we formulate the SFC routing problem in an ILP model,

J. Sens. Actuator Netw. 2019, 8, 34 3 of 16

and introduce the layered graph approach for deploying an SFC. In Section 4, we propose a distributed
SFC placement scheme to enhance the availability of SFC. The results are presented in Section 5. Finally,
Section 6 concludes the paper and discusses future work.

2. Related Work

Many prior studies have been done in the area of the SFC deployment problem. We categorize the
related works into five target groups: virtual network embedding problem, layered graph approach,
availability issues, end-to-end latency issue, and other aspects.

Prior studies [14–17] have investigated the virtual network embedding (VNE) problem, which is
very similar to the problem of SFC placement. The VNE problem is considered to efficiently place
different virtual networks on a shared physical network under the constraints of node computation
and link bandwidth capacity, whereas SFC placement is supposed to map different virtual network
functions on physical or virtual hosts, orderly, within the given constraints. The experience gained
from solving VNE problems could be applied to solve the SFC placement problem.

The layered graph approach has been utilized by prior studies to solve the SFC deployment
problem. Dwaraki et al. [18] proposed an adaptive service function-chaining placement by utilizing
layered graphs [19] to minimize the network delay. Huin et al. [20] formulated two ILP for SFC
provisioning based on the layered graphs scheme presented in [18]. The authors investigated the
best compromise between bandwidth requirements and the number of possible nodes, which can
host VNFs, and the number of chain occurrences. Tomassilli et al. [21] utilized the layered graph
concept and formulated the SFC placement problem as a set cover problem to minimize the total
deployment cost while keeping the order of VNFs in the SFC. The authors proposed a naïve and faster
greedy algorithm, and an optimal algorithm for tree topologies. These works use the similar layered
graph approach to solve the problem and focus the problem on the issues of maintaining end-to-end
latency [18,20] and keeping order constrains [21], but not considering the aspect of availability.

Several prior works have investigated the availability issues in SFC deployment. Moualla et al. [22]
proposed an algorithm to place the VNFs of an SFC with the availability requested by the tenant
without prior knowledge on placement demand distribution. This algorithm is based on an iterative
linear program and leverages the fat-tree topology property to achieve the online deployment of SFC.
Herker et al. [23] analyzed and provided different backup strategies for VNF service chains in different
data-center topologies. The authors compared the cost of different architectures and performance for
embedding VNFs with requested service availability. From the result, the author found that a two-tier
tree topology achieves higher availability for a VNF service chain because of the advantages of more
paths for backup than a three-tier tree topology. Kong et al. [24] proposed an availability-guaranteed
service function mapping mechanism to determine the number of replicas required by each VNF in an
SFC. The mechanism analyzes and distributes the replicas of VNF to the working path and backup path
to maximize the availability. This mechanism can also guarantee the dependencies among different
VNFs. However, these prior works did not consider keeping the order of VNFs in the SFC [22,23] and
maintaining the end-to-end latency of the SFC in the substrate network [24].

Maintaining end-to-end latency is a critical issue for VNFs deployment in an SFC.
Mehraghdam et al. [8] proposed a mixed integer quadratically-constrained program (MIQCP) for
placing an SFC, with the objective of maximizing remaining data rate, minimizing number of used
network nodes, and minimizing total latency over all paths. The authors also presented a context-free
language for denoting complex composition of VNF. Yala et al. [25] proposed a VNF placement
scheme to minimize the access latency and maximize service availability for URLLC services in a
multi-access edge computing environment. The authors formulated the latency, availability and cost
model, and a genetic algorithm to solve the problem. They evaluated the performance with the IBM
ILOG CPLEX Optimizer in terms of quality of solution and execution time. Chua et al. [12] prosed
an SFC provisioning system called Stringer, which is composed of a fast and scalable round-robin
heuristic algorithm, a mixed integer programing-based approach, and a queueing-theoretic model

J. Sens. Actuator Netw. 2019, 8, 34 4 of 16

to estimate the latency. The stringer system aims at minimizing the end-to-end latency of an SFC
while maximizing the resource usage and performance. However, these prior works did not consider
availability issues [8], and the dependency across VNFs in an SFC [12,25].

Many other aspects such as deployment of VNFs at network edges and reduction of network
management cost have been investigated, which are also helpful for understanding the state-of-art of
SFC deployment problems. Kathiravelu et al. [26] elaborated a scalable and optimal SFC placement
framework at network edge. The authors designed Evora by extending SDN with a message-oriented
middleware for an adaptive execution of an SFC. Evora solves the optimal VNF allocation problem in a
graph-based approach as well as mixed integer linear programming (MILP) problem. Hsieh et al. [27]
proposed a network-aware service function-chaining placement by formulating the problem as a
bin-pack problem to minimize the network and server costs. They treated the problem as a multi-layer
bin-packing problem and proposed two greedy algorithms for the tree-like network topology. R. Cohen
et al. [28] addressed the actual placement of VNFs to minimize overall network cost by formulating the
problem as the facility location problem and the generalized assignment problem (GAP). They evaluated
how the placement of VNFs affects the performance of the network, availability, and operation cost.
Lombardo et al. [29] proposed a NetFATE (Network Functions At the Edge) architecture for placing
virtual network functions at the edge of Telco operator networks. NetFATE is compliant with the
European Telecommunications Standards Institute (ETSI) NFV reference architectural framework.
By utilizing open sourced software on provider equipment and customer premise nodes, NetFATE
reduces the cost of network management and simplifies the deployment of functions.

In this paper, we extend [18,20] by integrating and leveraging the concept of the layered graph
approach [8] to enhance SFC availability through the distributed deployment of VNFs in an SFC.
The scheme also minimizes the end-to-end latency of an SFC with respect to the order of VNFs in
the SFC.

3. Layered Graph System Model and Problem Formulation

In this section we formulate the SFC placement problem as an ILP model with the objective of
minimizing end-to-end latency of the SFC, and introduce an SFC deployment approach based on a
layered graph.

The end-to-end latency of the SFC is the time taken by data traffic from the source node (ingress
node) to the destination node (egress node) when getting processed through the SFC in the substrate
network. Since the latencies of various links in the substrate network are different, the end-to-end
latency is dependent on links and nodes selected for the SFC deployment.

3.1. Problem Formulation

As shown in Figure 1, we modelled the substrate network as an undirected graph G = (V, E),
where V and E represent the set of substrate nodes and edges, respectively. The following notations
were used in the model.

F: Set of virtual network functions (VNFs) f ∈ F.
di j: Edge latency between node i and node j, where (i, j) ∈ E.
S: Service function chain that contains a series of ordered VNFs

{
f1, f2, . . . , fi, . . . , ft

}
, where fi is

the ith VNF in S and t is the total number of VNFs in S.
R: Service function chain request which contains a service function chain S and source node vs

and destination vd node (i.e., R = {vs, vd, S}).
N f : Set of candidate nodes for hosting VNF f .
xi j: Binary value to represent that if xi j = 1, the edge ei j is on the path from ingress node vs to

egress node vd.
y f

v : Binary value that represents whether VNF f is mapped on the node v.

J. Sens. Actuator Netw. 2019, 8, 34 5 of 16

The problem was determining which VNF in the SFC was mapped on to which node to minimize
the latency of the SFC. We also considered that one node could host at most one VNF to avoid a single
point of failure in the SFC.

Objective:
min

∑
(i, j)∈E

xi jdi j (1)

Subjected to ∑
(i, j)∈E

xi j −
∑

(j,i)∈E
x ji = 0 i, j ∈ V, i , vs, i , vd (2)

∑
(i, j)∈E

xi j −
∑

(j,i)∈E
x ji = 1 i, j ∈ V i = vs or j = vd (3)

∑
v∈N f

y f
v = 1 f or ∀ f ∈ S (4)

∑
f∈S

y f
v = 1 f or ∀v ∈ V (5)

The objective (1) is to minimize the end-to-end latency of the network path configured by the SFC
request. Constraint (2) states that for any node i, which is neither a source node nor a destination node,
the number of incoming flows is equal to the number of outgoing flows. Constraint (3) states that for
any source (or destination node), there is always an outgoing flow (or an incoming flow). Constraint
(4) states that for any network function f in a service function chain request, only one node can host it.
Constraint (5) states that for any node in the network, it can host only one VNF.

3.2. Layered Graph System Model

As candidate nodes for hosting one VNF are only a partial number of nodes, but not all nodes
of the substrate network, the shortest path approach is not applicable to determine an optimal path
between the ingress and egress nodes of SFC in the substrate network. One reason is that the shortest
path approach cannot ensure that the substrate nodes on the shortest path could host all VNFs in
the SFC. Another reason is that the shortest path could not travel through all VNFs of the SFC in the
specified order. Therefore, by only considering the shortest path in the substrate network, it cannot
assure that this path can host the SFC in a correct order. The layered graph approach provides a simple
and proper approach to find the shortest path between the ingress and egress nodes of SFC in the
substrate network, which simultaneously guarantees the connectivity of all VNFs and the assurance
for the specified order of VNFs.

Given a substrate network topology graph G, and a service function chain S composed of t VNFs,
the layered graph is generated as described below:

1. Create t copies of substrate network graph G. The network topology of each copy is the same
as G’s topology. We denote G0 as the original substrate network graph and Gi as the ith copy
network graph.

2. Connect substrate nodes in neighboring network graphs Gi−1 and Gi vertically if they can host ith
VNF of the SFC.

3. The original substrate graph G0, t copies of substrate network graphs G1 ∼ Gt, and edges between
these layered networks compose a new graph, denoted as Gwhole.

4. Find a shortest path between the ingress node in G0 and the egress node in Gwhole. Each transition
node on the shortest path connecting i− 1 and i layers is the selected substrate node to host the
ith VNF of the SFC.

Figure 2 shows an example of the layered graph approach for deploying and routing in the SFC.
The substrate network is denoted as G0. An SFC request contains two VNFs, say VNF1 and VNF2.

J. Sens. Actuator Netw. 2019, 8, 34 6 of 16

Substrate nodes S0 and D0 are the ingress and the egress of the SFC, respectively. Substrate nodes
A0, B0, and C0 are the candidate nodes for hosting VNF1, and substrate nodes B0, C0, and E0 are the
candidate nodes for hosting VNF2. The layered graph approach creates two graphs G1 and G2, which
are copied from G0. The approach connects B0 to B1, and F0 to F1, respectively, as they can host VNF1,
and connects B1 to B2, C1 to C2, and E1 to E2, respectively, as they can host VNF2, as shown by dashed
lines. The layered graph approach then calculates the shortest path considering the weight of link
latency between S0 and D2, as shown by red dashed lines. Since B0 and C1 are on the shortest path,
which are transition nodes from G0 to G1 and G1 to G2, B and C are selected to host VNF1 and VNF2,
respectively. The resultant SFC deployment path is S0→B0→C0→D0 in the original graph.

J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 5 of 16

𝑚𝑖𝑛 ෍ 𝑥௜௝𝑑௜௝ ሺ௜,௝)∈ா (1)

Subjected to ෍ 𝑥௜௝ − ෍ 𝑥௝௜ = 0ሺ௝,௜)∈ா ሺ௜,௝)∈ா 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑣௦, 𝑖 ≠ 𝑣ௗ (2)

෍ 𝑥௜௝ − ෍ 𝑥௝௜ = 1ሺ௝,௜)∈ா ሺ௜,௝)∈ா 𝑖, 𝑗 ∈ 𝑉 𝑖 = 𝑣௦ 𝑜𝑟 𝑗 = 𝑣ௗ (3)

෍ 𝑦௩௙ = 1 ௩∈ே೑ 𝑓𝑜𝑟 ∀𝑓 ∈ 𝑆 (4)

෍ 𝑦௩௙ = 1 ௙∈ௌ 𝑓𝑜𝑟 ∀𝑣 ∈ 𝑉 (5)

The objective (1) is to minimize the end-to-end latency of the network path configured by the
SFC request. Constraint (2) states that for any node 𝑖, which is neither a source node nor a destination
node, the number of incoming flows is equal to the number of outgoing flows. Constraint (3) states
that for any source (or destination node), there is always an outgoing flow (or an incoming flow).
Constraint (4) states that for any network function 𝑓 in a service function chain request, only one
node can host it. Constraint (5) states that for any node in the network, it can host only one VNF.

3.2. Layered Graph System Model

Figure 2. Layered graph approach for deployment of two virtual network functions (VNFs) in a
service function chain (SFC).

As candidate nodes for hosting one VNF are only a partial number of nodes, but not all nodes
of the substrate network, the shortest path approach is not applicable to determine an optimal path
between the ingress and egress nodes of SFC in the substrate network. One reason is that the shortest
path approach cannot ensure that the substrate nodes on the shortest path could host all VNFs in the
SFC. Another reason is that the shortest path could not travel through all VNFs of the SFC in the
specified order. Therefore, by only considering the shortest path in the substrate network, it cannot
assure that this path can host the SFC in a correct order. The layered graph approach provides a
simple and proper approach to find the shortest path between the ingress and egress nodes of SFC in
the substrate network, which simultaneously guarantees the connectivity of all VNFs and the
assurance for the specified order of VNFs.

Given a substrate network topology graph 𝐺, and a service function chain 𝑆 composed of 𝑡
VNFs, the layered graph is generated as described below:

Figure 2. Layered graph approach for deployment of two virtual network functions (VNFs) in a service
function chain (SFC).

3.3. Availability Issues

Utilizing only the layered graph is not sufficient to avoid centralized deployment and protect
the SFC from a single point failure as well as loops in the substrate network. Since the layered graph
scheme calculates the shortest path in its last step, it is highly possible that two neighboring VNFs of
an SFC may get deployed together on the same substrate node to avoid a longer path. As described
in the introduction part, this collocated deployment of VNFs causes unbalanced resource utilization,
and is vulnerable to a single point of failure and forming loops. Thus, it is necessary to deploy VNFs in
an SFC in a distributed manner in order to ensure high availability.

4. Availability-Enhanced SFC Placement Scheme

The separation of network function from hardware results in having two players in network
business, network service provider (NSP) and infrastructure provider (InP). The NSP can lease necessary
infrastructure from InP to provide a service function chain and does not have to build a large-scale
network infrastructure which needs a huge capital investment. InP should be possessed with the
software automation functions to decide where the requested SFC can be deployed by allocating enough
resources in the infrastructure to guarantee the proper utilization of resources as well as provide high
availability of network services offered in an SFC. In this section, we propose an availability-enhanced
SFC placement scheme which can be executed in the orchestration software of InP to guarantee the
availability of SFC. It is called each time a request of installation of an SFC is received.

The objective of the scheme is to avoid two or more VNFs of an SFC getting deployed on the same
node in the substrate network, thus preventing the SFC from a single point failure and forming loops.
To achieve this, the scheme needs to avoid connecting two or more layers via the same node on the
layered graph scheme presented in the previous section. If one node has been used to connect two
layers, then this node cannot be used for connecting any other layers. As shown in Figure 2, substrate
node B can host VNF1 and VNF2, thus it is highly possible that VNF1 and VNF2 both get deployed on
node B when the scheme finds the shortest path between ingress and egress nodes. To improve the
availability, the scheme should eliminate one of the connections between B0 and B1, or B1 and B2. Thus,

J. Sens. Actuator Netw. 2019, 8, 34 7 of 16

for each substrate node, the scheme needs to examine all layers and decide which two neighboring
layers this node should connect to, to ensure that one node hosts only one VNF of an SFC.

Since one VNF can be deployed on multiple substrate nodes, the scheme needs to determine the
substrate nodes that are appropriate candidates to host the VNF. Namely, if one substrate node can
connect multiple layers, the scheme needs to determine the two layers that the substrate node should
connect. We consider that each time the scheme eliminates a connection of two layers, it reduces the
chance to find the optimal shortest path between ingress and egress of the SFC. In the worst case, if the
scheme eliminates all connections of a node, this node would have no chance to host any VNF in
the SFC.

In this case, for each VNF f , the scheme first counts the number of substrate nodes that can host
it (i.e.,

∣∣∣N f
∣∣∣ as defined in Section 3.1). If

∣∣∣N f
∣∣∣ is smaller, it means that for this VNF f it has a smaller

number of candidate substrate nodes for placement, and there is less possibility of finding the shortest
path. The scheme compares

∣∣∣N f
∣∣∣ for each f and finds the VNF whose

∣∣∣N f
∣∣∣ is smallest. Once the scheme

obtains the VNF that has the smallest
∣∣∣N f

∣∣∣, it decides to assign the substrate node as a candidate node
to host this VNF.

For example, considering that VNF 1 can be hosted on node set {B, F} and the other VNF 2 can be
hosted on node set {B, E, C}, as shown in Figure 2. Since both VNFs could be deployed on node B,
our scheme decides that node B is a candidate node to host VNF 1 because the number of nodes for
hosting VNF 1 is smaller than that for hosting VNF 2.

This node selection scheme described above has been formulated as Algorithm 1. The inputs of
procedure NodeSelection in Algorithm 1 are N and V, where N =

{
N f

∣∣∣∀ f ∈ S
}

is a set of N f for all
VNFs, and V is the node set in substrate network. The output of procedure NodeSelection is a new set
of N f which are the candidate nodes selected to host VNF f .

From lines 3 to line 11, Algorithm 1 iterates to find suitable the nodes in the substrate network.
For each substrate node v, the algorithm first initializes a set Fv as the VNFs that node v is able to
host, then iterates all N f to find out all VNFs that node v is able to host, and inserts the VNF into Fv

from lines 5 to 9. At line 10, it inserts Fv into LF, where LF is a set whose elements are the set of VNFs
clustered by a common candidate substrate node to deploy.

From lines 12 to 30, the algorithm eliminates the VNFs in SFC that substrate node v should
not host, to avoid multiple VNFs deployed on the same substrate node and enhance the availability.
At lines 13 and 14, the algorithm initializes two variables min f and minN to None and a large enough
integer (say Max_Int), respectively. min f stores the VNF of Fv that has the least number of candidate
substrate nodes, and minN stores the number of candidate substrate nodes to host min f .

At line 15, the algorithm checks whether substrate node v could host more than one VNF. If it is
not true, the algorithm does nothing and continues to iterate the next Fv. This is because if a substrate
node v could host no more than one VNF, then no more than one VNF could be deployed on this node,
which satisfies the availability condition. From line 16, as substrate node v can host more than one
VNF, the algorithm iterates each VNF f , and checks whether

∣∣∣N f
∣∣∣ is the minimal one than that among

all VNFs in Fv. Namely, VNF f has the least number of candidate nodes among all VNFs in Fv. If it
is true, the algorithm records this

∣∣∣N f
∣∣∣ to minN and removes substrate node v from Nmin f at line 20,

and updates min f by f at line 22. If line 17 is not true, the algorithm removes the substrate node v
from |N|.

Here the min f in lines 19 and 20 is the VNF found previously which has the minimum
∣∣∣N f

∣∣∣.
The reason to remove v from

∣∣∣∣Nmin f

∣∣∣∣ at line 20 is that VNF f has not been the VNF that has the minimum∣∣∣N f
∣∣∣, as the algorithm has found a new VNF. Therefore, the substrate node v should be avoided to

host the VNF in line 20 to assure that this substrate is able to host the VNF that has the minimum
∣∣∣N f

∣∣∣
among Fv.

Then the scheme creates a new layered graph and finds the shortest path between the source node
in the first layer and the destination node in the last layer, as shown in Algorithm 2.

J. Sens. Actuator Netw. 2019, 8, 34 8 of 16

The inputs of Algorithm 2 are R, G, and N, where R is the service function chain request, G is the
substrate network topology graph, and N is the new set of nodes for VNFs N =

{
N f |∀ f ∈ S

}
generated

by Algorithm 1. Algorithm 2 creates |R.S|+ 1 number of copies of substrate network topology graph G
and stores the new graph in Gnew at line 2. Here R.S is the service function chain of request R, and |R.S|
is the number of VNFs in the service function chain R.S. From lines 3 to 7, the algorithm connects the
layers according the value of N as obtained from Algorithm 1. At lines 8 and 9, Algorithm 2 assigns
R.vs in G0 to v0

s as the ingress node, and R.vd in G|R.S| to v|R.S|
d as the egress node of service function

chain. At line 10, Algorithm 2 calculates the shortest path between the ingress in G0 and the egress in
G|R.S|, and returns the path at line 11.

Algorithm 1 Node selection:

J. Sens. Actuator Netw. 2019, 8, 0 8 of 16

by Algorithm 1. Algorithm 2 creates |R.S|+ 1 number of copies of substrate network topology graph G
and stores the new graph in Gnew at line 2. Here R.S is the service function chain of request R, and |R.S|
is the number of VNFs in the service function chain R.S. From lines 3 to 7, the algorithm connects the
layers according the value of N as obtained from Algorithm 1. At lines 8 and 9, Algorithm 2 assigns
R.vs in G0 to v0

s as the ingress node, and R.vd in G|R.S| to v|R.S|
d as the egress node of service function

chain. At line 10, Algorithm 2 calculates the shortest path between the ingress in G0 and the egress in
G|R.S|, and returns the path at line 11.

Algorithm 1 Node selection:J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 8 of 16

 Algorithm 1 Node selection:
1: Procedure NodeSelection(𝑁, 𝑉)
2: 𝐿ி ← ሾሿ
3: for each 𝑣 in 𝑉 do
4: 𝐹௩ ← ሾሿ
5: for each 𝑁௙ in 𝑁 do
6: if 𝑣 in 𝑁௙ then
7: insert 𝑓 into 𝐹௩
8: end if
9: end for

10: insert 𝐹௩ to 𝐿ி
11: end for
12: for each 𝐹௩ in 𝐿ி do
13: 𝑚𝑖𝑛௙ ← 𝑁𝑜𝑛𝑒
14: 𝑚𝑖𝑛ே ← 𝑀𝑎𝑥_𝐼𝑛𝑡
15: if |𝐹௩ | ൐ 1 then
16: for each 𝑓 in 𝐹௩ do
17: if 𝑚𝑖𝑛ே ൐ ห𝑁௙ห then
18: 𝑚𝑖𝑛ே ← ห𝑁௙ห
19: if 𝑚𝑖𝑛௙ ≠ 𝑁𝑜𝑛𝑒 and ቚ𝑁௠௜௡೑ቚ ൐ 1 then
20: delete 𝑣 from 𝑁௠௜௡೑
21: end if
22: 𝑚𝑖𝑛௙ ← 𝑓
23: else
24: if ห𝑁௙ห ൐ 1 then
25: delete 𝑣 from 𝑁௙
26: end if
27: end if
28: end for
29: end if
30: end for
31: return 𝑁
32: end procedure

Algorithm 2 Layered graph based routing:
1: Procedure LinkRouting(𝑅, 𝐺, 𝑁)
2: 𝐺௡௘௪ ← |𝑅. 𝑆| + 1 copies of 𝐺 stored in a new graph

3: for 𝐺௜ in 𝐺௡௘௪ do

4: for 𝑛𝑜𝑑𝑒𝑠 in 𝑁௙೔శభ do

5: connect 𝑛𝑜𝑑𝑒𝑠 in 𝐺௜ and 𝑛𝑜𝑑𝑒𝑠 in 𝐺௜ାଵ

6: end for

7: end for

8: 𝑣௦଴ ← 𝑅. 𝑣௦ in 𝐺଴
9: 𝑣ௗ|ோ.ௌ| ← 𝑅. 𝑣ௗ in 𝐺|ோ.ௌ|

10: 𝑝 ← shortest path in 𝐺௡௘௪ between 𝑣௦଴ and 𝑣ௗ|ோ.ௌ|
11: return 𝑝

12: end procedure

Note that our scheme cannot find out a proper solution if the collocated deployment, in which
more than two VNFs are deployed on a same node, is unavoidable. For example, considering the
scenario with three VNFs and N f 1 = {A, B}, N f 2 = {C, D}, N f 3 = {A, B}, node A or node B will always
host more than one VNF.

For the large-scale situation, we consider that the bottleneck occurs in the scale of substrate
network rather than in the number of VNFs placed in SFC. Therefore, to address the potential bottleneck
issues, we consider that a very large-scale substrate network can be divided into clusters. Each cluster

J. Sens. Actuator Netw. 2019, 8, 34 9 of 16

is composed of a proper number of nodes, such as 100. Within a cluster, the SFC can be configured
by applying our scheme. In addition, the clustering would also be necessary if taking the end-to-end
service latency into account. For instance, due to the latency constraint, the optimal solution can
be obtained by limiting the network size, rather than searching the whole network for the solution.
However, how to divide the large network into clusters is outside the scope of this paper, and we keep
this consideration for our future work.

Algorithm 2 Layered graph based routing:

J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 8 of 16

 Algorithm 1 Node selection:
1: Procedure NodeSelection(𝑁, 𝑉)
2: 𝐿ி ← ሾሿ
3: for each 𝑣 in 𝑉 do
4: 𝐹௩ ← ሾሿ
5: for each 𝑁௙ in 𝑁 do
6: if 𝑣 in 𝑁௙ then
7: insert 𝑓 into 𝐹௩
8: end if
9: end for

10: insert 𝐹௩ to 𝐿ி
11: end for
12: for each 𝐹௩ in 𝐿ி do
13: 𝑚𝑖𝑛௙ ← 𝑁𝑜𝑛𝑒
14: 𝑚𝑖𝑛ே ← 𝑀𝑎𝑥_𝐼𝑛𝑡
15: if |𝐹௩ | ൐ 1 then
16: for each 𝑓 in 𝐹௩ do
17: if 𝑚𝑖𝑛ே ൐ ห𝑁௙ห then
18: 𝑚𝑖𝑛ே ← ห𝑁௙ห
19: if 𝑚𝑖𝑛௙ ≠ 𝑁𝑜𝑛𝑒 and ቚ𝑁௠௜௡೑ቚ ൐ 1 then
20: delete 𝑣 from 𝑁௠௜௡೑
21: end if
22: 𝑚𝑖𝑛௙ ← 𝑓
23: else
24: if ห𝑁௙ห ൐ 1 then
25: delete 𝑣 from 𝑁௙
26: end if
27: end if
28: end for
29: end if
30: end for
31: return 𝑁
32: end procedure

Algorithm 2 Layered graph based routing:
1: Procedure LinkRouting(𝑅, 𝐺, 𝑁)
2: 𝐺௡௘௪ ← |𝑅. 𝑆| + 1 copies of 𝐺 stored in a new graph

3: for 𝐺௜ in 𝐺௡௘௪ do

4: for 𝑛𝑜𝑑𝑒𝑠 in 𝑁௙೔శభ do

5: connect 𝑛𝑜𝑑𝑒𝑠 in 𝐺௜ and 𝑛𝑜𝑑𝑒𝑠 in 𝐺௜ାଵ

6: end for

7: end for

8: 𝑣௦଴ ← 𝑅. 𝑣௦ in 𝐺଴
9: 𝑣ௗ|ோ.ௌ| ← 𝑅. 𝑣ௗ in 𝐺|ோ.ௌ|

10: 𝑝 ← shortest path in 𝐺௡௘௪ between 𝑣௦଴ and 𝑣ௗ|ோ.ௌ|
11: return 𝑝

12: end procedure

 In this section, we described our proposed availability-enhanced VNF placement scheme.
Differently from prior work on SFC provisioning, our scheme tries to avoid placing VNFs on the same
host to enhance the availability of SFC with respect to the latency and order of SFC. Note that the
computation cost for VNFs stays at almost the same level no matter if these VNFs are distributed
or centralized.

5. Evaluation and Analysis

5.1. Simulation Setup

We conducted a numerical simulation to evaluate the availability-enhanced scheme in terms of
availability, end-to-end latency, and computation cost. We wrote a simulator in Python language and
ran it on an Ubuntu 16.04 server with Intel-4600M 2.90GHz CPU and 8 GB memory. We generated
different network topologies on the basis of Erdős-Rényi graph [30,31] for the evaluation of our scheme.
We assumed that types of VNFs in one SFC request were different from each other.

5.2. Performance of Availability

We evaluated our availability-enhanced scheme on different substrate network topologies
generated by Erdős-Rényi graphs. As in [17,18,21], the numbers of nodes in the substrate network were
varied from 50 to 100, and the probabilities of edge connection of substrate networks were 0.1, 0.5,
and 1.0. The edge connection probability of 0.1 indicated that the substrate network was sparsely
connected with only a few links, such as Germany50 [21,32], which contained 50 nodes and 88 links.
The probability value of 0.5 indicated that the substrate network was a densely connected network, such
as a partial mesh network, and the probability value of 1.0 indicated that the substrate network was a
fully connected mesh network (i.e., all nodes in the substrate network were connected to each other).

We varied the number of VNFs in every SFC request from 5 to 20. For each VNF,
∣∣∣N f

∣∣∣ varied from
1 to |V| − 2. N f was chosen randomly from the network nodes, except the source and the destination

J. Sens. Actuator Netw. 2019, 8, 34 10 of 16

nodes. We considered that
∣∣∣N f

∣∣∣ was identical for every VNF in the SFC, that is
∣∣∣N f

∣∣∣ was constant for all
f . |V| was the number of nodes in the substrate network, and |V| − 2 indicated that the source node
and destination nodes of the SFC in the substrate network could not host VNFs.

The number of nodes in the substrate network topologies varied from 50 to 100, and in each
topology we deployed the SFC request by increasing

∣∣∣N f
∣∣∣ from 1 to |V| − 2, and collected statistics in

terms of the number of times that availability requirement was violated during these |V| − 2 times
experiments. If more than one VNF were deployed on the same node in the substrate network, it was
considered as a violation of the availability requirement.

Tables 1–3 summarize the results of evaluation on the number of times the availability requirements
were violated in the three scenarios’ different probabilities of edge connection, that was 1.0, 0.5, and 0.1.
A zero value in the table indicated that all VNFs were deployed on different host nodes, and the
deployment scheme met the availability requirement. The non-zero numbers in the table indicated the
number of times the availability requirement was violated. For example, in Table 1, the value “2” on
the cross cell of 20 VNFs and 50 nodes indicated that the availability requirement was violated twice
during the 1000 times experiments.

Table 1. Number of times availability requirements were not met (probability of edge connection 1.0).

Number of VNFs 50 Nodes 60 Nodes 70 Nodes 80 Nodes 90 Nodes 100 Nodes

5 VNFs 0 0 0 0 0 0
10 VNFs 0 1 0 0 0 0
15 VNFs 1 1 0 1 1 0
20 VNFs 2 1 0 1 1 1

Table 2. Number of times availability requirements were not met (probability of edge connection 0.5).

Number of VNFs 50 Nodes 60 Nodes 70 Nodes 80 Nodes 90 Nodes 100 Nodes

5 VNFs 0 0 0 0 0 0
10 VNFs 0 0 0 1 0 1
15 VNFs 1 0 1 1 1 0
20 VNFs 2 2 1 1 1 1

Table 3. Number of times availability requirements were not met (probability of edge connection 0.1).

Number of VNFs 50 Nodes 60 Nodes 70 Nodes 80 Nodes 90 Nodes 100 Nodes

5 VNFs 0 0 1 0 0 0
10 VNFs 1 1 0 1 0 1
15 VNFs 1 0 1 0 0 1
20 VNFs 2 2 1 1 1 1

From these tables, we observed that most of the values were 0, indicating that the availability
requirement has been met by our availability-enhanced scheme. Moreover, the non-zero values in
the table only happened when

∣∣∣N f
∣∣∣ was 1 or 2, namely, when the number of candidate nodes in the

substrate network for hosting a VNF was only 1 or 2. This is reasonable because
∣∣∣N f

∣∣∣ was the same for
all VNFs in the SFC, and the candidate nodes in N f were chosen randomly from the substrate network.
Suppose

∣∣∣N f
∣∣∣ is 1, then for any VNF in the SFC, only one candidate node in the substrate network is

chosen to host each VNF. Since this candidate node is chosen randomly from the substrate network,
it is possible that two or more VNFs have the same candidate node in the substrate network. In this
case, these VNFs have to be inevitably deployed on this substrate node.

To evaluate the performance in terms of the number of times the availability requirement was
violated in different

∣∣∣N f
∣∣∣, we fixed the number of nodes in the substrate network as 100, and the edge

connection probability as 0.5. The number of VNFs in an SFC request was fixed at 5. We repeated the

J. Sens. Actuator Netw. 2019, 8, 34 11 of 16

experiment of SFC placement by using availability-enhanced scheme 1000 times, and in each time, the
number of candidate nodes

∣∣∣N f
∣∣∣ in the substrate network for hosting one VNF was one of 5, 10, 15,

and 20.
We compared our scheme with a base scheme, specified in related work [18] and [27], which only

utilized the layered graph system model to deploy VNFs without considering the availability issue.
The results in Figure 3 show that our availability-enhanced scheme is able to meet the availability
requirement 100% (1000 out of 1000) times in each

∣∣∣N f
∣∣∣, whereas the base scheme violates the availability

requirement 54.6% (454 out of 1000) times when
∣∣∣N f

∣∣∣ is 5, and 5.2% (52 out of 100) times when
∣∣∣N f

∣∣∣ is
20. The reason that the availability requirement violation rate decreases as the value of

∣∣∣N f
∣∣∣ increases

is that when
∣∣∣N f

∣∣∣ has a high value, for any one substrate node, it could host more VNFs than the
case when

∣∣∣N f
∣∣∣ has a lower value. Therefore, the larger the number of VNFs in an SFC, the higher

the probability of getting two or more VNFs hosted in the same substrate node, thus violating the
availability requirement.

J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 11 of 16

times when ห𝑁௙ห is 20. The reason that the availability requirement violation rate decreases as the
value of ห𝑁௙ห increases is that when ห𝑁௙ห has a high value, for any one substrate node, it could host
more VNFs than the case when ห𝑁௙ห has a lower value. Therefore, the larger the number of VNFs in
an SFC, the higher the probability of getting two or more VNFs hosted in the same substrate node,
thus violating the availability requirement.

Figure 3. Performance of availability (100 nodes, edge connection probability 0.5).

5.3. Performance of End-To-End Latency of SFC

To evaluate the performance in terms of end-to-end latency of the SFC in the substrate network,
we set the latency of each edge in the substrate network to a value uniformly distributed between 1
to 10 millisecond. We assume the bandwidth of any edge and the computation capacity of any node
in the substrate network are sufficiently high enough to host SFC so that the processing time of VNFs
in a substrate node can be ignored. We conducted the evaluations on two different substrate network
sizes, 50 and 100 nodes. Here we assumed the probability of edge connection as 1.0, 0.5, and 0.1.

Figures 4 and 5 show the results of the end-to-end latency of SFC on different physical network
topologies consisting of 100 nodes, with probability of edge connection of 1.0 and 0.1. The x-axis
shows the number of nodes for hosting a VNF and the y-axis shows the end-to-end latency of SFC
provisioned by our scheme. Curves in each graph represents the end-to-end latency of the SFC
consisting of different numbers of VNFs 5, 10, 15, and 20 in the SFC.

By increasing the number of VNFs in each SFC, the end-to-end latency of the SFC provisioned
by our scheme increased proportionately as shown in both figures. The reason is that our scheme
avoids placing more than one VNF on the same node, which led a longer path and latency from the
source node to the destination node in the SFC as the number of VNFs in the SFC increased.

Another result we obtained from the evaluation above shown in Figures 4 and 5 is that as the
number of substrate nodes and the edge connection probability in the network topology increase, the
end-to-end latency of the SFC decreases. This is because the more nodes in the network and the higher
the edge connection probability, the more options for our scheme to find a shorter latency routing
path.

For each specific number of VNFs in the SFC, we evaluated our scheme by varying ห𝑁௙ห. The
results shown in Figures 4 and 5 indicate that as ห𝑁௙ห increased, the end-to-end latency of the SFC
decreased, when ห𝑁௙ห was at low value, but finally stopped decreasing and remained stable even
when ห𝑁௙ห increased. This is because at a low value of ห𝑁௙ห only a few nodes can be selected for SFC
routing and these nodes may be scattered in the network, thus resulting in a longer end-to-end
latency for SFC.

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20

N
um

be
r o

f t
im

es
 ra

te
 a

va
ila

bi
lit

y
re

qu
ire

m
en

t i
s

m
et

Number of nodes for hosting one VNF

Availability enhanced scheme
Base scheme

Figure 3. Performance of availability (100 nodes, edge connection probability 0.5).

5.3. Performance of End-To-End Latency of SFC

To evaluate the performance in terms of end-to-end latency of the SFC in the substrate network,
we set the latency of each edge in the substrate network to a value uniformly distributed between 1 to
10 millisecond. We assume the bandwidth of any edge and the computation capacity of any node in
the substrate network are sufficiently high enough to host SFC so that the processing time of VNFs in a
substrate node can be ignored. We conducted the evaluations on two different substrate network sizes,
50 and 100 nodes. Here we assumed the probability of edge connection as 1.0, 0.5, and 0.1.

Figures 4 and 5 show the results of the end-to-end latency of SFC on different physical network
topologies consisting of 100 nodes, with probability of edge connection of 1.0 and 0.1. The x-axis shows
the number of nodes for hosting a VNF and the y-axis shows the end-to-end latency of SFC provisioned
by our scheme. Curves in each graph represents the end-to-end latency of the SFC consisting of
different numbers of VNFs 5, 10, 15, and 20 in the SFC.

By increasing the number of VNFs in each SFC, the end-to-end latency of the SFC provisioned by
our scheme increased proportionately as shown in both figures. The reason is that our scheme avoids
placing more than one VNF on the same node, which led a longer path and latency from the source
node to the destination node in the SFC as the number of VNFs in the SFC increased.

Another result we obtained from the evaluation above shown in Figures 4 and 5 is that as the
number of substrate nodes and the edge connection probability in the network topology increase,
the end-to-end latency of the SFC decreases. This is because the more nodes in the network and the
higher the edge connection probability, the more options for our scheme to find a shorter latency
routing path.

J. Sens. Actuator Netw. 2019, 8, 34 12 of 16

For each specific number of VNFs in the SFC, we evaluated our scheme by varying
∣∣∣N f

∣∣∣. The results
shown in Figures 4 and 5 indicate that as

∣∣∣N f
∣∣∣ increased, the end-to-end latency of the SFC decreased,

when
∣∣∣N f

∣∣∣ was at low value, but finally stopped decreasing and remained stable even when
∣∣∣N f

∣∣∣
increased. This is because at a low value of

∣∣∣N f
∣∣∣ only a few nodes can be selected for SFC routing and

these nodes may be scattered in the network, thus resulting in a longer end-to-end latency for SFC.J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 12 of 16

Figure 4. Performance of end-to-end delay of SFC (100 nodes, edge connection probability 1.0).

Figure 5. Performance of end-to-end latency of SFC (100 nodes, edge connection probability 0.1).

Figure 6 shows the average end-to-end latency of the SFC in the substrate network. The
experiments were conducted on the substrate network in which the number of nodes of the network
was fixed at 100 and the edge connection probability was fixed at 0.5. Each SFC request contained
five VNFs. We varied ห𝑁௙ห as 5, 10, 15, and 20, and repeated the experiment at each ห𝑁௙ห value 1000
times. The results show that the average of end-to-end latency of SFC was 11.287 when using the
availability-enhanced placement scheme, and 10.292 when using the base scheme. As the number of
nodes for hosting one VNF increased, the availability-enhanced placement scheme achieved a bit
higher latency compared with the base scheme. This is reasonable since our scheme avoids multiple
VNFs being deployed on the same node, which may occasionally result in a longer path from the
source to destination nodes.

5.4. Performance of Computation Time

To evaluate the performance of Algorithm 1 in terms of computation time, we set the number of
nodes in the substrate network topology as 50 and 100, and the edge connection probability was fixed
at 0.5. We also fixed ห𝑁௙ห at 5 and varied the number of VNFs in an SFC as 5, 10, 15, and 20. We
repeated the experiment with each configuration 100 times and collected computation time cost for
running Algorithm 1. Figures 7 and 8 show the cumulative distribution function (CDF) of
computation time cost of Algorithm 1.

As shown in the figures, the computation time cost was higher when an SFC contained a larger
number of VNFs, as well as the substrate network was composed of a larger number of nodes. This
is reasonable since either a larger number of VNFs in an SFC or a larger number of nodes in the
substrate network increases the computation time cost. The computation time in different topologies
is less than 1 millisecond, which is acceptable for online SFC provisioning.

0

20

40

60

80

100

120

140

160

0 20 40 60 80

En
d-

to
-e

nd
 la

te
nc

y
of

 S
FC

(m

illi
se

co
nd

)

Number of nodes for hosting one VNF

VNFs - 20
VNFs - 15
VNFs - 10
VNFs - 5

0

20

40

60

80

100

120

140

160

0 20 40 60 80

En
d-

to
-e

nd
 la

te
nc

y
of

 S
FC

(m

illi
se

co
nd

)

Number of nodes for hosting one VNF

VNFs - 20
VNFs - 15
VNFs - 10
VNFs - 5

Figure 4. Performance of end-to-end delay of SFC (100 nodes, edge connection probability 1.0).

J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 12 of 16

Figure 4. Performance of end-to-end delay of SFC (100 nodes, edge connection probability 1.0).

Figure 5. Performance of end-to-end latency of SFC (100 nodes, edge connection probability 0.1).

Figure 6 shows the average end-to-end latency of the SFC in the substrate network. The
experiments were conducted on the substrate network in which the number of nodes of the network
was fixed at 100 and the edge connection probability was fixed at 0.5. Each SFC request contained
five VNFs. We varied ห𝑁௙ห as 5, 10, 15, and 20, and repeated the experiment at each ห𝑁௙ห value 1000
times. The results show that the average of end-to-end latency of SFC was 11.287 when using the
availability-enhanced placement scheme, and 10.292 when using the base scheme. As the number of
nodes for hosting one VNF increased, the availability-enhanced placement scheme achieved a bit
higher latency compared with the base scheme. This is reasonable since our scheme avoids multiple
VNFs being deployed on the same node, which may occasionally result in a longer path from the
source to destination nodes.

5.4. Performance of Computation Time

To evaluate the performance of Algorithm 1 in terms of computation time, we set the number of
nodes in the substrate network topology as 50 and 100, and the edge connection probability was fixed
at 0.5. We also fixed ห𝑁௙ห at 5 and varied the number of VNFs in an SFC as 5, 10, 15, and 20. We
repeated the experiment with each configuration 100 times and collected computation time cost for
running Algorithm 1. Figures 7 and 8 show the cumulative distribution function (CDF) of
computation time cost of Algorithm 1.

As shown in the figures, the computation time cost was higher when an SFC contained a larger
number of VNFs, as well as the substrate network was composed of a larger number of nodes. This
is reasonable since either a larger number of VNFs in an SFC or a larger number of nodes in the
substrate network increases the computation time cost. The computation time in different topologies
is less than 1 millisecond, which is acceptable for online SFC provisioning.

0

20

40

60

80

100

120

140

160

0 20 40 60 80

En
d-

to
-e

nd
 la

te
nc

y
of

 S
FC

(m

illi
se

co
nd

)

Number of nodes for hosting one VNF

VNFs - 20
VNFs - 15
VNFs - 10
VNFs - 5

0

20

40

60

80

100

120

140

160

0 20 40 60 80

En
d-

to
-e

nd
 la

te
nc

y
of

 S
FC

(m

illi
se

co
nd

)

Number of nodes for hosting one VNF

VNFs - 20
VNFs - 15
VNFs - 10
VNFs - 5

Figure 5. Performance of end-to-end latency of SFC (100 nodes, edge connection probability 0.1).

Figure 6 shows the average end-to-end latency of the SFC in the substrate network. The experiments
were conducted on the substrate network in which the number of nodes of the network was fixed at 100
and the edge connection probability was fixed at 0.5. Each SFC request contained five VNFs. We varied∣∣∣N f

∣∣∣ as 5, 10, 15, and 20, and repeated the experiment at each
∣∣∣N f

∣∣∣ value 1000 times. The results
show that the average of end-to-end latency of SFC was 11.287 when using the availability-enhanced
placement scheme, and 10.292 when using the base scheme. As the number of nodes for hosting one
VNF increased, the availability-enhanced placement scheme achieved a bit higher latency compared
with the base scheme. This is reasonable since our scheme avoids multiple VNFs being deployed on
the same node, which may occasionally result in a longer path from the source to destination nodes.

5.4. Performance of Computation Time

To evaluate the performance of Algorithm 1 in terms of computation time, we set the number
of nodes in the substrate network topology as 50 and 100, and the edge connection probability was
fixed at 0.5. We also fixed

∣∣∣N f
∣∣∣ at 5 and varied the number of VNFs in an SFC as 5, 10, 15, and 20.

We repeated the experiment with each configuration 100 times and collected computation time cost for
running Algorithm 1. Figures 7 and 8 show the cumulative distribution function (CDF) of computation
time cost of Algorithm 1.

J. Sens. Actuator Netw. 2019, 8, 34 13 of 16
J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 13 of 16

Figure 6. Performance of average end-to-end latency of SFC (100 nodes, edge connection probability
0.5).

Figure 7. Performance of computation time of proposed algorithm (100 nodes, edge connection
probability 0.5).

Figure 8. Performance of computation time of proposed algorithm (50 nodes, edge connection
probability 0.5).

6. Conclusion

In this paper, we described the virtual network function placement problem in the context of
service function chaining. Creation of an SFC requires a decision about the placement of required
VNFs in a given order. We formulated the SFC problem as an integer linear programing optimization
problem with the objective of minimizing end-to-end latency of SFC in the substrate network. We
introduced a layered graph-based VNF placement scheme, and discussed the availability issues. By

0

2

4

6

8

10

12

5 10 15 20

Av
er

ag
e

en
d-

to
-e

nd
 d

el
ay

 o
f S

FC

(m
illi

se
co

nd
)

Number of nodes for hosting one VNF

Availability enhanced scheme
Base scheme

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

C
D

F

Computation time of proposed algorithm (millisecond)

VNFs-5
VNFs-10
VNFs-15
VNFs-20

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.00 0.10 0.20 0.30

C
D

F

Computation time of proposed algorithm (millisecond)

VNFs-5
VNFs-10
VNFs-15
VNFs-20

Figure 6. Performance of average end-to-end latency of SFC (100 nodes, edge connection probability 0.5).

J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 13 of 16

Figure 6. Performance of average end-to-end latency of SFC (100 nodes, edge connection probability
0.5).

Figure 7. Performance of computation time of proposed algorithm (100 nodes, edge connection
probability 0.5).

Figure 8. Performance of computation time of proposed algorithm (50 nodes, edge connection
probability 0.5).

6. Conclusion

In this paper, we described the virtual network function placement problem in the context of
service function chaining. Creation of an SFC requires a decision about the placement of required
VNFs in a given order. We formulated the SFC problem as an integer linear programing optimization
problem with the objective of minimizing end-to-end latency of SFC in the substrate network. We
introduced a layered graph-based VNF placement scheme, and discussed the availability issues. By

0

2

4

6

8

10

12

5 10 15 20

Av
er

ag
e

en
d-

to
-e

nd
 d

el
ay

 o
f S

FC

(m
illi

se
co

nd
)

Number of nodes for hosting one VNF

Availability enhanced scheme
Base scheme

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

C
D

F

Computation time of proposed algorithm (millisecond)

VNFs-5
VNFs-10
VNFs-15
VNFs-20

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.00 0.10 0.20 0.30

C
D

F

Computation time of proposed algorithm (millisecond)

VNFs-5
VNFs-10
VNFs-15
VNFs-20

Figure 7. Performance of computation time of proposed algorithm (100 nodes, edge connection
probability 0.5).

J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 13 of 16

Figure 6. Performance of average end-to-end latency of SFC (100 nodes, edge connection probability
0.5).

Figure 7. Performance of computation time of proposed algorithm (100 nodes, edge connection
probability 0.5).

Figure 8. Performance of computation time of proposed algorithm (50 nodes, edge connection
probability 0.5).

6. Conclusion

In this paper, we described the virtual network function placement problem in the context of
service function chaining. Creation of an SFC requires a decision about the placement of required
VNFs in a given order. We formulated the SFC problem as an integer linear programing optimization
problem with the objective of minimizing end-to-end latency of SFC in the substrate network. We
introduced a layered graph-based VNF placement scheme, and discussed the availability issues. By

0

2

4

6

8

10

12

5 10 15 20

Av
er

ag
e

en
d-

to
-e

nd
 d

el
ay

 o
f S

FC

(m
illi

se
co

nd
)

Number of nodes for hosting one VNF

Availability enhanced scheme
Base scheme

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

C
D

F

Computation time of proposed algorithm (millisecond)

VNFs-5
VNFs-10
VNFs-15
VNFs-20

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.00 0.10 0.20 0.30

C
D

F

Computation time of proposed algorithm (millisecond)

VNFs-5
VNFs-10
VNFs-15
VNFs-20

Figure 8. Performance of computation time of proposed algorithm (50 nodes, edge connection
probability 0.5).

As shown in the figures, the computation time cost was higher when an SFC contained a larger
number of VNFs, as well as the substrate network was composed of a larger number of nodes. This is
reasonable since either a larger number of VNFs in an SFC or a larger number of nodes in the substrate
network increases the computation time cost. The computation time in different topologies is less than
1 millisecond, which is acceptable for online SFC provisioning.

6. Conclusions

In this paper, we described the virtual network function placement problem in the context of
service function chaining. Creation of an SFC requires a decision about the placement of required VNFs

J. Sens. Actuator Netw. 2019, 8, 34 14 of 16

in a given order. We formulated the SFC problem as an integer linear programing optimization problem
with the objective of minimizing end-to-end latency of SFC in the substrate network. We introduced a
layered graph-based VNF placement scheme, and discussed the availability issues. By leveraging the
layered graph, we proposed an availability-enhanced VNF placement scheme by preventing two or
more VNFs collocating on the same substrate network node. We performed numerical simulations
on different substrate network topologies. The results showed that the availability-enhanced VNF
placement scheme has a better performance in ensuring the protection against a single-point failure
and enhancement of availability, than other schemes which do not consider the availability issue.
The results also showed the availability-enhanced scheme is able to achieve acceptable end-to-end
latency and computation time cost.

In future work, we will extend our scheme by considering additional constraints such as bandwidth
and computation resources. We will take additional optimization objectives into consideration, such as
maximizing the network resource utilization by utilizing the prediction approach to reduce the cost of
network and increase the revenue of the network operator. To satisfy varied service level agreements,
we will investigate the context-aware SFC placement by considering different services in the future
sensor and actuator network. For the ultra-large-scale substrate network, we will divide the network
into small clusters to obtain the optimal solution. We will conduct experiments on different topologies
and more practical environments in addition to numerical simulations.

Author Contributions: Conceptualization, Y.S. and V.P.K.; methodology, Y.S.; software, Y.S.; investigation, Y.S.;
writing—original draft preparation, Y.S.; writing—review and editing, V.P.K.; visualization, Y.S.; supervision,
V.P.K.; project administration, V.P.K.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable comments and
suggestions to improve the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Recommendation ITU-R M.2083-0. IMT Vision—Framework and Overall Objectives of the Future Development
of IMT for 2020 and Beyond; Int’l Telecommunication Union-Radiocommunication Sector: Geneva,
Switzerland, 2015.

2. Kapassa, E.; Touloupou, M.; Stavrianos, P.; Kyriazis, D. Dynamic 5G slices for IoT applications with diverse
requirements. In Proceedings of the 2018 Fifth International Conference on Internet of Things: Systems,
Management and Security, Valencia, Spain, 15–18 October 2018; pp. 195–199.

3. ETSI. Network Functions Virtualization: An Introduction, Benefits, Enablers, Challenges & Call for Action; ETSI:
Valbonne, France, 2012.

4. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J.
Openflow: Enabling innovation in campus networks. ACM Sigcomm Comput. Commun. Rev. 2008, 38, 69–74.
[CrossRef]

5. Halpern, J.; Pignataro, C. Service Function Chaining (SFC) Architecture; RFC 7665; IETF: Wilmington, DE,
USA, 2015.

6. Bujari, A.; Palazzi, C.E.; Polonio, D.; Zanella, M. Service function chaining: A lightweight container-based
management and orchestration plane. In Proceedings of the 2019 16th IEEE Annual Consumer
Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019; pp. 1–4.

7. Quinn, P.; Nadeau, T. Problem Statement for Service Function Chaining; RFC 7498; IETF: Wilmington, DE, USA,
2015.

8. Mehraghdam, S.; Keller, M.; Karl, H. Specifying and placing chains of virtual network functions. In
Proceedings of the 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), Luxembourg,
8–10 October 2014; pp. 7–13.

http://dx.doi.org/10.1145/1355734.1355746

J. Sens. Actuator Netw. 2019, 8, 34 15 of 16

9. Sekar, V.; Ratnasamy, S.; Reiter, M.K.; Egi, N.; Shi, G. The middlebox manifesto: Enabling innovation in
middlebox deployment. In Proceedings of the 10th ACM Workshop on Hot Topics in Networks (HotNets-X),
Cambridge, MA, USA, 14–15 November 2011; pp. 1–6.

10. Chen, H.; Abbas, R.; Cheng, P.; Shirvanimoghaddam, M.; Hardjawana, W.; Bao, W.; Li, Y.; Vucetic, B.
Ultra-reliable low latency cellular networks: Use cases, challenges and approaches. IEEE Commun. Mag.
2018, 56, 119–125. [CrossRef]

11. Han, B.; Gopalakrishnan, B.; Ji, L.; Lee, S. Network function virtualization: Challenges and opportunities for
innovations. IEEE Commun. Mag. 2015, 53, 90–97. [CrossRef]

12. Chua, F.C.; Ward, J.; Zhang, Y.; Sharma, P.; Huberman, B.A. Stringer: Balancing latency and resource usage
in service function chain provisioning. IEEE Internet Comput. 2016, 20, 22–31. [CrossRef]

13. Lee, J.; Turner, Y.; Lee, M.; Popa, L.; Banerjee, S.; Kang, J.; Sharma, P. Application-driven bandwidth
guarantees in datacenters. ACM Sigcomm Comput. Commun. Rev. 2014, 44, 467–478. [CrossRef]

14. Yu, M.; Yi, Y.; Rexford, J.; Chiang, M. Rethinking virtual network embedding: Substrate support for path
splitting and migration. ACM Sigcomm Comput. Commun. Rev. 2008, 38, 17–29. [CrossRef]

15. Cheng, X.; Su, S.; Zhang, Z.; Wang, H.; Yang, F.; Luo, Y.; Wang, J. Virtual network embedding through
topology-aware node ranking. ACM Sigcomm Comput. Commun. Rev. 2011, 41, 38–47. [CrossRef]

16. Chowdhury, N.M.M.K.; Rahman, M.R.; Boutaba, R. ViNEYard: Virtual network embedding algorithms with
coordinated node and link mapping. IEEE Trans. Netw. 2012, 20, 206–219. [CrossRef]

17. Gong, L.; Wen, Y.; Zhu, Z.; Lee, T. Toward profit-seeking virtual network embedding algorithm via global
resource capacity. In Proceedings of the 2014 IEEE Conference on Computer Communications (INFOCOM),
Toronto, ON, Canada, 27 April–2 May 2014; pp. 1–9.

18. Dwaraki, A.; Wolf, T. Adaptive service-chain routing for virtual network functions in software-defined
networks. In Proceedings of the 2016 Workshop on Hot Topics in Middleboxes and Network Function
Virtualization (HotMIddlebox), Florianopolis, Brazil, 22–26 August 2016; pp. 32–37.

19. Choi, S.; Turner, J.; Wolf, T. Configuring sessions in programmable networks. ACM Comput. Netw. 2003, 41,
269–284. [CrossRef]

20. Huin, N.; Jaumard, B.; Giroire, F. Optimization of network service chain provisioning. In Proceedings of the
2017 IEEE International Conference on Communications Workshops (ICC), Paris, France, 21–25 May 2017;
pp. 1–7.

21. Tomassilli, A.; Giroire, F.; Huin, H.; Perennes, S. Provably efficient algorithms for placement of service
function chains with ordering constraints. In Proceedings of the 2018 IEEE Conference on Computer
Communications (INFOCOM), Honolulu, HI, USA, 16–19 April 2018; pp. 774–782.

22. Moualla, G.; Turletti, T.; Saucez, D. An availability-aware SFC placement algorithm for fat-tree data centers.
In Proceedings of the 2018 IEEE 7th International Conference on Cloud Networking (CloudNet), Tokyo,
Japan, 22–24 October 2018; pp. 1–4.

23. Herker, S.; An, X.; Kiess, W.; Beker, S.; Kirstaedter, A. Data-center architecture impacts on virtualized network
functions service chain embedding with high availability requirements. In Proceedings of the 2015 IEEE
Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–7.

24. Kong, J.; Kim, I.; Wang, X.; Zhang, Q.; Cankaya, H.C.; Xie, W.; Ikeuchi, T.; Jue, J.P. Guaranteed-availability
network function virtualization with network protection and VNF replication. In Proceedings of the 2017
IEEE Global Communications Conference (GLOBECOM), Singapore, 4–8 December 2017; pp. 1–6.

25. Yala, L.; Frangoudis, P.A.; Ksentini, A. Latency and availability driven VNF placement in a MEC-NFV
environment. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu
Dhabi, UAE, 9–13 December 2018; pp. 1–7.

26. Kathiravelu, P.; Van Roy, P.; Veiga, L. Composing network service chains at the edge: A Resilient and adaptive
software-defined approach. Trans. Emerg. Telcommun. Technol. 2018, 29, e3489. [CrossRef]

27. Hsieh, C.; Chang, J.; Chen, C.; Lu, S. Network-aware service function chaining placement in a data center. In
Proceedings of the 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS),
Kanazawa, Japan, 5–7 October 2016; pp. 1–6.

28. Cohen, R.; Lewin-Eytan, L.; Naor, J.S.; Raz, D. Near optimal placement of virtual network functions. In
Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Kowloon, Hong
Kong, 26 April–1 May 2015; pp. 1346–1354.

http://dx.doi.org/10.1109/MCOM.2018.1701178
http://dx.doi.org/10.1109/MCOM.2015.7045396
http://dx.doi.org/10.1109/MIC.2016.128
http://dx.doi.org/10.1145/2740070.2626326
http://dx.doi.org/10.1145/1355734.1355737
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1109/TNET.2011.2159308
http://dx.doi.org/10.1016/S1389-1286(02)00396-1
http://dx.doi.org/10.1002/ett.3489

J. Sens. Actuator Netw. 2019, 8, 34 16 of 16

29. Lombardo, A.; Manzalini, A.; Schembra, G.; Faraci, G.; Rametta, C.; Riccobene, V. An open framework
to enable NetFATE (Network Functions at the Edge). In Proceedings of the 2015 1st IEEE Conference on
Network Softwarization (NetSoft), London, UK, 13–17 April 2015; pp. 1–6.

30. Erdős, P.; Rényi, A. On random graphs. Publ. Math. 1959, 6, 290–297.
31. Gilbert, E.N. Random graphs. Ann. Math. Stat. 1959, 30, 1141–1144. [CrossRef]
32. Orlowski, S.; Wessäly, R.; Pióro, M.; Tomaszewski, A. Sndlib 1.0—Survivable network design library. Networks

2010, 55, 276–286. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.1002/net.20371
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Layered Graph System Model and Problem Formulation
	Problem Formulation
	Layered Graph System Model
	Availability Issues

	Availability-Enhanced SFC Placement Scheme
	Evaluation and Analysis
	Simulation Setup
	Performance of Availability
	Performance of End-To-End Latency of SFC
	Performance of Computation Time

	Conclusions
	References

