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Abstract: The fast growth of the Internet of Things (IoT) and its diverse applications increase the risk
of cyberattacks, one type of which is malware attacks. Due to the IoT devices’ different capabilities
and the dynamic and ever-evolving environment, applying complex security measures is challenging,
and applying only basic security standards is risky. Artificial Immune Systems (AIS) are intrusion-
detecting algorithms inspired by the human body’s adaptive immune system techniques. Most
of these algorithms imitate the human’s body B-cell and T-cell defensive mechanisms. They are
lightweight, adaptive, and able to detect malware attacks without prior knowledge. In this work, we
review the recent advances in employing AIS for the improved detection of malware in IoT networks.
We present a critical analysis that highlights the limitations of the state-of-the-art in AIS research and
offer insights into promising new research directions.

Keywords: adaptive immunology; Artificial Immune Systems (AIS); Internet of Things (IoT); mal-
ware detection; security

1. Introduction

Today’s world is more connected than ever before. Societies are reliant on technol-
ogy, which has become inextricable from people’s daily lives. For instance, smart cities,
smart homes, and e-government are examples of data-driven technologies enabled by
the Internet of Things (IoT) paradigm. Today’s situation due to the Coronavirus 2019
(COVID-19) pandemic has accelerated the adoption of these technologies in various ways.
For instance, e-health applications have developed to support the depleted health care staff
and systems [1]. The widespread connectivity to the cyber-world increases the risk of cyber-
attacks and hence may expose data previously assumed secure. For instance, on Internet of
Medical Things (IoMT) systems, a high volume of patient data is exchanged, raising serious
security concerns [1]. Consequently, many standards have been established to address
these issues, such as implementing a secure socket layer and transport layer security, to
prevent the leakage of confidential information [2]. Cybercrime is defined as any illegal
action committed against computers or traditional crimes targeting individuals by using
the internet [3]. Cybercrime is a serious threat to digital applications that hold personal
information, such as Zoom [4] and the UK National Health Services (NHS) vaccination
website [5]. The increasing role of IoT devices in digitized applications renders this threat
even more important. In this work, we examine the ways in which IoT devices increase the
risk of malware attacks and review pertinent detection and prevention methods.

IoT applications are the weak links in the information technology (IT) network, making
them a major threat to the system’s security [6]. Over 600 organizations were affected by the
WannaCry malware attack in 2017, including health, educational, financial, and governance
institutes, thus creating a global risk factor [7,8]. The NHS in the UK was one of the targeted
organizations, where affected hospitals’ yellow and medical staff were locked out of their
digital system across England and Scotland. This incident caused missed appointments,
deaths, and fiscal costs [8]. Malware attacks are one of the major security threats in the IoT
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and malware detection, specifically detecting unknown malware files, is one of the ongoing
challenges. IoT devices usually have a small amount of memory and processing capacity,
which makes them lightweight. This characteristic limits the complexity of possible security
solutions. There are three overarching challenges in the detection of malware attacks in
the IoT. Firstly, the low computational power of most IoT devices limits the complexity of
the security algorithm. Secondly, the rise of unseen malware attacks targeting IoT systems
necessitates a fast-adapting detection mechanism (which requires complex algorithms).
Thirdly, the rapid spread of IoT devices and the resulting increased security risk requires a
highly robust protection mechanism.

Current malware detection solutions that work effectively on traditional networks are
either too complex to implement on IoT networks or lack the adaptability and robustness
to enable secure operations. Artificial Immune System (AIS) methods are inspired by the
human immune system’s methodology for fighting attacks. They are proven to be adaptive,
distributed, robust, and not computationally expensive, which makes them suitable to
secure the IoT. For this reason, we dedicate this review paper to investigating and analyzing
the AIS methods in detecting malware files in the IoT.

Contribution and Organization of the Paper

This is the first paper to survey IoT security challenges and state-of-the-art malware
detection methods with a focus on AIS. We present a critical analysis of the literature and
offer a quantitative comparison, presenting new findings for the state-of-the-art solutions.
Although the authors in [9] present an AIS survey for IoT security, they do not offer a
quantitative performance analysis. The insights that we can draw from this comparison
are not available in any other published paper, to the best of our knowledge. Furthermore,
we present promising future research directions and implementation suggestions for
employing AIS methods to secure the IoT.

The paper is structured into five main parts, as shown in Figure 1. In Section 2, we
present an overview of IoT systems’ characteristics and their impact on security, followed
by malware attack analysis and detection techniques. Section 3 presents an introduction
to the immune system techniques and AIS methods inspired by adaptive immunology.
In Section 4, we offer a literature review and a critical analysis of AIS implementations
in securing the IoT. Section 5 presents a performance analysis of the AIS for malware
detection in the IoT state-of-the-art method. In Section 6, we present trends, promises, and
implementation suggestions for future work.

Figure 1. The structure of this review paper.
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2. Security Challenges and Malware Attacks in the IoT

Malware is a major security threat to the IoT, and detecting unknown malware is one
of the key challenges for two reasons. First, the limitations of IoT devices, such as their
low power retention capability and low computational processing capability, represent
a significant challenge when aiming to apply security solutions. Second, introducing
new ways to connect networks, such as cloud services, opens the door to many security
attacks, such as malware attacks. Furthermore, connecting new devices that were not
part of traditional networks via these new connection methods, such as smart sensors,
makes applying security measures more complex. For these reasons, traditional malware
detection mechanisms are not suitable for the IoT environment.

In this section, we first present a brief background of IoT security challenges and
limitations. This is followed by a study of existing methods for analyzing and detecting
malware in general with a discussion of how they apply to IoT systems. Next, we examine
IoT-related malware attacks, which have significantly increased in recent years and require
immediate attention.

2.1. IoT Characteristics and Challenges on Security

The IoT is a system of interconnected machines with unique identifier numbers.
The devices can communicate and share data within a network without human interaction.
The IoT system consists of devices (often referred to as IoT devices) with unique identifiers
that integrate seamlessly into the information network by using intelligent interfaces [10].
IoT systems often include connected, lightweight IoT devices and are employed in various
applications, such as healthcare, environmental, smart cities, commercial, and industrial ap-
plications [11]. IoT devices employed in healthcare are referred to as IoMT devices. These
include wearable monitoring medical devices, implantable medical treatment devices, and
in-hospital connected medical devices and play a critical role in remote health monitoring
and intervention [12]. As such, securing IoMT devices and systems is crucial and demands
rigorous malware detection mechanisms. In environmental and agricultural applications,
IoT devices such as temperature and humidity sensors are often battery operated and
deployed in remote locations [13], thus requiring a malware detection mechanism that is
computationally and energy efficient to extend the battery life. Smart cities leverage IoT
systems using various types of devices, such as security cameras that capture sensitive
data [14], and thus require strict security measures to prevent unlawful access. Industrial
IoT (IIoT) applications refer to IoT systems in manufacturing and supply chains where
humans work in the vicinity of machines operated by IoT devices [15]. In these cases,
securing the IoT system against malware is pivotal for workers’ safety and key to sustaining
efficient IIoT operation. These IoT devices may be physical entities but also virtual things
that interact, thus forming the IoT system with essential features as presented below (see
Figure 2).

Figure 2. IoT characteristics.
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• Interconnectivity refers to the connection of the device to the cloud and/or other devices.
Connectivity is needed to enable the control of the device remotely, but mostly to access
the data collected by the IoT device’s sensors. For example, an IoMT device for heart
disease prediction is remotely controlled to monitor the patient’s heart rate [16]. The
health parameters are collected in real-time and transmitted to a data center in the cloud.
Therefore, securing this connection is vital to protect critical information.

• The IoT devices are heterogeneous as they may be built on different platforms and
have different specifications. The hardware, such as a simple sensor to monitor the
heart rate in [16], and virtual things, such as a data center built on the cloud, could
be supplied by different vendors. These integrated IoT devices could use different
security measures, leading to a lack of standardization in the network. Each connected
device could use different security protocols, with their security bugs and limitations,
exposing the system to different kinds of hacking.

• In the IoT environment, physical and virtual devices are capable of exchanging services
within the constraints of the devices. Since the communication between different IoT
devices is not controlled by a central processor/human, this could form a serious
threat. If a malicious device is disguised as an accepted IoT device, it could start to
disturb other devices by installing malicious files.

• The number of IoT devices is increasing exponentially and is generating an unprece-
dented amount of data. The expected number of IoT devices by 2025 is between 25 bil-
lion and 50 billion [17]. The scale is simply enormous, and data privacy and integrity
are critical challenges in massive-scale networks. For instance, IoMT-based COVID-19
applications are creating massive amounts of real-time data that are stored in the
cloud. However, as the amount of generated data continues to increase, the network
pressure increases, which might lead to occurrences of erroneous interpretations [18].

The IoT involves smart devices and sensors, some of which use non-chargeable batter-
ies. This makes battery life one of the predominant challenges in IoT security. Running
security rules will drain the battery resources. Applying minimum security requirement
measures is not recommended and is risky when devices have access to (or collect) sen-
sitive data. Increasing battery size and capacity is not always possible, because these
devices are designed to be lightweight and low-cost. In addition to device limitation
and object identification, device authentication and authorization are examples of the IoT
network-layer security challenges. Issuing certificates to each object in the IoT is extremely
challenging due to the number of connected objects and lack of a global root certificate
authority. The Domain Name System (DNS), which is used to identify objects and their
attributes, is another IoT network-layer security challenge. Data integrity is problematic
here due to the possibility of being hacked by a man in the middle or a DNS cash poisoning
attack. This attack is the act of placing false information to redirect Internet traffic to
malicious websites.

The threat of malware attacks arises in IoT due to these security challenges. Antivirus
software is the main line of defense to detect known malware in real-time. However, the
traditional security solutions have not been efficient and do not provide decentralized and
strong security solutions in the IoT [9]. Due to the IoT device limitation and computing
power, shifting similar solutions from traditional platforms to IoT might not be afford-
able [19]. Battery size and expected durability are challenges that make the implementation
of security measures more limited, as a device has to be energy efficient as well as secure.
Moreover, in IoT systems, network resources are integrated into devices that were never
previously anticipated to be part of computer networks [20]. Integrating IoT devices into
traditional networks introduces a new paradigm of security. The integrated systems inherit
the traditional network security issues besides those targeting IoT devices [9]. Conse-
quently, using traditional security measures is not enough to give IoT systems malware
detection capabilities.



J. Sens. Actuator Netw. 2021, 10, 61 5 of 20

2.2. Malware Analysis and Detection

Malware is defined as malicious software that is executed within the system with-
out the user’s permission. Black hats, hackers, and crackers are all names for malware
writers and developers. Writers have different intentions when creating this malicious
executable software; e.g., internal threats, governance purposes, and spying on competitors.
“Traditional” malware was often written using simple techniques and was designed with
predictable intentions [21]. “Next-generation” malware, on the other hand, is designed
with multiple malicious intents and leverages advances in technology for a more sophisti-
cated design. The marriage of fast-spreading IoT systems and the inherent vulnerability
and increased sophistication of malware attacks renders malware analysis and detection
more critical but also more challenging.

2.2.1. Malware Analysis

Malware analysis techniques are essential to developing effective malware detection
methods. These techniques involve the analysis of the process and functionality of the
malware to build a suitable defense method. Three main malware analysis techniques
achieve the same goal of determining how the malware works and how the attack will
affect the network (see Figure 3).

• Static analysis, also called code analysis: In this technique, the infected file is inspected
and analyzed without executing it. Low-level information is extracted such as the
control flow graph (CFG), data flow graph, and system calls. Static analysis is fast
at analyzing data and safe to use; also, it has a low level of false-positives, which
means a higher detection rate. Moreover, the static analysis tracks all possible paths,
which gives it a global view; however, it fails in detecting unknown malware using
code obfuscation.

• Dynamic analysis, also called behavioral analysis: In dynamic analysis, the infected
file is inspected during execution, which is usually conducted on an invisible virtual
machine, so the malware file does not change its behaviors. Dynamic analysis is
time-consuming and vulnerable, and it can only detect a few paths based on triggered
files. Furthermore, it is neither safe nor fast, and it suffers from a high level of false
positives. However, dynamic analysis is known for its good performance in detecting
new and unknown malware.

• Hybrid analysis: this technique was designed to overcome the challenges and limita-
tions of the previous two techniques. First, it analyzes the signature descriptions of
any malware code and then combines that with other dynamic parameters to improve
the analysis of malware.

Figure 3. Malware analysis and detection.

The connection in IoT networks is currently enabled via cloud services. Static, dynamic,
and hybrid malware analyses are mostly applied in the cloud to protect IoT devices.
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2.2.2. Malware Detection Techniques

Based on the analysis results described in the previous section, we present detection
techniques that are designed to detect malware attacks effectively. Three main methods
are used in malware detection: the signature-based detection technique, behavior-based
detection technique, and specification-based detection technique (see Figure 3).

• In the signature-based technique, files are analyzed and compared to an existing list,
and if they are listed in the list, they are classified as malware. This method is not
effective for recognizing all malware that enters the network because some malware
is encrypted, and thus extracting the signature takes time and a large amount of
processing energy. Furthermore, it is not effective for new or unknown malware.

• The behavioral-based method monitors the program’s behavior rather than reading its
signature. This technique follows three steps: the first step collects information about
the program, the second step interprets the data through conversion to intermediate
representations, and the last step matches the intermediate representation with known
behavior signatures. There are two approaches to this technique, the first of which
is simulating the behavior of legitimate programs and comparing any new program
to that model. This approach works for the detection of most malware, even new
kinds. However, it is expensive to implement because of the different behaviors of
each program in the network; for example, a video reader will use different services
than a mail or a web client. The second approach is simulating the behavior of known
malware and comparing it to new programs, which means new (unknown) malware
cannot be identified.

• The specification-based method was introduced to overcome the disadvantages and
limitations of the first two techniques. This technique uses different features for
malware detection, including the following:

(a) API calls: Hofmeyr et al. were among the first to propose using application
interface and system call sequences for malware detection [22].

(b) OpCode: Executable files are made of series of assembly codes, and in this
method, researchers use this operational code to detect malware [23].

(c) N-Grams: this method uses executable programs’ binary codes for malware
detection [24].

(d) CFG: This is a graph that illustrates the control flow of programs, and it has
been used to analyze malware behavior [25].

(e) Hybrid feature: in this machine learning method, researchers combine different
techniques for malware detection to get better results. For example, Eskandari et al.
in [26] used CFG and API calls for metamorphic malware detection.

(f) Game theoretic-based anomaly detection algorithms: Zhu, Quanyan, and T.
Başar presented different solutions to malware detection using behavioral
analysis, such as the data exfiltration detection and prevention and consensus
algorithm, with censored data for distributed detection [27].

(g) Prospect theoretic approaches: These approaches are based on measuring the
trustworthiness of the aggregated data in the system. In [28], the authors
present a hardware trojan detection game based on prospective theory ap-
proaches. Furthermore, in [29], the authors introduce a prospect theory-based
framework to ensure risk awareness and protect network operations.

The main limitation of the specification-based method is the difficulty to specify the
whole set of legitimate behaviors that a system should exhibit accurately [30].

2.3. Malware in the IoT

The malware detection techniques presented in the previous section have been fol-
lowed to implement malware detection methods in the IoT; for instance, SVELTE, which is
a signature and anomaly-based intrusion detection method, has been used to protect the
IoT from routing attacks based on the IPv6 routing protocol [31]. On one hand, applying
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a signature-based technique for malware detection in the IoT is not the best approach
because it is not designed to detect unknown/newly developed malware files; on the other
hand, designing a behavioral-based or specification-based method to secure the IoT is
computationally expensive due to the long simulation process it requires.

Major AI solutions to securing the IoT fall under either behavior or specification-based
techniques, which are complex to implement in IoT systems. For instance, the authors
in [32] evaluate the recent advances in AI/ML techniques in securing the IoT. They use 80%
of the dataset only to train the module, which is computationally expensive, and state that,
despite the advances in AI techniques in the IoT, the security method is still vulnerable
when implemented in a real IoT system. Furthermore, the authors in [33] published a survey
about AI solutions enhancing IoT security by presenting the challenges and limitations
of algorithms. Besides the weak probability and instability of AI algorithms, they are
computationally complex, with high resource consumption. Therefore, in this work, we
analyze the AIS solutions to secure the IoT that are less complex for implementation with
high detection probabilities.

As businesses and consumers continue to connect devices to the Internet without
proper security measures, IoT devices are increasingly leveraged by cybercriminals to
dispense malware payloads [34]. In the first half of 2019, SonicWall observed a 55% increase
in IoT attacks—a number that outpaces the first two quarters of the previous year. A
security vendor has detected over 100 million attacks on IoT devices in the first half of
2019, which highlights the continued threat to unsecured IoT devices [35]. Kaspersky,
the Russian Anti-Virus vendor, has claimed to detect 106 million attacks coming from
267,000 unique IP addresses in the first half of 2019 [35]. This number of attacks was almost
nine times more than what was reported for the first quarter of 2018, when only 12 million
were detected, originating from 69,000 IP addresses. According to the authors in [35], a
major reason driving this surge is consumers’ increased propensity to buy smart home
solutions without due diligence in terms of security measures. Due to all the reasons listed
above, malware attacks are major security threats in the IoT and thus require an IoT-specific
security solution.

The best way to secure the IoT based on its characteristics and architecture is to
implement a distributed, dynamic, adaptive, and self-monitoring method. This leads us
to investigate the AIS solutions and how these can be applied to secure the IoT against
malware attacks.

3. Artificial Immune Systems

In this section, we introduce the AIS methods, which are based on the human immune
system. We first introduce the AIS concept, then we offer a brief introduction to the immune
system and its defense mechanisms, by which AIS methods are inspired. Then, we present
the main AIS methods that simulate similar principles.

3.1. Introduction to Artificial Immune Systems

Nature has ingenious ways to solve problems. The knowledge retrieved from the
observation of nature has been a source of inspiration for computer scientists throughout
the years when devising solutions to challenging problems; in particular, problems for
which the traditional methods fail to provide a suitable solution or would result in a
complex solution requiring high computational power. In cases where analytic expressions
are not available, nature-inspired computing may be able to find sub-optimal solutions
efficiently. Nature-inspired algorithms abstract the phenomena found in the wild and are
subject to evolutionary steps or computing layers to converge to a solution. Examples
include ant colony optimization, particle swarm optimization, artificial neural networks
(ANNs), and AIS [36]. AIS is a field composed of different methods inspired by many
theories of the biological immune system. The immune system is responsible for protecting
the body from any intrusions and any possible danger, called an antigen. In this work, we
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consider malware to be an unwanted foreign intrusion, and we examine the application of
the defense mechanisms used by the human adaptive immune system in fighting antigens.

3.2. Introduction to the Immune System

The first line of defense in the body is the innate immune system, which is composed
of outside layers to protect the body, such as the skin, and inside defense layers, such as the
acid in the stomach. Furthermore, blood cells, such as Neutrophils, kill any encountered
malicious agent (antigen) then die, and macrophages can kill up to 100 germs before they
die. Macrophages can also kill infected body cells such as cancerous cells. If the innate
system fails to eliminate the threat (antigen), the adaptive immune system is initiated,
which has two Lymphocytes cell types. First, B-cells are engaged when an antigen enters
the body and before the disease occurs. They provide antibodies to stick to the antigen and
“mark it” as a sign for the macrophages to kill it. Also, memory B-cells keep information
about the attack for future reference. Second are T-cells, which come when the infection
occurs. T-cells are divided into helper T-cells and Cytotoxic T-cells. Helper T-cells are
divided into two types: effector T-cells, which provide an alert and information about the
antigen, and memory T-cells, which keep information about the antigen for future reference.
The role of Cytotoxic T-cells is to kill the infected body cells that cannot be treated.

In the following paragraphs, we explain the collaborative methods followed by B-cells
and T-cells in fighting antigens. Understanding these phenomena will help us to devise an
AIS for fighting malware.

The main part of our adaptive immune system is B-cells, which generate the antibodies.
In the human body, there are 100 million types of B-cells, and the reason for this is that each
kind of B cell generates different antibodies to catch any possible attack because different
antibodies handle different antigens. Consequently, when a certain type of antigen enters
the body that requires a certain type of B-cells to handle it, the body starts generating more
of that specific type of B-cells.

Regarding the generation of antibodies, they are made of thin and thick chains that
consist of different kinds of deoxyribonucleic acid (DNA). To generate different types of
antibodies that can mark any type of antigens, a mix and match of different DNA strains is
created by the body. Consequently, after the mix and match, each B cell will end with its
own kind of antibodies.

Clonal Selection consists of four steps. First, B-cells generate a test patch of their
antibodies that go to the surface as “bait” and are called B-cell receptors. B-cells float in
their zone, trying to find a matching antigen (which their specific antibodies can catch).
Second, when a B-cell bonds with a cognate antigen, it doubles its size and divides into
two B-cells, and these two B-cells will double in size and divide, making four B-cells in
total. This process is called proliferation, and it takes up to 12 h for each B cell to grow
and divide; the proliferation process takes about a week, at the end of which the body will
have enough of that specific type of B-cells to mount a real defense against the same kind
of antigen. Then, B-cells send all generated antibodies to the bloodstream, and after all
the hard work, most B-cells die. The main job of antibodies is simply to mark the antigen,
not to kill it. Finally, the antigen is marked with antibodies, so it is the phagocyte’s role
(such as macrophages) to eat it and kill it. The antibody forms a bridge between antigens
and macrophages.

3.3. Artificial Immune Systems Methods

Based on the knowledge of how the adaptive immune system works, to defend the
human body, researchers have started to develop different methods that imitate a similar
process to protect computer networks. The use of AIS in security applications is mostly in
the detection of security incidences, such as intrusions at the host or the network carried
out by malicious actors, using low-level scripts, automated tools, or malware. We identify
four artificial immune system methods: negative selection, positive selection, clonal, and
artificial immune networks.
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The negative selection method uses the supervised learning classification algorithm,
which was inspired by the “process of self-tolerance of B-cells, and CLONALG, which is
inspired by clonal selection theory and consists of mutation and selection processes” [37].
The method works in two phases: the detector generation phase, and the matching and
detection phase. First, the method generates detectors that do not match the protected
data; then, it keeps matching these detectors with the data. If a match occurs, it means a
change has happened in the protected data and action must be taken. This method was first
introduced in [38], and the main idea was to develop a method that has similar techniques
to the human immune system, where the system is capable of distinguishing between
self-cells (the body cells) and non-self-cells (antigens). In computer networks, we map the
self-cells to authorized system files and non-self-cells to malicious files.

The detector generation and the matching and detection phases follow data repre-
sentation and matching rules. Data representations are fundamental differences between
many models of negative selection algorithms. It changes the matching rule process, detec-
tor generation, and the detection process. The main data representation method for this
method is binary, assuming that all datasets are eventually implemented as binary bits.
Other representations include numeric data, categorical data, boolean data, and textual
data. These different representations could be grouped into two different categories: string
representation and real-valued vector representation. The matching rule defines matching
or recognition, which is the distance measured between the tested data and generated
detectors. It is used in both the detector generation stage and detection stage. For all data
representations, matching rule M can be formally defined as a distance measure between d
and x within a threshold, where d is a detector and x is a data instance [39]. This matching
rule introduces the concept of partial matching, where the detector and the data instance
do not have to be exactly the same in every single bit to be matched. For example, if we
have 11001100 as data, and we are applying a matching distance of 3, matched detectors
could be (11001100, 11001111, 11001000, 00101100, etc.) where at least 5 bits match the
original data of the detector.

This approach works by monitoring a wide network. Each copy of the detecting
algorithm is unique, which means that if a copy at one site is found, the other sites still have
their different copies. The detection is probabilistic, which means that there are different
sets of detectors to protect each entity. In addition, the method should detect any foreign
activities rather than checking for a certain pattern (for example, signature-based malware
detection methods).

The positive selection method (inspired by negative selection) is inspired by the
process of T-cell selection, where only T-cells that can recognize self-molecules (body
cells) are used in the immune system. Unlike the negative selection method, this positive
selection will generate detectors that recognize and match the self-protected data. Then,
during the detection stage, if there is a detector that does not match the protected data,
it means that some changes have occurred to the protected data. The Positive Selection
Classification algorithm (PSCA) is a general classification algorithm that classifies unknown
data using classifiers that can recognize self-class (system files) data. The authors in [37]
applied PCSA to malware detection with the following steps: a learning stage, where
the method learns how to classify data into two different classes (self and non-self), and
stimulation and mutate stages. Finally, the radius is a threshold used for classification, as
opposed to the usual classification approach where the minimal distance between several
centers is used.

The clonal selection theory was proposed in [40], and states that B-cells undergo
cloning, variation, and selection to mature affinity. The CLONALG method was proposed
by Castro and Zuben, and it is inspired by the clonal selection theory; the CLONALG
method was initially designed for optimization and pattern recognition issues [41]. Accord-
ing to the authors in [36] CLOALG requires the definition of five main factors. The size
of the receptor population, selection strategy, number of receptors, the affinity function
that returns real-valued measure, and the function to assign the rate of mutation and the
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number of clones according to the affinity. A supervised data mining technique is used
to simplify the cloning method. When an antigen enters the body, B-cells start cloning
specific antibodies for that type of antigen, but if it is a new one, the immune system clones
the most stimulated lymphocytes. Similarly, the CLONALG method generates a set of
receptors R that can recognize a set of patterns P.

Artificial immune network (AIN) theory was proposed in [42]. AIN is an unsuper-
vised learning algorithm that was inspired by B-cells’ immunological memory, due to the
existence of a mutually reinforcing network of themselves. This process means that B-cells
interact with each other to spread information so that memory can be preserved, and active
behavior is exhibited even when no immune response is taking place [36]. AIN mimics
immune network theory and parts of clonal selection as well. The goal of the AIN system
process is to set up a collection of repertoires for a given issue, where better-performing
cells stifle low-similarity (comparable) cells in the system. This standard is accomplished
through an intuitive procedure of presenting the population to outer data, to which it reacts
with both a clonal selection reaction and inner meta-elements of intra-population reactions.
Thus, it balances out the reactions of the population to the outside boosts.

As the human immune system can detect and react to antigens in our body, the AIS
can determine and respond to malicious files that are different to the system files used in
the training phase [43]. AIS can detect discrepancies in the system behavior and identify
attacks without prior knowledge about them, which makes them ideal candidates for
detecting unknown malware files. In the next section, we investigate the state-of-the-art
AIS solutions in malware detection and in securing the IoT.

4. AIS to Secure the IoT: Literature Review and Analysis

AIS applications are artificial intelligence (AI) techniques inspired by the intelligence
of the human body’s immunology. Given its ability to detect unseen attacks and its low
complexity, various AIS-based methods are proposed in the literature for IoT security. An
immune-based architecture was presented in [44] to secure the IoT using edge technologies
based on IoT system requirements. As rightly highlighted by the authors, the architecture
meets IoT security requirements, such as adaptability and lightweight, and can secure
IoT nodes from various security threats and attacks. However, the proposed method is to
secure the IoT using edge technologies, which means it is limited to a certain IoT system
architecture. Moreover, the availability of this method has not been considered during
the evaluation process. In addition, to secure Internet protocol version 6 (Ipv6) in the
IoT, a bio-inspired method was presented in [45]. An AIS-based method is implemented
in the routing protocol for low-power and lossy networks to enhance the security level
and performance with the given limited resources in the IoT. The main limitation of this
approach is that it is time and energy consuming, which makes it difficult to secure IoT
devices with limited resources. In the following section, we review AIS methods for IoT
malware detection, including negative and positive selection algorithms and immune and
artificial immune-based methods.

4.1. AIS in Malware Detection in the IoT

This section highlights the work conducted in malware detection using AIS in the IoT.
The original negative selection algorithm uses Binary Encoding to represent self and non-
self-datasets; later on, real-valued methods were proposed, and some researchers adopted
different types of malware detection techniques such as variable-sized detectors [46],
hypercube detectors [47], hyper-ellipsoid detectors [48], and multi-shaped detectors [49].
Deeper investigations have been conducted using a Hypersphere detector because it
has simple mathematic calculations compared to the other types. These different data
representation methods have not been applied to securing the IoT since they are not
sufficiently lightweight to meet the IoT system requirements.
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4.1.1. Negative and Positive Algorithms

One of the objectives of the main concept of negative selection is to produce enough de-
tectors to cover the non-self-area, and most approaches generate these detectors randomly
in different ways in an attempt to cover holes and overlaps and improve the detection rate.
To overcome this challenge, many researchers have proposed combining two different AIS
methods. The authors in [50] proposed using negative and positive detectors for malware
detection. The main goal of the proposed method (the NPS) is to use fewer detectors
while achieving high detection and recall rates, making it suitable to meet the constraints
associated with IoT devices. One of the shortcomings of this method is that it has not
been validated in an actual implementation. Furthermore, the authors in [51] proposed
the MNSA algorithm, which is a combination of negative selection and positive selection
detectors. The first set of detectors can recognize self-data, and the other set of detectors is
used to detect non-self-data. The combination of the results of these two detector sets is
supposed to improve the detection rate for unknown malware files in the system. To test
the method’s efficiency, randomly generated 12-bit long strings are used for both training
and detecting stages of the algorithm. As result, it was claimed in [51] that the MNSA
algorithm can detect up to 34% of all intrusions without any prior knowledge about the
non-self, and it can confirm more than 90% of those detected files. The main limitation of
this research is the fact that it was tested on random strings and not actual malware files.
Furthermore, this method uses too many detectors in both negative and positive sets.

The authors in [37] proposed using the positive selection algorithm (PCSA) for mal-
ware detection. They define the PCSA as a general classification algorithm used for
unknown data classification. Positive selection and clonal selection algorithm techniques
were applied to secure the IoT. The algorithm has different stages, starting with the learn-
ing stage to produce classifiers: self and non-self. The main goal of this algorithm is to
recognize self-data, and after the learning stage, the authors claim that all classifiers are
available to classify unknown data. They also define two states after classification: overlap,
where the unknown data is recognized by more than two kinds of classifiers; and hole,
where the unknown data cannot be recognized by any classifier. To evaluate the proposed
algorithm, the researchers in [37] compared their solution to another algorithm in [52]. In
total, 3721 Windows malicious executables and 3458 benign Windows executables were
collected for the experiment. There are four types of malicious files: backdoor, spyware,
trojans, and worms. The main feature captured and used for malware detection here is I/O
request packets (IRPs), for which they developed an MBMAS tool presented in [53] that
can associate a process with its child process in run time. Researchers claimed a 99.30%
accuracy result for the PSCA algorithm that they developed. The only limitation that this
paper claimed is that IRP traces of programs vary from one host to another, and some IRPs
repeat sometimes. This method has not been implemented in an IoT system, and we find
this work not to be sufficiently robust to cope with the interconnective environment of
the IoT.

4.1.2. Negative and Neural Networks

The authors in [54] proposed using a negative selection algorithm combined with
neural networks (NSNN) for intrusion detection in the IoT. The research goal is to develop
an algorithm that meets IoT requirements, is lightweight enough to apply to a wide range of
IoT use cases, is capable of detecting previously unknown intrusion vectors, and provides
an acceptable detection rate. The dataset used in this experiment is KDD NSL [55]. The
authors use only the basic traffic features, which provide most of the needed information.
The different types of intrusions are divided into 23 different sets (22 types of attacks and
one normal). Then, the attack types are divided into three attack sets: denial of service
(DOS), PROBE, and All Attack Types (AAT). They tested the algorithm against different
percentages of normal and attacks of each type (10%, 20% . . . 90% attack and subsequently
10%, 20%. . . 90% of normal). Each one of the 27 sets iterated 100 times with different test
data sets every time. The trained NSNN algorithm was tested against the dataset, and the
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following coefficients were calculated: positive predictive value, negative predictive value,
sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC), and F1-Score
(the harmonic mean of the precision and recall). This research succeeded in achieving an
F1-Score of 0.77 in the DOS simulation, 0.72 in the PROBE simulation, and 0.73 in all AAT
simulation results. The researchers in [54] claimed that their work is limited to the creation
of the negative selection and neural network algorithm only. Currently, they make no
claims about the best way to implement an online learning mechanism for it. Furthermore,
they noted that the test set used in the experiment is dated, and the results should be
used only for comparison purposes and not to demonstrate the actual performance of
the algorithm. In addition to the presented shortcomings, we find the F1-Score of this
algorithm to be unreliable in securing the IoT systems.

4.1.3. Immune and Artificial Immune Based Algorithms

The authors in [56] presented an AIS-based algorithm for malware detection (Deep-
DCA). DeepDCA uses a dendritic cell algorithm (DCA), which is a danger theory technique,
and Self-Normalizing Neural Networks (SNN). The proposed approach focuses on the
preprocessing phase, presenting the feature selection, the SNN signal categorization, signal
processing, and anomaly metrics steps. The Bot-IoT dataset was used in the experiment,
converting some of the categorical variables to easily apply the feature selection method.
The method was evaluated using different file features, resulting in an F1-Score less than
50% when using imbalanced data for the best 10 file features in the dataset. When using
balanced data for the 10 best file features in the dataset, the F1-Score increased to over 90%.
Although this method achieves a high detection accuracy rate with low false negatives, it
is neither sufficiently lightweight nor distributive to be implemented in IoT devices.

The artificial awareness architecture (AWA) was proposed by the authors in [57] as
a model for artificial immune ecosystems. Their experiment shows that the proposed
algorithm can detect intrusions in specific given IoT architectures; however, it does not
detect outliers–anomalies.

Moreover, the researchers in [58] proposed a novel approach to securing the IoT based
on immunology techniques. The proposed method adopts dynamic and circular defense
processes against a security threat. It incorporates five links: security threat detection,
danger computation, security response, security defense strategy formulation, and security
defense. The first link is responsible for collecting and analyzing IoT network traffic, and the
other links function based on the produced results. The method simulates AIS techniques
for intrusion detection based on the following mechanisms: capturing the IoT traffic data
and simulating the data to antigens in AIS; representing the detector simulation for the
detection elements, such as the living time and the number of recognized antigens; thirdly,
implementing a matching mechanism to determine if there is a match between a detector
and an antigen. Also, the evolution process is represented by classifying the detectors
into immature detectors, mature detectors, and memory detectors. In the experiment,
cloning attacks, mutated cloning attacks, replay attacks, and mutated replay attacks were
simulated. Even though this method can detect security threats and change detectors to
adapt to the dynamic IoT environment, no real malware files were used in this experiment.
In addition, this work was not implemented in a real IoT scenario.

Furthermore, the authors in [59] proposed an artificial immune-based method for
intrusion detection in the IoT. The method involves many local intrusion detection sub-
models that share their learning attainments. The signature information in the IoT sense
layer represents antigens in this method as binary strings. Detector sets are generated, and
they include a number of antigens matched by the detector and the generation life of the
detector. One of the main limitations of the proposed method is that it is not sufficiently
lightweight to meet the IoT system requirements.

Finally, the authors in [60] proposed an AIS-based algorithm for intrusion detection in
the IoT. It was claimed that the main signature information on the IoT datagram is extracted
to be switched to a binary character string for experiment purposes. Different detector
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stages are identified as immature, mature, and memory detectors. The authors stated that
immature detectors meet the recognition diversity of intrusion detection, while mature
detectors evolve to be immature detectors. Although this paper presents a new method of
detecting unknown malware in the IoT environment, no simulation results were given. In
addition, we find this method to be memory space and time consuming for IoT devices.

Table 1 shows a comparison of the AIS-implemented solutions for securing the IoT.

Table 1. Comparison of AIS applications for securing the IoT.

Method Year Experiment
Results Included

Malware Files Used
in the Experiment

Limitations and
Shortcoming Presented

Method Covers
Holes and Overlaps

NPS [50] 2021 4 4 4 8

MNSA [51] 2017 4 8 4 8

PCSA [37] 2011 4 4 4 4

NSNN [54] 2018 4 4 8 8

DeepDCA [56] 2020 4 4 8 8

AWA [57] 2017 4 8 4 8

Immune-base [58] 2013 4 8 8 8

AIS-based [59] 2012 8 NA 8 8

Immune-based [60] 2011 8 NA 8 8

5. Quantitative Performance Analysis of Leading AIS Methods in IoT Malware Detection

In this section, we highlight the main criteria to evaluate the performance of the most
promising AIS methods in the literature for malware detection in the IoT [50,51,54]. The
three most recent AIS solutions for securing the IoT are selected to present a quantitative
performance analysis. These methods are selected because of their promising results
(accuracy and false-negatives), which we were able to reproduce to enable the quantitative
performance analysis. A false-negative denotes a malware that is falsely classified as benign.
It follows that a better malware detection method is one that results in fewer false-negatives.

There are different datasets used to evaluate IoT security solutions. The most used
datasets, as listed in [61], are the NSL-KDD, the Bot-IoT, the Botnet, and the Android
malware datasets. In this performance analysis, we chose to use the NSL-KDD [55] for two
reasons. First, unlike the other datasets, the NSL-KDD eliminates the redundant records
in the previous dataset (KDD’99), resulting in a reduction of the number of borderline
records compared to any other dataset [61]. This leads to more accurate results when
evaluating an AIS-based security solution. Also, by eliminating the borderline records,
we reduce the total number of records (see details in Table 2), unlike the Bot-IoT [62]
which has 72,000,000 records. Using a larger number of records to evaluate an IoT security
solution might overwhelm the system when running the solution in an actual IoT system
setup. Second, the NSL-KDD dataset is used to evaluate the NPS and NSNN methods.
Consequently, in order to enable a quantitative performance analysis, we reproduce the
results of the MNSA using the same NSL-KSS dataset. The traffic data were captured by
running 420 machines and 30 servers in 5 different departments. Although the NSL-KDD
dataset is not IoT specific, it contains various malware attack types and offers different
file features to test security solutions, which makes it a good fit for this experiment’s
purposes. In contrast to other machine learning approaches, AIS requires minimal data to
create necessary detectors that are later used in the detection phase. In our case, 10% of
randomly selected samples of the dataset are used in the detector generation phase, and the
remaining 90% are used for testing. We compare the performance from two perspectives:
in Section 5.1, we analyze the detection accuracy and F1-Score of each; in Section 5.2 we
examine the complexity of each algorithm from both time and memory perspectives.



J. Sens. Actuator Netw. 2021, 10, 61 14 of 20

Table 2. NSL-KDD Dataset Used in the Experiment.

Total number of records used 1,074,992

Number of attack files 262,178

Number of benign files 812,814

List of attacks
Brute-force, Heartbleed attack, Botnet, Denial of service,
Distributed Denial-of-Service, Web attacks,
and infiltration of the network from inside

Number of traffic features 80

Some of the traffic features
Destination port, flow duration, average size of packet,
number of forward packets per second,
number of backward packets per second

5.1. Detection Accuracy and F1-Score

The NPS [50] uses both negative and positive detectors, and it overcomes two of the
main challenges in securing the IoT applications. First, the method is lightweight, as it
generates a smaller number of detectors compared to other AIS algorithms, such as the
MNSA [51], with a higher detection rate accuracy, calculated using Equation (1). With
40 detectors in total (20 negative and 20 positive detectors), the NPS achieves up to a 91.92%
detection rate, and a rate of up to 99.05% when using 60 detectors in total (30 negative
and 30 positive detectors; see Figure 4). When reproducing the results of the MNSA, the
detection rate accuracy increases to 80.51% when using 170 detectors in general (150 neg-
ative and 20 positive detectors). The mean detection accuracy rate for the NSNN [54] is
73.4%, which is lower than both NPS and MNSA algorithms. Second, it overcomes the
false-negative detection challenge. As explained earlier, accuracy alone does not fully
capture the detection performance as it does not highlight the false-negatives. In other
words, an accuracy of detection of 75% may result from a 100% misclassification of malware
(since 25% of the records are labeled as attacks—262.178/1,074,992, as shown in Table 2). To
this end, we calculate the F1-Score (see Equation (4)), which is more representative of the
performance when the data are not balanced.

Figure 4. Accuracy and F1-Score results of NPS, MNSA, and NSNN using NSL-KDD dataset.

As shown in Figure 4, calculating the F1-Score for the NPS, we obtain a score of
96% when using 40 detectors in total. When using 60 detectors, the F1-Score for the NPS
algorithm increases to 99%. The F1-Score for the MNSA increases to 87% when using
170 detectors, and the F1-Score for the NSNN is 73.5%. Overall, the NPS achieves almost a
14% improvement.
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We present here a detailed explanation of the concepts used in the performance analysis:

• True positive (TP): malware is detected as a malicious application;
• True negative (TN): benign software is detected as non-malicious application;
• False positive (FP): benign software is detected as a malicious application;
• False negative (FN): malware is detected as non-malicious application.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 − Score = 2 × Precision × Recall
Precision + Recall

(4)

5.2. Memory and Time Complexity

IoT devices are lightweight with limited computing power; therefore, reducing mem-
ory usage and computing time when applying security methods is essential. We calculate
the space complexity for the NPS, MNSA, and NSNN using Equations (5) and (6), where m
is the alphabet size (m = 2 in binary representation), L is the string size, NS is the amount
of self-data, and NR is the number of detectors. Table 3 shows the values of the three
methods for each parameter. Using 16-bit strings with an equal number of detectors in both
negative and positive sets in the NPS results in a 65% decrease in memory usage compared
to generating 12-bit strings with larger detector sets in the MNSA. To calculate the space
complexity for the NSNN, we assume that the string length is ≥7 since the R-Continuous
Bit Matching (RCBM) is 7. RCBM is the number of matching bits between two strings: self
and non-self. In this case, the NPS uses 90% less memory space than the NSNN.

When calculating the time complexity using Equation (5), the results show that the
NSNN needs less computing time compared to the other two methods—MNSA and NPS.
The following Figure 5 shows the result of the space and time complexity analysis.

Time = (mL × NS × NR) (5)

Space = (L × NS × NR) (6)

Figure 5. Memory and time complexity of NPS, MNSA, and NSNN.
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Table 3. Space and time complexity calculations.

Method M L NS NR

NPS 2 16 1000 60
MNSA 2 12 1000 170
NSNN 2 7 1000 1000

6. Trends and Promises
6.1. IoT System Security Requirements

In the previous section, various implementations of AIS for securing the IoT were
reviewed. Our study shows that there is a revived interest in addressing malware detection
using the AIS method accompanying the spread of IoT systems. Researchers have proposed
different ways of improving the detection rate for unknown malware in the IoT, and the
NPS [50] seems to be a promising method based on the improved performance compared
to the state-of-the-art using the same dataset. It remains to be proven that NPS can deliver
the same performance on different datasets with different types of attacks, as well as using
different file features. To this end, this line of research is a growing field that attempts
to capture the characteristics of IoT systems and propose innovative AIS-based methods,
respectively. Table 4 highlights five main properties to be taken into consideration when
applying AIS applications to the IoT.

Table 4. IoT Systems’ Properties.

Property Definition

Robust The capability of a system to cope with issues during execution and continue operating despite data conditions

Lightweight The capability to operate and execute with minimal computational complexity

Fault tolerance The capability to function given a defect within hardware or software in the system,
and adapt to the changing environment to build up a trustworthy network

Adaptive The capability to adapt and learn the system behavior over runtime

Distributed The capability to run and communicate within a distributed environment

6.2. Immune-Based Implementations Challenges

Many AIS applications contain some of these properties, but implementing an AIS
algorithm that meets all the requirements remains unsolved. For instance, designing an
immune-based method results in implementing a robust and adaptive solution for securing
the IoT; however, the method is neither lightweight nor fault-tolerant and not necessarily
distributed [58–60].

6.3. AIS Hybrid Solution Challenges in the IoT

Implementing a method based on AIS techniques is difficult. For instance, clonal se-
lection algorithms are adaptive but computationally expensive. Moreover, clonal selection
suffers from high false-positives, and the degree of damage cannot be inferred instantly. On
the other hand, the negative selection algorithm has high false-negatives and is not suitable
for dense environments. Combining two or more AIS algorithms might be the solution to
overcome some of these challenges, such as applying negative selection and neural network
techniques in NSNN, which results in fault-tolerant, adaptive, and distributed solutions;
however, it is not lightweight [54]. Furthermore, negative and positive selection algorithm
techniques were combined in MNSA to improve the detection rate in the IoT [51]. Even
though the goal of implementing this method was met, the solution does not meet all the
IoT system’s requirements, such as robustness. The same scenario applies to PCSA, which
is not fault-tolerant as well [37]. Based on the characteristics of AIS methods and IoT system
properties, we contemplated the reviewed AIS solutions in IoT and investigated which
properties are applied in each solution. Table 5 below shows the result of this analysis.
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Table 5. IoT system properties adopted in AIS solutions.

Method/Properties Robust Lightweight Fault Tolerant Adaptive Distributed

NPS: negativeselection + positiveselection [50] 4 4 4 4 4

MNSA: negativeselection + positiveselection [51] 8 8 8 4 4

PCSA: positiveselection [37] 8 4 8 4 4

NSNN: negativeselection + neuralnetwork [54] 8 8 4 4 4

AWA: artificialimmune ecosystem [57] 4 8 8 4 4

Immune system based method [58] 4 8 8 4 8

Artificial Immune based method [59] 4 8 8 4 4

Immune System based method [60] 4 8 8 4 4

6.4. Future Research Directions

Based on the insights drawn in Section 4 and the comparative results in Section 5, we
see three promising directions for future research. First, a promising research direction
would be to investigate the implementation options based on the limitations of the IoT
devices and the IoT system architecture overall. In many IoT system scenarios, one or
multiple gateways are used as the main connection point between IoT devices and the cloud.
Therefore, the gateway could be considered as a key security layer in the IoT architecture.
As the gateway has more computational power and would support the implementation
of security solutions, we suggest installing a hybrid AIS solution to secure the IoT on the
gateway. A hybrid AIS solution combines multiple AIS techniques for malware detection to
achieve a better detection accuracy rate. However, the IoT gateway is the main connection
point for the IoT devices, so a downside to implementing a security method on the IoT
gateway is that it could be a single point of failure. This obstacle could be overcome by
having a backup security solution.

Second, conducting a quantitative analysis by calculating the detection accuracy
rate and the F1-Score to evaluate given security solutions is another promising research
direction. Using only a particular dataset to validate the results might not be sufficient
for certain system architecture. Therefore, we suggest using different datasets conducted
using different network scenarios and employing different file features to evaluate malware
detection methods in the IoT.

The third promising research direction is as follows: to evaluate a security solution’s
ability to detect unknown malware files, the solution should be implemented in an actual
IoT network. Creating different IoT system scenarios with different setups and processing
power is key to evaluating a security solution in real time.

7. Conclusions

IoT systems are interconnected and heterogeneous devices with limited computational
capacity. The number of IoT applications and their integration into traditional networks
is increasing rapidly. This has led to new and fast-spreading security threats, not least
malware attacks, that traditional security solutions fail to address adequately. Traditional
IoT malware detection techniques employ signature-based and behavioral-based methods.
We have demonstrated that these are either unsuitable for detecting unknown malware files
or are not cost-efficient for IoT applications. AIS represents a research direction inspired by
the human body’s adaptive immune system for the detection of new threats. AIS methods
are generally attractive for malware detection owing to their ability to detect unknown
attacks and intelligently keep records of any attack for future use. In addition, they are
a prime contender in the design of IoT malware detection because the offered features
are the best match with IoT system characteristics. The features of AIS methods, such as
their adaptivity, distributed implementation, lightweight computation, and robustness, are
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compatible with the IoT devices’ specific requirements. To this end, this article surveys
recent research in the field of AIS for malware detection. We provide a critical analysis
of existing works, draw key insights, and identify promising future research directions
in which novel AIS techniques can be developed to address imminent and increasing IoT
security challenges.
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