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Abstract: Many regions of the world benefit from heating, ventilating, and air-conditioning (HVAC)
systems to provide productive, comfortable, and healthy indoor environments, which are enabled
by automatic building controls. Due to climate change, population growth, and industrialization,
HVAC use is globally on the rise. Unfortunately, these systems often operate in a continuous
fashion without regard to actual human presence, leading to unnecessary energy consumption. As
a result, the heating, ventilation, and cooling of unoccupied building spaces makes a substantial
contribution to the harmful environmental impacts associated with carbon-based electric power
generation, which is important to remedy. For our modern electric power system, transitioning
to low-carbon renewable energy is facilitated by integration with distributed energy resources.
Automatic engagement between the grid and consumers will be necessary to enable a clean yet stable
electric grid, when integrating these variable and uncertain renewable energy sources. We present
the WHISPER (Wireless Home Identification and Sensing Platform for Energy Reduction) system to
address the energy and power demand triggered by human presence in homes. The presented system
includes a maintenance-free and privacy-preserving human occupancy detection system wherein a
local wireless network of battery-free environmental, acoustic energy, and image sensors are deployed
to monitor homes, record empirical data for a range of monitored modalities, and transmit it to a
base station. Several machine learning algorithms are implemented at the base station to infer human
presence based on the received data, harnessing a hierarchical sensor fusion algorithm. Results from
the prototype system demonstrate an accuracy in human presence detection in excess of 95%; ongoing
commercialization efforts suggest approximately 99% accuracy. Using machine learning, WHISPER
enables various applications based on its binary occupancy prediction, allowing situation-specific
controls targeted at both personalized smart home and electric grid modernization opportunities.

Keywords: residential building energy consumption; occupancy detection; edge computing; em-
bedded systems; image detection; residential IoT; battery-free; wireless; backscatter communication;
low-power systems; sensor fusion algorithms; machine learning

1. Introduction
1.1. Motivation

It is difficult to overstate the magnitude of the climate crisis that we are facing [1–3].
Reducing greenhouse gas emissions is imperative and, while significant strides are being
made to convert our electric grid to utilize renewable resources instead of fossil fuels,
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reducing primary energy consumption remains an important task. Buildings are dominant
consumers of electricity and thus offer a large potential for energy reduction. The operation
of heating, ventilation, and air conditioning (HVAC) equipment is a substantial contributor
to energy consumption in buildings, not all of which occurs when people are in the
buildings (and thus will benefit). While commercial and industrial buildings are the biggest
consumers of electricity, unnecessary residential energy consumption is an important
aspect that needs to be addressed. Eliminating wasted residential building energy use is
the primary goal of the presented solution.

Despite technological advances and government legislation that have led to the adop-
tion of more energy efficient buildings and appliances in the United States, newer buildings
typically consume the same amount of energy as buildings that were constructed in the
1960s [4]. This means that the technical advances of the last 70 years have not led to a
decrease in residential energy consumption (though they may have led to an increase in
occupant comfort). The urgency of climate change means that we should consider all
possible avenues for energy-use reduction. Within buildings, this means addressing how
and when energy is used and not just making improvements to the appliances themselves.

One avenue of reduction would be to air-condition buildings only when it contributes
to occupants’ comfort, meaning when they are home or are soon to be home, and studies
have shown that by accounting for occupancy use in HVAC operations, residential energy
use can be reduced by 15–45% [5–7]. While this seems obvious, many homes’ HVAC
systems are controlled by simple thermostats and require occupant intervention to change
the set point. Because of forgetfulness or an occupant’s desire to always have a comfortable
space when they get home, they rarely change the set point of the thermostat and instead
always condition the house to the same temperature [8]. Programmable thermostats, which
allow you to have multiple “home” and “away” set points, rely on an occupant’s idealized
schedule and often do not accurately reflect their actual habits [9]. Furthermore, many
occupants find programmable thermostats difficult to use and fail to take advantage of
their features [10]. Smart thermostats, which attempt to learn and respond to an occu-
pant’s behaviors and preferences, offer a promising alternative [11,12]; however, usability
issues with these devices abound [13], and the energy savings are often much less than
promised [14,15]. Thus, accurate occupancy detection, which does not rely on user interac-
tion, has the potential to improve how HVAC systems are operated and to impact building
energy use.

In addition to reducing total energy use in buildings, occupancy data from buildings
can be used to affect when and how electricity is used, which can help to increase the pene-
tration of renewable energy resources in the electric grid [16]. This can be achieved through
mechanisms such as demand response and grid-interactive efficient buildings [17,18].
The increasing electrification of buildings and transportation means that this issue will
become even more important in the coming decade [19]. Building operation, at all scales,
is one piece of the larger puzzle that needs to be solved to dramatically reduce global
greenhouse gas emissions. An often-cited statistics states that buildings consume 40% of
all global energy [20], making the reduction of energy use in buildings a significant piece of
that puzzle. It is clear that while more research is needed in this field, accurate occupancy
detection (and integrated HVAC systems) in homes has the potential to greatly reduce
global energy use.

1.2. Design Focus

In this paper, we present a novel technology platform, the Wireless Home Identifica-
tion and Sensing Platform for Energy Reduction (WHISPER), to offer a possible pathway
to realizing residential building energy savings by avoiding energy use when the building
is not in use.

The WHISPER system is designed as a next-generation occupancy sensing platform
for smart homes, systems, and electric system infrastructure. Occupancy presence detec-
tion for smart home control promotes high renewable penetration, grid decarbonization,
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and associated smart grid applications. Monitoring the human occupancy status supports
the growing emphasis on indoor environmental quality (IEQ) and health-in-building ap-
plications, while activity-based analytics will enable smart systems at large. WHISPER
targets high accuracy as well as low false alarm rates regarding both false negatives (falsely
assuming vacancy) and false positives (falsely assuming occupancy), while distinguishing
between pets and humans. Its design focus is to achieve substantial energy savings while
maintaining wide user acceptance by the purposeful obfuscation of personal information:
the system is locally wireless so users can avoid cloud-based approaches and ensure privacy
preservation. The WHISPER platform’s hardware and software components, including the
hierarchical sensor fusion algorithm, are detailed herein.

While the WHISPER hardware was optimized for residential building applications,
the concept has been designed for modularity and extension to most occupant presence
monitoring situations; e.g., commercial and industrial applications where occupant detec-
tion is necessary. Several hardware sensor nodes deployed in a home communicate with a
base station that emits an RF carrier wave and powers the sensor nodes. Without the need
for sensor node batteries, the base station both transmits and receives communications.
The sensors themselves are of the small peel-and-stick type, comprised of a motherboard
and small daughterboard. The daughterboard holds either an image or acoustic energy
sensor and relays obfuscated images or filtered acoustic energy signatures back to the base
station. The system is extensible to other sensing modalities, including those related to
indoor environmental quality (IEQ), security, and occupant health.

The WHISPER software system entails a hierarchical sensor fusion architecture: at a
lower level, the individual modalities measured are used to arrive at individual inferences
on occupancy using customized machine learning algorithms, including spatial–temporal
pattern networks, random forests, and convolutional neural networks. A high-level whole-
building fusion algorithm combines the individual inferences and additionally allows for
memory terms, since it is not only the instantaneous information but also what happened
in the recent past that affects current occupancy status.

A number of applications are feasible and envisioned: (1) home energy efficiency, in an
island fashion so that no information is shared, with feasible savings of approximately 100
USD per year [21] ; (2) IEQ, including indoor air quality (IAQ) assessment in a post-
pandemic world; and (3) grid-interactive efficient buildings. Human presence-driven data
analytics constitute WHISPER’s message passing, which seeks to optimally assimilate
electrical power system dynamics with slower-moving thermal dynamics and information
pertinent to modern, smart home prosumers. The name WHISPER is also an allusion to
personal, directed messaging; i.e., it is anticipated that the data analytics associated with
WHISPER, beyond achieving energy efficiency and relaying information to occupants, can
enable utilities or distribution system operators to flexibly operate the emerging electric
system to achieve holistic economic and societal value.

To encapsulate the WHISPER design focus, we offer here a summative preview of
the system features as illustrated in Figure 1: (1) a set of sensor nodes, with each sensor
element (2) using wireless communication based on digital backscattering and (3) powered
by solar panel without the need for batteries. The sensors (4) include image and acoustic
energy modalities but can be expanded to any sensor of similarly low power require-
ments. The (5) ultra-low power backscatter-based sensor network, composed of these
sensor nodes, and (6) a sensor fusion algorithm leverage the spatiotemporal interactions
of measurements from a residential building to ensure that (7) privacy preservation and
low power are possible by collecting camera information in an extremely restricted fashion.
(8) Camera gating, which leaves the image sensor nodes off until lower-power, and less
obtrusive sensors indicate possible human activity to reduce system power consumption.
Furthermore, (9) image sensors can be commanded to capture obfuscated images composed
of horizontal and vertical bars that indicate the level and location of activity and require
100× less power than full frame capture from the 10k pixel array, while (10) portions of
the image will be collected at higher resolution if human activity has not been ruled out.
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(11) Human vs. pet discrimination is performed on higher quality sub-images; (12) indi-
vidual, low-level sensor modality algorithms based on spatiotemporal pattern networks,
random forests, and convolutional neural networks will be fed by the various sensor data
streams (image, acoustic energy, and environmental features), and a (13) high-level sensor
fusion system that ingests data processes instantaneous and past low-level occupancy
inferences to achieve high-accuracy occupancy detection.

Sensor Fusion Algorithm Human Presence Sensing
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Figure 4.7: Block diagram
of the battery-free microphone sensor node.

Figure 4.8: Photo of microphone (left) and camera (right) daughterboards mounted on the tag and

powered by the dual harvester.

4.1.5
Task 3-5: Interactive Sensing Algorithm

Development, Hardware In-

tegration, and Iteration

4.1.5.1
Task Description

W
e use the term

“interactive compression” to describe the behavior of the co-designed vision and

image capture processes.
The approach

is to
have the vision/inference process request specific

image features from
the camera, rather than have the camera default to passing all pixels to the

vision/inference process. So, if a portion of the image is unlikely to contain information that re-

duces uncertainty about human activity, the inference process will not request that portion of the

image, or those image features. This interactive compression mechanism
will maintain high accu-

racy while keeping power requirements low
and privacy high. The sensor fusion algorithms and

image capture algorithms will be co-designed, and we expect system
learning (for example, more

accurate inference from
electrical activity signals) to improve the power consumption, privacy, and

accuracy of the full system.

An essential idea of our sensor network architecture is to use several different low-power sen-

sors to
gate the operation

of the camera, which
is the costliest sensor in

terms of energy
and

communication time. The sensors that are least energy constrained will operate most often; when

they detect a potential event, sensors with higher power requirements (and better discrimination

performance) will be powered up and used.
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Dual Power 
Harvester

WHISPER:
Wireless Home Identification and 
Sensing Platform for Energy Reduction
United States Department of Energy (DOE)
Advanced Research Projects Agency Energy (ARPA-E)
Project Award No.: DE-AR0000938SENSOR NETWORK SYSTEM FEATURES:

1. A set of sensor nodes
2. Wireless communication via digital backscattering 
3. Sensors powered by solar panel without batteries
4. Image and acoustic energy modalities expandable to any sensor 

of similarly low power requirements
5. Ultra-low power sensor network
6. Sensor fusion algorithm, leveraging spatiotemporal interactions 

of measurements
7. Privacy preservation and low power by collecting camera 

information in an extremely restricted fashion
8. Camera gating to reduce system power consumption
9. Image sensors capture obfuscated images
10. Portions of image collected at higher resolution if human 

activity cannot be ruled out
11. Human vs. pet discrimination using sub-images
12. Individual, low-level, sensor modality algorithms, based on 

STPN, random forests, and convolutional neural networks fed by 
various sensor data streams

13. High-level sensor fusion system ingests and processes 
instantaneous and past low-level occupancy inferences to 
achieve high-accuracy occupancy detection.

Figure 1. Visual representation the WHISPER system and its features.

The main research contribution is the development of a flexible and extensible ultra-
low power sensor fusion system that achieves very high occupancy detection with low
cost, low maintenance, and high levels of privacy preservation to enable building energy
efficiency, healthy indoor environments, and energy flexibility for a modern electric grid
system. While a home-level occupancy detection has been the focus of the presented proto-
type, more granular zone-level occupancy detection is an obvious extension reserved for
future development. The system as presented is optimized for maximum privacy preserva-
tion by not releasing any personally identifiable information—in fact, any information at
all—to third parties.

1.3. Background on Occupancy Detection in Buildings

When analyzing occupancy detection schemes, several distinctions can be made
regarding the type of detection scheme and granularity of predictions. One important
distinction is between implicit occupancy detection, which involves utilizing existing
infrastructure and data streams, and explicit detection, which requires the installation of
specialized hardware for the purpose of detecting occupancy. The traditional modes of
detection have been explicit, such as passive infrared. Implicit detection is typically cheaper
and easier to implement, as no additional infrastructure is needed; however, the capabilities
of these systems have traditionally been poor. Recent efforts have been made to improve
implicit detection schemes, some of which are described below.

Other distinctions have to do with the resolution, or granularity, with which occu-
pancy is being tracked. The resolution leading to the most diversity in detection schemes
is referred to as occupant resolution [22], which has to do with what is being measured.
The coarsest grain occupant resolution is a binary occupied/unoccupied status, with the
finest grain being the activity of each occupant. Spatial resolution, or the where, can also be
considered, as occupancy can potentially be measured for the whole building, individual
floors, individual rooms, and even individual work stations, or “zones”, within a room.
Traditional occupancy detection has typically been conducted at the room level, though at-
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tention is increasingly being applied to work-station level understanding of occupancy in
offices. Either of these resolutions can be extrapolated to floor or whole building occupancy
detection as well. Finally, the temporal resolution, or when, has to do with how frequently
spaces are being sampled and predictions are being made.

Figure 2 gives a visual representation of these different resolutions.

Figure 2. Representation of different occupancy detection resolution levels across three different
dimensions (occupant, temporal, and spatial); from Melfi et al. [22]. Reprinted with permission.

1.3.1. Traditional Methods of Detection

Occupancy detection in buildings has traditionally been performed with passive
infrared (PIR) or ultrasonic sensors to control lighting in dual occupancy/vacancy modes.
PIR sensors work by detecting heat in the form of infrared radiation that is emitted by all
human bodies [23]. The term passive in PIR refers to the fact that these sensors do not emit
their own forms of energy but simply sense what is being emitted by occupants. In contrast,
ultrasonic sensors utilize a transmitter and receiver system to emit high-frequency sound
waves and then measure changes in the signal that is reflected back [24]. Both of these
methods are examples of explicit sensing, since they require the installation of dedicated
sensing devices.

PIR and ultrasonic sensors are classified as non-terminal sensors, since the occupants
being detected do not have to carry a terminal, such as a cell phone or other recognition
device. This is in contrast to terminal sensors, such as RFID, where detection is achieved
through the use of a sensor or tag that the occupant must carry [23]. Non-terminal systems
are inexpensive and easy to install [25]; however, they are generally used at the room-level
and can only provide a binary (occupied/vacant) signal, thus they cannot differentiate
between one or more occupants in a space [26]. As a result, these systems are usually only
used in the context of lighting controls, where lights can be operated in either an occupancy
or vacancy mode. Additionally, PIR sensors can only detect a person that is in their direct
field of view, which is usually limited, due to gaps in the wedge-shaped detection region of
PIR sensors [27]. Further adding to the limitations of PIR is the fact that they work best at
detecting moving objects and are not very effective at detecting stationary subjects. Limited
movement can result in unwanted false negatives, which leads to lights being turned off
when occupants are still in the room [28]. More conservatively programmed sensors will
result in fewer false negatives, but the energy-saving benefits of automatic control may be
reduced [29].

Because of these limitations, PIR sensors have shown to be most effective at reducing
energy use when installed in intermittently occupied spaces, such as stairwells and storage
rooms [30], while the savings are generally smaller in larger open spaces, such as offices [22].
Ultrasonic sensors can be more sensitive than PIR sensors [26], providing reduced false
negative rates; however, they are also subject to more false positives, as detection can be
triggered by factors such as vibrations or air currents [23]. A benefit of ultrasonic sensors
over PIR is that signals are reflected off of room surfaces, and so direct line-of-sight to
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occupants is not necessary [31]; however, they still rely on occupant movement within the
space to trigger detection.

1.3.2. Image Detection

Image based systems can be classified as implicit or explicit, depending on whether the
image capture technology is already in place. With regards to occupant resolution, cameras
are increasingly being used in the context of activity recognition [32], allowing building
operators to understand how spaces are being utilized and condition the space accordingly.
Recent improvements in computer vision have led to a vast increase in the number and
effectiveness of occupancy detection systems involving images [33]. Methods such as
histograms of oriented gradients (HOG) and support vector machines (SVM) [34] have
made detecting human figures a straightforward problem, especially when the frame and
depth-of-view of the camera is not changing. Increases in computational power, leading
to improvements in artificial neural networks (ANN), have further led to increases in
the detection capabilities of camera-based systems, though these systems can lead to a
multitude of privacy concerns for the users [35]. One method of alleviating some of these
concerns is to mount cameras directly overhead in doorways [36], which allows occupants
to be detected entering or leaving, though not within the space.

While privacy issues are relevant to all forms of occupancy detection, they are of
particular concern with image detection systems [37]. Most image-based systems are used
in large, public settings, such as shopping malls and office buildings [38]. Generally, in
these spaces, privacy for the user is not assumed, and people have grown accustomed
to closed circuit cameras (CCTV) in these types of spaces for decades [33]. However,
as facial recognition software improves [39], occupants are weary of cameras tracking their
movements [40], not only within a space, but between spaces. In smaller public spaces,
such as small office buildings and stand-alone shops, security cameras have often been
utilized outside the building or in entryways but not frequently deployed within the main
spaces. Although in the past, these places have usually relied upon the traditional methods
of occupancy detection, such as PIR sensors or fixed occupancy schedules, to control
lighting, more privacy-invasive methods are increasingly being used in these types of
spaces [41]. The growth of available building data has led to much research into privacy
attacks, and into how operators can better protect occupant data [42–44].

1.3.3. Other Detection Methods

Another method with the potential for abuse from bad actors is that of occupant
tracking [45]. The proliferation of occupants carrying Bluetooth, GPS, NFC, and WiFi-
enabled cell phones has made occupant tracking through detection of these devices much
easier. When occupants enter a space, their devices are often interacting with the Bluetooth
and WiFi systems on site [46]. While these systems do not capture all people in a space,
efforts are being made to understand what proportion of people in a space is being cap-
tured [47], from which total people counts can be extrapolated. Other methods currently
being adopted are based on radio frequency identification (RFID) schemes. These systems,
which are most commonly used in office buildings, require occupants to carry an RFID-
equipped card on them at all times in a building. These cards are detected by dedicated
readers upon entering a building or at different points within a building and can serve
as a security feature, as well as performing occupant counting and tracking. Occupant
tracking methods are considered implicit, since they generally rely upon infrastructure
that is already installed in the space for other uses. An example of one of these schemes is
the work done by [22], whereby IP and MAC addresses of employees were tracked inside
an office building, showing how many people are connected to the network and inferring
total occupancy count from this data.

One area of research that has garnered particular interest recently is that of occupant
behavior modeling, as summarized by [48]. These models are usually based on machine
learning techniques, such as hidden Markov models (HMM) or k-nearest neighbors [49].
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Some of these models take inputs from sensors in the space as indicators of human pres-
ence [50], while other methods focus on the arrival and departure patterns of occupants,
such as stochastic probability models [51]. Other work has focused on using existing sensor
networks to generate belief networks within a space [30].

In addition to behavior modeling to predict occupancy in buildings, research is being
done to understand how buildings are being used by occupants and to quantify the
relationship between occupancy and energy use. For instance, using presence-based
(binary) occupancy sensors in a medium-sized office building, researchers show that a
direct linear relationship can be derived between the percentage of space utilization and
whole-building energy consumption [52]. An understanding of this relationship can help
with energy forecasting needs, which can help to increase the penetration of renewable
resources in the electric grid and can provide explanations for the discrepancies between
measured and predicted building performance [53].

A large amount of recent work on occupancy detection has focused on sensor fusion
techniques [54–57]. These systems generally utilize a variety of low-cost and low-intrusion
sensors, such as CO2, relative humidity, and ambient noise. The individual signals from
these nodes are fused in some way to provide an overall decision on whether the space is
occupied or to provide an estimate of the number of occupants in the space. The novelty
in these systems generally comes from the algorithms used to fuse the signals and make
the predictions. In [58], the authors used a combination of environmental sensors and
contextual information, such as meeting calendars, to predict occupancy on a variety of
granularities. Using a hierarchical framework that incorporated k-nearest neighbors and
support vector machines, the authors report accuracy up to 95% for binary classification
and up to 78% for occupant counting. Using a Gaussian mixture model-based hidden
Markov model [59], researchers were able to achieve an average accuracy of 83% when
predicting the number of occupants in a mixed-use lecture/office space.

1.3.4. Residential Occupancy Detection

Most of the works cited so far are specific to occupancy detection in commercial spaces.
Research on occupancy detection has traditionally been focused on commercial spaces for
a number of reasons: the first is that commercial buildings usually have a greater need for
automated operations, and greater incentives for energy savings, than residential buildings.
Because of the scale of commercial buildings, overuse of electricity has a larger financial
impact than in residential buildings, and since the people using electricity are often not the
people paying for it in commercial spaces (at least not directly), they might be less likely
to prioritize conservation. Furthermore, the logistics of operating an HVAC system in a
building serving many people would be very difficult without some sort of automation.
Another reason is that commercial spaces may already have the infrastructure necessary
for monitoring, such as in the cases of occupant tracking or image detection, and people
visiting commercial spaces are more likely to be carrying a cell phone or identification
tag while in the building. Furthermore, people’s movements into and out of commercial
spaces can be more regular (arrive at 9 a.m., leave at 6 p.m.), and modeling methods, such
as stochastic or non-probabilistic modeling, are easier given a larger number of occupants,
since individual errors in prediction are smoothed out over many people. Finally, there is
the significant issue of privacy. Many of the recent detection techniques utilize occupant
observation, such as with cameras, or occupant tracking, such as with RFID sensors. People
have traditionally been weary of installing cameras inside their homes, though this might
be changing. While occupant tracking systems can potentially be used in home systems,
they are hardly foolproof, as they require all occupants to carry enabled devices on them at
all times.

Increasingly, smart thermostats are being adopted in homes. These learning ther-
mostats, such as the Nest, use machine learning to observe and learn from an occupants’
behaviors, such as when they leave and come home and what temperature they like at
certain times. The makers of these thermostats claim that they lead to 15% or more energy
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savings [60], but the actual amount saved can depend on a number of external factors and
might not be as much as promised [61]. Users also report frustration with the operation
of these thermostats and say that they are generally not as good at learning as hoped [62].
Furthermore, researchers have shown that hackers may be able to break into a Nest ther-
mostat [63], and recent hacks of Nest security devices [64] have made people weary about
installing connected devices in their homes [65].

Another method of occupancy detection with the potential to be used in homes is
that of electrical activity monitoring. Monitoring the electrical activity in a home has
traditionally been used in the context of energy disaggregation and non-intrusive load
monitoring (NILM), whereby the power consumption patterns of a home are used to
determine which appliances are being used at a given time [66]. Recently, the monitoring of
high-frequency noise created by switch mode power supplies (SMPS) of modern electronics
has proven very successful for event detection and classification in residential contexts [67].
These detection techniques are increasingly being used to determine the occupancy status
of a home [68]; however, additional research is needed to show the transferability of these
techniques between different home types.

While there are a variety of residential occupancy detection systems available, there are
none that are inexpensive and highly accurate while not being privacy invasive. The WHIS-
PER system, described in this manuscript, combines the high accuracy of image or RFID
based detection with the privacy preservation aspects of “low-tech” systems such as PIR
and is an inexpensive alternative that harnesses advanced machine learning algorithms in
a flexible, modular design.

2. Materials and Methods

The overall system development was accomplished by dividing the effort into three
tasks: (1) hardware design, which consisted of designing the individual sensor nodes,
detection devices, and the base station, along with development of the backscatter commu-
nication methodology; (2) sensor fusion algorithm design, which consisted of investigating,
choosing, and training individual (low-level) modality level inference algorithms, along
with the (high-level) whole-house fusion algorithm; and (3) testing and system integration,
which included an initial data collection phase, as well as sensor type and location specifi-
cation for the sensor nodes. The following section gives details about each of these three
development thrusts.

2.1. Sensor Hardware Development

WHISPER’s sensing hardware was designed with three objectives: minimal system
maintenance, privacy-preserving edge computing, and modularity to easily adapt to
new use cases. The reasoning behind these objectives was three-fold. First, traditional
sensor networks require routine maintenance for battery replacement, which is not only
a reoccurring cost but also a time-consuming task for users. Second, anonymity favors
edge-processing over cloud solutions for cyber-security. Processing the collected sensor
data locally eliminates the need to transfer private user data to cloud-based services. Once
the user data are processed and anonymized, the resulting insights can be shared with
cloud-based services to enable different applications; however, this is secondary to the
prime task of WHISPER: local, accurate, and secure modularity for occupancy presence
detection. Designing a system that is modular is important when it comes to integrating
new sensors in the future to improve performance and potentially adapting the system for
applications beyond occupancy presence detection.

To bring the sensing hardware to fruition while meeting these objectives, several chal-
lenges were addressed such as developing a low-power hardware design, implementing
low-power network communication, and collecting accurate and secure data for insights
on building occupancy. In the following subsections, the sensor hardware design and the
solutions used to address these challenges and meet WHISPER’s objectives are described.
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2.1.1. Backscatter Communication

One of the main challenges in mainstream IoT solutions is the high energy consump-
tion of wireless standards such as WiFi, BLE, or Zigbee. Sensor networks that use these
standards consume a significant amount of energy for data transmission and require either
a power cable or frequent battery replacement for high-throughput continuous opera-
tion [69]. Power cables place a limit on the deployment of the sensor nodes, specifically in
the built environment, and the need for frequent battery changes increases the maintenance
cost and can negatively impact overall system performance.

Recent advances in ultra-low-power wireless systems have enabled battery-free image
capture and even video streaming using backscatter communication [70]. In backscatter
communication, the sensor node transfers its data by reflecting the high-frequency signals
generated by another device instead of generating the high-frequency signal locally [71–74].
This significantly reduces the energy required for wireless communication and allows
the sensor node to operate solely on the energy harvested from a small solar PV cell.
WHISPER employs three devices to enable low-power backscatter data transmission. A TX
unit generates the high-frequency carrier signal, a sensor node modulates and reflects the
carrier signal to transmit data, and an RX unit demodulates the reflected signal and recovers
the sensor data (see Figure 3d). In contrast, in a conventional wireless communication
system, only two devices—TX and RX—are required for the communication link.

Figure 3. Sensor node communication cycle: (a) Receiver selects communication parameters, (b) re-
ceiver activates transmitter, (c) transmitter wakes up sensor, (d) transmitter generates high-frequency
carrier signal, sensor node modulates and reflects carrier signal to transmit data, and receiver unit
demodulates reflected signal and recovers sensor data.

2.1.2. Communication Network Design

We introduce two techniques to improve the performance of the backscatter system
and extend the operating range to cover more expansive areas such as an apartment
or house.

First, a closed-loop tuning system selects the communication parameters (e.g., fre-
quency and TX carrier power) to maximize the backscatter link’s throughput. The propa-
gation loss of wireless signals is frequency dependent. Therefore, the backscatter and TX
interference, which operate at separate frequency bands, experience different attenuation
levels while propagating toward the RX. Since the backscatter signal carries the data and
the TX signal is an interferer, the optimal frequencies for backscatter communications are
those with the minimum loss for the backscatter signal and maximum loss for the TX
interference. The WHISPER’s closed-loop operation is depicted in Figure 3. The RX unit
uses the result of the previous communication attempts to select the best frequency and
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power level for the carrier signal (Figure 3a). Next, it sends this information to the TX
unit, along with the sensor node ID and the command for the sensor node (Figure 3b).
Once the TX unit receives the information, it first generates a waveform to wake up the
specific sensor node and transfer the command (Figure 3c) and then sends out the carrier
signal for backscatter communication. The sensor nodes are in idle mode until the TX unit
activates them. Once activated, they respond to the command by sending out one or more
backscatter packets (Figure 3d) [75,76].

Further extending the coverage of a backscatter system is possible by using multiple
RX and TX base units to form a larger network. Each RX–TX pair can communicate with
each sensor node once the node is in its vicinity. The network coverage is first extended
by adding more TX units. This solution is suitable for multi-bedroom apartments up
to 100 square meters. The data transfer occurs between the RX units and sensor nodes,
and TX units are support devices that relay the command to sensor nodes and generate
the carrier signal to facilitate the backscatter operation. Adding more TX units, therefore,
does not change the system architecture. The RX unit decides which TX unit has the
best performance in communicating with each sensor node. Using multiple RX units
allows the further extension of the backscatter coverage such that it can cover multi-level
residences [76].

To preserve privacy, collected data are processed locally on sensor nodes without
transferring data to cloud servers. Raspberry Pi (RPi) single-board computers are utilized
to process the collected information. Each RX unit is equipped with an RPi. Since the RX
units directly receive the backscatter packets from the sensor nodes, the TX units do not
have direct access to the sensor’s data.

2.1.3. Sensor Node Design

WHISPER’s sensor nodes are designed to harvest enough energy from a small solar
cell unit to perform sensing and communication tasks. The energy collected from the
solar cell is stored on a small rechargeable capacitor, allowing the system to continue
operating when ambient light power is unavailable. The sensor nodes must sense and
communicate their data efficiently since the energy collected from the solar cell is limited.
A low-power ARM Cortex M0+ microcontroller is used in the sensor node design. Each
sensor node is equipped with an ultra-low-power wake-up radio based on amplitude
modulation, which consumes 3.1 µA in listening mode. Each sensor node has a unique
16-bit ID. The microcontroller stays idle, burning a low amount of power until the wake-up
radio receives a packet from the TX units with a matching ID. Upon ID detection, the radio
generates an interrupt to the microcontroller. Next, the microcontroller transitions into
normal mode, reads the received command from the wake-up radio, and responds by
sending the required backscatter packets. For backscatter data transmission, the sensor
uses an RF switch to modulate the carrier signal.

A modular approach is followed to design the sensor node (Figure 4). The microcon-
troller unit (MCU), wireless communication units, temperature, humidity, and illuminance
(environmental) sensors are placed together to form a basic sensor node. The energy har-
vesting unit, camera, and acoustic energy sensors are designed as add-on daughterboards
that mount on top of the basic sensor node through 5 power and 12 input/output pins.
The modular design allows additional sensor types to be added without the redesign of
the communication section.
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Figure 4. Sensor node block diagram (a) and basic sensor node board (b).

Camera: A Himax HM01B0 (Himax Technologies, Inc., Tainan City, Taiwan) image
sensor running in 120 × 120 pixel mode is utilized. Once a “take-picture” command from
the base unit is received, the sensor node’s MCU turns on the image sensor to capture an
image that requires 6.05 mJ energy. For data transmission, one image is divided into 12
large sections or 120 small sections, and the base unit can request a large or small section
with a dedicated command to complete reading the image. The sensor node consumes
3.82 mJ energy to transmit a complete picture. Once the image is completely transferred
from the sensor node to the RX unit, the RX unit sends another take-picture command to
restart the process.

Acoustic Energy Sensor:The acoustic energy sensor has three key parts: (1) a micro-
phone, (2) a 16-band filter bank, and (3) a rectifier. The block diagram of the sensor is
shown in Figure 5. The sensor uses analog filters to break the audio into 16 frequency
bands and then rectifies each band separately to produce an estimate of the power in each
band. The energy numbers are sent to the base unit as the inputs of the machine learning
algorithms. Like the image sensor, the base unit has to send a command to the sensor to
read the energy numbers.

(a) (b)

Figure 5. Block diagram of the acoustic energy sensor (a). An acoustic energy sensor daughter board
(bottom) and a harvester board (top) are mounted on a basic sensor node board (b).

The VM1010 microphone used in this work has two operating modes: (1) wake-on-
sound and (2) normal. We keep the microphone in wake-on-sound mode, requiring 18 µW
power, and wait for an acoustic event that generates energy higher than a defined threshold.
Once such an event is detected, the processor switches the microphone into normal mode to
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record the acoustic energy numbers. This feature reduces power consumption by limiting
the operation to informative events.

Harvester: Our harvester board shown in Figure 5 uses ambient light to collect
energy. Illuminance levels higher than 300 lux provide sufficient energy for sensor nodes.
Under conditions when illuminance is below 300 lux, the sensor uses the energy stored on
its super capacitor (supercap) for operation. The base unit always monitors the supercap’s
voltage of every sensor in the network and adjusts the sensor’s update rate accordingly.
In other words, if the supercap’s voltage is decreasing, the base unit requests data from
that sensor at a lower rate. As the voltage increases, the base unit increases the update
rate. Under conditions when illuminance is less than 300 lux for long periods of time (the
base unit is no longer able to adjust the update rate), once the supercap’s voltage hits a
low threshold (3.6 V), we cut the power supply and the sensor loses its data. Once the
supercap’s voltage hits a high threshold (3.67 V), the sensor becomes active.

2.2. Inference Algorithms

Occupancy inference (i.e., determining whether the space is occupied) is performed
in two stages using a hierarchical approach: first, modality level inferencing occurs at
a low level, and next, high-level whole-building inferencing aggregation is performed.
In the first stage, to get the best modality level occupancy detection results, a variety of
models are applied to respective data modalities in order to capture the data patterns
that indicate human presence in the house. In the second stage, the detection results
from each modality are then aggregated at a high level and fed into an autoregressive
logistic regression (ARXLR, described in Section 2.3) model to obtain the final occupancy
detection results.

2.2.1. Modality Level Inferences
Environmental Data

The WHISPER system collects three environmental data modalities: indoor air temper-
ature (◦C), relative humidity (%), and illuminance (lux). In order to learn the relationship
between these time series environmental data and the occupancy status, an occupancy
detection spatiotemporal pattern network (Occ-STPN) [77] is implemented. In Occ-STPN,
a discretization technique known as symbolic dynamic filtering (SDF) is applied to dis-
cretize time series data into bins, where each bin represents a range of data values [78]
as shown in Figure 6. Each bin is then assigned a designated symbol, which maps the
time series data from the continuous domain into the symbolic (discrete) domain, forming
symbol sequences [77,79]. Next, time embedding is performed on the symbol sequences in
order to encode the historic symbol information into a single state. Figure 7 provides an
illustration of this time embedding process and the following steps to construct a state
transition matrix.

Department of
Mechanical Engineering

SDF

Figure 6. Results of performing symbolic dynamic filtering on a simple sine graph, which discretizes
the data from continuous space to discrete space.
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Figure 7. Time embedding performed on symbol sequence, with sliding window size (depth) of 3
to generate the state sequence, and to construct state transition matrix by capturing the transition
between state sequence and occupancy sequence.

For example, if the length of the history or depth (D) of the encoding is three symbols
long (i.e., D = 3), a state is then constructed as a sub-array of three symbols from the
current timestep t, and two previous timesteps, t− 1 and t− 2, respectively. This time
embedding effectively encodes the historic symbols along the symbol sequence to form a
state sequence, where each state now contains not only the current information but also the
previous timesteps’ information. After obtaining the state sequence, Occ-STPN can now
learn the dynamics between an encoded state and the occupancy status and produce a
state transition matrix (STM) that maps each state to the occupancy status with associated
computed probabilities. After learning the system dynamics, the STM generated by Occ-
STPN will output an occupancy status probability from a given state, P(Occ = {0, 1}|state).

Image Data

For image data, the goal of the inferencing algorithm is to detect the presence of people
in the collected image frames. This is accomplished with a custom-trained, state-of-the-art
computer vision YOLOv5-based model built on convolutional neural networks, which is
deployed on the base station [80]. To train the algorithm, 2500 images from three different
locations were collected with the WHISPER system and annotated with occupant location
in the image.

Training data consisted of images from various scenarios in an indoor setting, such
as different values of room brightness, number of occupants, human postures, occlusions,
and occupant distance from camera. This rich variation in the training data helped to
improve the model’s robustness to different indoor settings and accustomed the model
to grayscale and lower-resolution input images. Camera node sensors can be compared
with passive infrared (PIR) motion sensors commonly used in occupancy detection [81–83].
As discussed above, most PIR sensors in detection or control systems suffer from two
common problems: false positives are common, due to the presence of pets in the residential
unit [84], and false negatives are common, when people are relatively still. Using an image
sensor node and a well-trained human detection model alleviates these issues, as the
system becomes pet-immune and only triggers an occupied status when an actual human
is detected in the image, as well as when people are relatively still in the space.

Acoustic Energy Data

The final modality collected by the WHISPER system is acoustic energy (audio) data.
The goal of inferencing acoustic energy is to predict the occupancy status by picking up
acoustic energy signatures, such as human voices and noises from activities such as cooking,
vacuuming, and opening and closing doors. In the WHISPER system, the acoustic energy
sensors compliment the use of image sensors by picking up audio at potential blind spots
that are not covered by the field of view of the camera.

Although the WHISPER acoustic energy sensor is able to collect audio data, the raw
audio is not transferred to the base station, nor is it used directly for occupancy detection
purpose. Instead, the audio data goes through a series of processing steps for several
purposes, including feature extraction, privacy preservation, and reducing the data com-
munication load. Upon capturing audio, the data pass through a series of band-pass
filters as a feature extraction step. The intuition behind band-pass filtering is that different
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audio noises produce different frequencies; hence, the respective filter bands are excited,
producing different frequency signatures.

After the band-pass filtering process, the filtered signal goes through a full-wave
rectification and downsampling process before transfer to the base station. These processes
ensure the transferred data are non-reconstructable to the original audio, thus eliminating
any privacy concerns. The downsampling also reduces the amount of data required
to be transferred to the base station. To simplify implementation and ensure privacy
preservation, most of the feature extraction steps, including band-pass filtering, full-wave
rectification, and downsampling are built-in to the acoustic energy sensor itself as described
in Section 2.1.3. In preparation for model training, a total of 1790 audio samples were
collected, representing different activities that could indicate human presence, such as
talking, cooking, running water, vacuuming, and playing music. These audio samples
were used to train a random forest classifier with 100 trees and a depth of 10 to predict if
the input data contained indicators of occupancy in the house.

2.3. Sensor Fusion Algorithm

A novel sensor fusion algorithm (SFA) was developed for whole-house occupancy
detection, based on an autoregressive logistic regression model with exogenous variables
(termed “ARXLR”). Whole-house occupancy was predicted by combining individual
modality level occupancy inferences (based on images, noise, and environmental readings)
together in the SFA. The proposed algorithm solves two issues: (1) how to combine the
different sensor modalities (audio, images, and environmental readings) into one prediction
and (2) how to accurately predict occupancy when people are home but no one is active in
the monitored areas.

The SFA exploits two aspects of occupant behavior. The first is that people tend to be
fairly regular in their schedule regarding leaving home and coming back. While a field of
modeling exists which exploits the regularities in peoples’ schedules, referred to as non-
probabilistic modeling [85], there are significant drawbacks to these models. These models
work by using aggregated historical occupancy data to build a time-of-day probability
profile, with each time interval having a probability of home occupancy between 0 and 1.
If the probability is above a threshold, the building is predicted to be occupied, while when
below the threshold, it is predicted to be vacant [21]. The main limitation of this method
is that the accuracy of the model is highly dependent on the training data used, making
the transferability of the models poor. However, time-of-day can still be an important
predictor of occupancy, and while exact times of arrival and departure vary, most people
usually (at least pre-2020) follow similar patterns. Thus, the developed ARXLR algorithm
includes time-of-day information and historical patterns, while not relying solely on it, in
the same way as a non-probabilistic model.

The second factor exploited is the fact that people do not simply materialize in a
room in their house. Whenever a person is asleep (or otherwise quiet) in their bedroom,
they must have, at some point prior to that, entered through a doorway, usually walking
through the house in the process. People especially tend to be fairly active in the common
parts of the home in the evening, while cooking, eating, and socializing. The SFA accounts
for this by including a short history of occupancy (on the scale of 4 to 12 h) based on the
hypothesis that the occupancy of a home can be reasonably inferred from past occupancy,
even when there is no recognizable activity.

2.3.1. Model Framework

The proposed algorithm is an autoregressive logistic regression model with exogenous
variables. Autoregressive (AR) refers to the inclusion of previous occupancy predictions as
predictors in the model. Exogenous variables (X) are the non-AR terms, namely occupancy
probabilities as predicted by the sensor modalities, along with time of day. The overall



J. Sens. Actuator Netw. 2021, 10, 71 15 of 33

framework for combining all predictors is logistic regression (LR). As a reminder, the general
form of a multi-variate logistic regression model is

Pr(x) =
eβ0+βTx

1 + eβ0+βTx
(1)

where β0 is the model offset or intercept (a scalar), β is a vector representing the model
coefficients, x is a vector of the model predictors, and Pr(x) is shorthand for Pr(y = 1|x),
or “the probability that y equals 1, given x”. In this case, y = 1 indicates that the home
is occupied and x includes previous occupancy predictions as well as instantaneous pre-
dictions based on images, audio, time of day, etc. Thus, the left-hand-side of Equation (1)
can be read as “the probability that the home is occupied, given a belief in previous home
occupancy and readings from instantaneous sources”. By taking the natural logarithm and
manipulating both sides, Equation (1) can be transformed to read

ln
[

Pr(x)
1− Pr(x)

]
= β0 + βTx (2)

By separating the predictors (x) into autoregressive terms (γ) and exogenous terms (u
and z), Equation (2) can be re-written as

ln
[

Pr(γ, u, z)
1− Pr(γ, u, z)

]
= β0 + δTγ + φTu + θTz (3)

where φT = [φA φI φT φR φL φC] is the vector of exogenous modality coefficients, θT =
[θW θHs θHc] is the vector of exogenous time-related coefficients, and the autoregressive
terms, corresponding to coefficients on the past occupancy predictions, are given by
δT = [δ1 . . . δm]. The vector γ represents historical occupancy predictions, while u is
a vector representing the probabilities of occupancy given the instantaneous modalities,
and z is a vector of containing information on time of day and day of the week. The final
form of the equation is given by Equation (4).

ln
[

P(yt)

1− P(yt)

]
= β0 +

M

∑
m=1

[δt−K·m · ỹt−K·m] (4)

+ φA · PA,t + φI · PI,t

+ φT · PT,t + φR · PR,t + φL · PL,t + φC · PC,t

+ θW ·Wt + θHs · Hst + θHc · Hct

where

β0 = Intercept (model offset);
δi = Autoregressive coefficients;
φj = Exogenous modality-related coefficients;
θj = Exogenous time-related coefficients;
PA,t = Probability of occupation given by audio inference;
PI,t = Probability of occupation given by image inference;
PT,t = Probability of occupation given by temperature inference;
PR,t = Probability of occupation given by relative humidity inference;
PL,t = Probability of occupation given by illuminance inference;
PC,t = Probability of occupation given by CO2 inference;
Wt = Binary weekend–weekday flag (with 0 meaning day is in {Saturday, Sunday});
Hst = sin

[
π·time

12
]
;

Hct = cos
[

π·time
12

]
;

M = Total length of history considered in hours;
K = Number of time-steps per hour;
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yt = Occupancy prediction (whole-house) at the current time-step, t;
ỹt−K·m = Average of predicted whole-house occupancy m hours in the past.

2.3.2. Algorithm Development

Prior to the development of the WHISPER hardware platform, a preliminary data
acquisition system was built to gather high-fidelity occupancy relevant data, along with
ground-truth occupancy information, from a number of residential homes. The goal of
this was to provide data to start training sensor fusion algorithms before the completion
of WHISPER’s hardware development. Data collected in this manner were meant to be
representative of what the WHISPER system would collect and included audio, images,
and environmental readings.

Data were collected from a total of six homes, each over a consecutive four-week
period. Four to five sensor hubs were installed in each home, depending on size, and hubs
were placed only in the common areas, such as the living room and kitchen. Data collection
and dissemination was overseen by the federal Institutional Review Board (IRB) and proto-
cols were adhered to as laid out in a human subject research (HSR) plan and administered
by the IRB. Test subjects were recruited from the testing university’s department of archi-
tectural engineering graduate students and faculty in Colorado. Ground-truth occupancy
information was collected from the homes via an “if-this-then-that” (IFTTT) software ap-
plication that was installed on all occupants’ cellular phones, as well as through a paper
backup that residents and visitors marked when entering or exiting the home. From these
sources of information, a binary occupied/vacant status of the home was calculated for the
entire testing period.

Collecting this data was a significant undertaking, and the final dataset was released
for public use after processing was performed to remove identifiable characteristics from
the audio and images in order to protect the privacy of the residents (Scientific Data,
in press).

Data from five of the monitored homes were used to explore various model hyper-
parameters, including the number of lag variables to include and the regularization param-
eter type and value to use. A train/test environment was used to systematically compare
the effects of varying different model hyper-parameters. Similar to the method of k-fold
cross-validation, the data from each home were split into contiguous subsets of six to
eight days in length. Models were then trained on some subset of the groups, while the
remainder was reserved for testing. The subsets were contiguous because of the temporal
nature of the algorithm; since current predictions relied on past predictions, randomization
of the data was not possible, as is commonly done in machine learning tasks. The Python
library scikit-learn [86] and the statsmodels package [87] were used for training and testing.

Models were tested in two ways: self and cross. In the self-test scenario, for a home
with n subsets, a model was trained on n− 1 groups and tested on the reserved set. This
was repeated for all distinct subsets, meaning that if a home had five subsets, five different
models were trained and tested, and testing data were never included in the training set.
Model metrics (accuracy, F-scores, TPR, FPR, etc) were aggregated by taking the average
over all tested models in a home, and the mean and standard deviation of these values
were recorded for that home’s self-test results.

In the cross-test scenario, data from all but one home were combined and used to
train a model. The reserved home was then used to test the model. The trained model
was deployed one-at-a-time for each subgroup, and the results were averaged to get that
home’s cross-test results. Coefficient estimates and model performance metrics were stored
for all trained models (self and cross) so that the averages and variance could be compared
across homes, testing types, and parameter values.
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Three performance metrics were used to evaluate the effects of different parameter
values: accuracy, F-score (F1), and F-negative (F1− ), which was the standard F-score,
but with the coding reversed (defined in Equation (6)).

F1 =
TP

TP + 1
2 (FP + FN)

=
2

1
recall +

1
precision

(5)

F1− =
TN

TN + 1
2 (FP + FN)

(6)

2.3.3. Lag Values

The autoregressive lag terms are formed by averaging the occupancy value over the
lag-hour of interest, where m represents the lag-hour in Equation (4). The number of
predictions to average together (K) was dictated by the time-persistency window, τ, which
was the time span (in minutes) over which predictions were made, where K = 60/τ. Thus,
τ = 5 means that data is aggregated on a 5 min basis, and therefore K = 12 predictions
are averaged each hour. For instance, at 9:00 a.m., a lag of 1 h would be the average of
the 12 occupancy predictions from 8:00 a.m. to 8:55 a.m. A lag of two hours would be
the average of the 12 occupancy predictions from 7:00 a.m. to 7:55 a.m. Ground-truth
occupancy was used to generate the lags in the training phase, and predicted occupancy
was used in the testing phase, with the exception of the first M-hour lags in a testing group.
Since the algorithm needed occupancy information to begin making predictions, ground
truth values for the previous M hours were used to seed the predictions. When evaluating
prediction accuracy, the first 24 h were always discarded from every testing scenario, since
the inclusion of these would inflate the prediction accuracy.

Since the goal of including lag values was to account for times that people may not
have been active (at night), lag values of at least 8 h were considered. To determine the
maximum value that would be informative, the idea of the autocorrelation function (ACF)
was invoked. The ACF of a time series is the correlation of the time series with time delayed
values of itself [88], which in this case meant looking at the correlation of ground truth
occupancy readings with previous ground truth occupancy readings.

Shown in Figure 8 are the ACFs for 8 h and 24 h in one of the analyzed homes.
The point of interest is where the plots first cross the x-axis, indicating that the ACF = 0.
The point that the ACF first crosses the x-axis is where the auto-correlation first equals 0
and can be thought of as the point that useful information is no longer added for a particular
time. The plots indicate that, in most cases, a lag of 8 h should likely be sufficiently long to
capture information that might inform current occupancy.

AC
F

AC
F

(a) (b)

Figure 8. ACF of occupancy in one analyzed home for up-to 8 h (a) and 24 h (b).

Figure 8 shows a pattern that was exhibited in all homes, namely that auto-correlation
starts out near unity for short time lags, steadily decreases, crosses the x-axis, and then
oscillates between positive and negative values close to zero in a smooth, periodic fashion.
Recall that a correlation value of 1 indicates that two variables are perfectly positively
correlated, a value of −1 means that they are perfectly negatively correlated, and a value of



J. Sens. Actuator Netw. 2021, 10, 71 18 of 33

0 means that there is no correlation (the relationship between the two variables is random).
For instance, the value of the ACF at 12 h shows how much the occupancy at any time is
correlated with the occupancy 12 h before that time. It is expected that the ACF would
have a cyclic structure with a 24 h period, since people have schedules that are often similar
from day to day. Indeed, this is what we see in Figure 8. Local peaks in the ACF occur
regularly on 24 h intervals, showing that the occupancy at any time of day is most highly
correlated with the occupancy at the same time of day on previous days. The exceptions to
this are the values near the lag of 0, which are uniformly the highest, since occupancy is
highly correlated on very short time scales.

2.3.4. Regularization

Regularization imposes penalties on the coefficient estimates, such that their values
are reduced or eliminated altogether in an effort to arrive at a parsimonious model that
optimally balances model complexity with prediction performance. The `1 norm, which
imposes a penalty proportional to the sum of absolute values of the coefficients, was used,
as it has the benefit of driving some of the parameters to exactly zero, which effectively
performs variable selection.

Regularization was introduced to solve two potential issues with the model. The first
is that of the transferability of the model. Specifically, it was feared that unregularized
models would be overfit to the training data and might not generalize well to other homes.
The second issue was that of multicollinearity, which occurs when predictors in a model
are correlated with each other, which can make coefficient values less stable, leading to
higher variance in the model coefficients. It was known, from the ACF analysis, that there
was going to be strong multicollinearity on the lagged variables, particularly on those that
represented lags close to each other (such as between 3 and 4 h, or between 6 and 7 h). `1
or lasso (for the least absolute shrinkage and selection operator) regularization was chosen
in order to eliminate lags that were redundant and reduce the complexity of the model.

In lasso regression, the researcher specifies the regularization strength, λ, which
controls how much the coefficients are penalized. In the model formulation that was
used in this instance, λ−1 values were specified, such that smaller values meant stronger
regularization. Figure 9 show how accuracy, F1, and F1− changed as a function of the
regularization parameter. Shown in the graph are the averages of self and cross-testing for
all models, along with the standard deviations.
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Figure 9. Performance metrics, with standard deviation, when changing regularization strength.

As can be seen by the figure, there is no “best” value to use. Accuracy was not largely
affected by the change, although, as regularization strength decreased (λ−1 grew), self-test
accuracy increased slightly, and cross-test accuracy decreased slightly. The same pattern is
visible in the F1 score, although the decrease in cross-test score associated with decreased
regularization strength is greater. This is likely because of the differences in variable
importance from house to house, and the fact that more variables included in the model (as
happens when regularization strength decreases) leads to higher variance. This highlights
the overfitting problem, as models trained and tested on more similar data (the self-test
scenario) generally do well when more predictors are included, but those tested on data
that are more dissimilar from training data (cross-test) perform worse. The fact that F1−
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increased, in both the self and test cases, as regularization strength decreased, indicates
that more of the actual minority class (vacancy states) were accurately classified.

This exploration led to the determination of a final value of λ−1 = 0.3 for the model,
as this represented a good balance between the competing F-scores. This value also retained
most of the exogenous coefficients while reducing the number of lag variables included.
Using a very small λ−1 had a large (negative) impact on the F1− value, even though it only
had a small (positive) impact on accuracy. While slightly smaller values like 0.1 showed
better F1 performance, the researchers felt that increasing the F1− score was important.

2.3.5. Model Coefficients

Based on the parameters chosen through the experiments described (8 h of lags using
averages lag values, `1 with λ−1 of 0.3), a final ARXLR model was trained using balanced
subsets of data from all homes.

Note that the raw values of all inputs were between −1 and 1, since they were either
probabilities of occupancy (between 0 and 1), outputs of sin or cos functions with amplitude
1 (between −1 and 1), or a weekday indicator variable, which took on values of exactly
0 or 1. Thus, the magnitude of the coefficient is directly related to its impact on the final
model decision.

As can be seen in Figure 10, the variables with the largest coefficient estimates are the
intercept and the lag of 1 h. Images, audio, temperature, and CO2 are also relatively large.
Most of the coefficient estimates have relatively small standard deviations; however, the
intercept, audio, and CO2 have fairly large standard deviations, indicating that there is
quite some variability in the estimates for these values between homes.

Based on all of the above considerations, final models were generated to compare
the ARXLR sensor fusion algorithm against several baseline models. For training the final
models, data from all homes were combined into one data set. In order not to bias the
model towards a home that had more data, two subgroups from each home were randomly
selected (without replacement) to compose the training set. The trained model was then
tested on each subgroup to get accuracy, and the results were averaged for each home
to get the final results (again, so as not to bias the results towards homes that had more
available data). Note that because data from all homes were used to generate the training
set, there was no self/test distinction.
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Figure 10. Model coefficients when considering an 8 h lag, trained with an `1 regularization penalty
of λ−1 = 0.3. Points show the mean values, and error bars show the standard deviation of the value,
across all instrumented homes.
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Reported in Table 1 are the coefficient estimates from one of the randomly selected
training groups. This version, which is representative of the majority of models created,
was used to compare against the baselines and as an example to give interpretations of the
model coefficients.

Table 1. Final coefficient estimates and associated statistics for the ARXLR model. Coef. gives the
estimated model value and Std. error is the standard error of the estimate. z and p give the z-score
and statistical significance of the estimate. The final two columns give the 95% confidence interval for
the estimate. Bold variable names are those that are statistically significant at a 5% level (p ≤ 0.05).

Variable Coef. Std. Error z p [0.025 0.975]

Intercept −4.9298 0.169 −29.100 0.000 −5.262 −4.598
Audio 4.3068 0.160 26.838 0.000 3.992 4.621
Image 2.5030 0.217 11.554 0.000 2.078 2.928
CO2 −1.0129 0.298 −3.401 0.001 −1.597 −0.429
Illuminance 0.7804 0.257 3.042 0.002 0.278 1.283
Relative humidity 0.6870 0.180 3.807 0.000 0.333 1.041
Temperature 1.5155 0.199 7.616 0.000 1.125 1.905
sin(hr) 0.6070 0.051 11.821 0.000 0.506 0.708
cos(hr) 1.0737 0.057 18.762 0.000 0.962 1.186
Weekday −0.2659 0.074 −3.614 0.000 −0.410 −0.122
Lag 1 5.4175 0.108 50.070 0.000 5.205 5.630
Lag 2 0.3172 0.134 2.363 0.018 0.054 0.580
Lag 3 0.1480 0.147 1.009 0.313 −0.139 0.436
Lag 4 0.0314 0.125 0.251 0.802 −0.214 0.277
Lag 5 0 − − − − −
Lag 6 0 − − − − −
Lag 7 0 − − − − −
Lag 8 0.0097 0.086 0.113 0.910 −0.159 0.179

2.3.6. Interpretation of Model Coefficients

Given the coefficients in Table 1, the final equation (in the form of the log-odds) can be
written as

ln
[

P(yt)

1− P(yt)

]
= −4.9 + 5.4ỹt−12 + 0.3ỹt−24 + 4.3PA,t + 2.5PI,t (7)

+ 1.5PT,t + 0.7PR,t + 0.8PL,t − 1.0PC,t

− 0.3Wt + 0.6 sin
[

π · time
12

]
+ 1.1 cos

[
π · time

12

]
where the variables are the same as described in Equation (4).

In contrast to interpreting the coefficients of a linear regression model, interpreting the
coefficients of a logistic regression model is more complicated; however, the same intuition
applies, whereby large magnitude coefficients indicate larger impacts (if the data have
been properly normalized or scaled). If the data have not been scaled, however, then large
coefficient values may simply be due to small input variables. Similar to linear regression,
positive coefficients indicate that an increase in value (in the case of quantitative variables)
or presence (in the case of binary indicator variables) of the independent variable will lead
to an increase in the response or dependent variable.

For example, the coefficient attached to the probability of occupancy given temper-
ature, φT = 1.5, means that a one-unit increase in the probability of occupancy given
temperature (as specified by the modality-level inference algorithm) causes the log-odds
of occupancy to increase by 1.5 units. Since we are dealing with probabilities (numbers
between 0 and 1), it makes more sense to think in terms of a 0.1-unit increase (for in-
stance, probability of occupancy given temperature increasing from 70% to 80%). Since
the equation is linear in the log-odds, an increase of 0.1 in probability of occupancy given
temperature causes a raw increase in log-odds of occupancy of 0.15. So, if the log-odds in
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the first case were 1.15, the log-odds after the 0.1-unit change in temperature probability (if
nothing else changed) would be 1.3.

This can also be interpreted in terms of the change in odds. Recall that odds are the
argument of the logarithm and represent the probability of an event happening divided by
the probability of the event not happening:

odds =
P(yt)

1− P(yt)
(8)

A one-unit increase in probability of occupancy given temperature (PT,t) causes the
odds of the home being occupied to increase to e1×1.5 = 4.5 times what it was at the previous
temperature value. A 0.1 unit increase in probability of occupancy given temperature causes
the odds of the home being occupied to increase to e0.1×1.5 ≈ 1.16 times the previous value.
Given the same example, the odds when PT,t = 0.7 would be P(yt)

1−P(yt)
= 3.16, and after the

increase, the odds would be e0.1×1.5 × 3.16 = 3.67. The probability of occupancy, P(yt), can
then be found by transforming back the odds equation:

P(yt) =
odds

1 + odds
(9)

Meaning that in the first case, P(yt) = 0.76, and after the 0.1 unit change in PT,t, the prob-
ability of occupancy, P(yt), is 0.79. Because of the non-linearity of the equation, the raw
change in P(yt) seen when switching from PT,t : 0.3 → 0.4 would be different from that
seen when PT,t : 0.8→ 0.9.

As another example, let us look at the weekday indicator variable: the value of
θW = −0.3 indicates that, all other variables staying constant, the home on a weekday
is less likely to be occupied than on a weekend under the same conditions. Specifically,
if the conditions are such that the probability of the home being occupied is 90% (i.e.,
P(yt) = 0.9), then the odds of the home being occupied would be 0.9

1−0.9 = 9, and the
log-odds would be ln [9] = 2.2. If all conditions stayed the same, except for it being a
weekday, then the log-odds of occupancy would be 2.2− 0.3 = 1.9, the odds would be
9× e−0.3 = 6.7, and the probability of occupancy would be 6.7

1+6.7 = 0.87, or 87%.

3. Results

In this section, the WHISPER system’s performance is demonstrated by testing at
different locations including the common areas in a residential apartment and a computer
lab. The system’s performance is evaluated by two criteria: (1) the occupancy detection
accuracy and (2) the hardware communication and system reliability. Additional tests
demonstrated that the sensors are establishing a stable communication with the receiver
and transmitter using the backscatter communication technique. The WHISPER system
used in testing consisted of one receiver, two transmitters, two image sensor nodes, and
two acoustic energy nodes. Each image and acoustic energy node is also coupled with
three environmental sensors; i.e., temperature, humidity and illuminance.

3.1. WHISPER System Hardware Evaluation

In this section, we evaluate the performance of our hardware. First, we measure
the power consumption of a basic sensor and the update rate of it when a 2 or 17 in2

solar panel powers up the sensor. Next, we set up the hardware in a hallway to measure
the communication range of our backscatter system. Finally, we use our hardware in an
apartment to show the wide coverage of the WHISPER system.

3.1.1. Power Consumption

Table 2 lists the power consumption of a basic sensor. This sensor is in idle mode
until it receives a command from the base unit. Once the command is received, the sensor
records the environmental data and sends them to the base unit. We perform two separate
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experiments to measure the update rate of our sensor when it uses a small (2 in2) and
large (17 in2) panel for energy harvesting. Our results show when we use the large (small)
panel, the sensor collects enough energy to record and transmit environmental data every
0.2 (1) s.

Table 2. Power analysis for a basic sensor node.

Idle Power Sensing Energy Comm. Energy Solar-Powered Update Rate
(µW) (µJ) (µJ) 2 in2 Panel 17 in2 Panel

25 25 14 1 s 0.2 s

3.1.2. Line-of-Sight Communication Range

We set up the system in a hallway to measure the communication range. In the
beginning, the sensor was placed 10 ft far from the TX and RX units (the sensor is in the
middle of the TX–RX line). We sent 1000 packets to the RX unit and measured the packet
error rate. We repeated this experiment for distances up to 150 ft and recorded the packet
error rate (PER) at each point. Figure 11 shows the experiment setup and PER values. Our
results show that PER is less than 10% for distances up to 150 (140) ft when the data rate is
31.25 (62.5) Kbps.
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Figure 11. Range experiment setup (a) and line-of-sight range experiment results (b).

The maximum power was set at 30 dBm (1 W). In our evaluations, we used packets
with a 20 byte payload and 2 byte CRC. To receive a packet successfully, all 176 bits needed
to be correctly received. If we assume the bits to be independent from each other, the packet
error rate (PER) and bit error rate (BER) are related to each other by PER = 1− (1−BER)176.
Thus, a PER of 10% corresponds to a BER of 0.0598%, which is significantly less than the
BER of 1% used in other works.

3.1.3. Coverage

We evaluated the performance of WHISPER in a 800 ft2 single-bedroom apartment
(Figure 12) using one RX unit and three TX units. Similar to the range evaluation, the sensor
node transmitted 1000 packets at 18 test points while maintaining a PER of less than 15%.
In the floor plan, blue squares, red squares, and green circles are the TX units, RX units,
and sensor node test points, respectively. As shown in the updated floor plan, all testing
points have a PER less than 15%. PER values change slightly at different locations due
to variations in the sensor-to-base unit distance and multipath fading throughout the
building.
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Figure 12. Coverage experiment results for 800 ft2 single-bedroom apartment. Blue squares, red
squares, and green circles are the TX units, RX units, and sensor node test points, respectively.

3.2. WHISPER System Evaluation

Testing locations were selected specifically to address potential bias in background
settings and occupancy schedules. Each of the locations displayed a different occupancy
status profile—the living room primarily showed an occupied status, the kitchen mostly an
unoccupied status, and with the lab, a balanced distribution of occupied and unoccupied.
The living room was mostly occupied as the occupant spent most of their time working at
a desk in the living room. The opposite is true of the kitchen’s occupancy profile, as it is
occupied for shorter amounts of time; e.g., during cooking and meal times. Lastly, the lab
occupancy profile was relatively balanced with occupied and unoccupied statuses, where
the lab’s vacancy correlated with lunchtime and after researchers left the labs around 5 pm.
To measure the performance of the system, two metrics were used in the evaluations. Aside
from the common accuracy metric, the F1-score was used—a metric common for evaluating
data with imbalanced classes. The first three rows of Table 3 present the testing results
for each aforementioned location. WHISPER was able to achieve an accuracy >95% in all
testing locations, which is reflected in Figure 13, where the predicted occupancy status
closely matched the true occupancy status. Each location was tested separately for a single
day, for up to 10 h, with a 5 min time window for each prediction and up to 2 occupants in
each location.

Table 3. Accuracy and F1-score of the WHISPER system testing in different locations.

Locations Accuracy (%) F1-Score

Living Room (LR) 99.21 0.9919
Kitchen (K) 99.30 0.9930
Lab 95.08 0.9509
LR & K (5-days) 95.76 0.9577

In addition to testing the detection accuracy of the WHISPER system in each zone,
a larger test was also conducted for an extended amount of time to evaluate overall system
reliability and detection performance. In this evaluation, the camera and microphones
were deployed in both the living room and kitchen of a residential apartment, and the
system ran uninterrupted for approximately five days. The distance between the receiver
and sensor nodes covered a distance of approximately ∼10 m during the testing.
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(a) (b)

(c)

Figure 13. Plot of predicted occupancy status against the true occupancy status for each experi-
ment zone. (a) Living room, (b) kitchen, (c) lab.

From Figure 14, it can be seen that the occupied status is detected in the morning when
the occupants are active in the common areas (i.e., living room and kitchen), and there
is an extended number of vacancy states detected during the night. For this extended
five-day experiment, the WHISPER system achieved an accuracy of 95.76% and an F1-score
of 0.9577. During the experiment, readings were never lost due to communication issues,
as the base station was able to determine the best frequency and power level for the sensor
nodes upon detecting any reduction in data transfer success rate. The prediction results
show that the system can not only provide accurate occupancy detection results but that it
can also cover a relatively large area (i.e., two zones simultaneously in this test), and that
the hardware performance is stable and reliable when deployed for an extended duration.

Figure 14. Predicted occupancy status against true occupancy status for a five-day test that covers
both living room and kitchen simultaneously.

3.3. Sensor Fusion Performance

The trained ARXLR sensor fusion algorithm was evaluated on a reserved subset of the
training data that were collected from homes, as described in Section 2.3.2. Presented here
are the results of the combined ARXLR model tested on each home, as well as performance
comparisons between the ARXLR algorithm and different baseline models. Data were
captured from six different homes in the internal data acquisition process, but due to
difficulties encountered in one home (H4) which led to a limited overall quantity of data
being collected, only five of the homes were used to train and test models. The homes that
were used to train and evaluate the ARXLR model are referred to as H1, H2, H3, H5, and H6.
Models were all evaluated on accuracy, F1-score, and F1− , as described in Section 2.3.2.
Recall that F1 is used when classes are imbalanced, and this gives a particularly critical view
when the positively coded variable is underrepresented; i.e., it is highest when positives
are correctly identified (high TPR). Similarly, the F1− is most critical when the negatively
coded class is underrepresented (as was the case in most of the homes) and is high when
negatives are correctly identified (high TNR). Table 4 gives the performance of the ARXLR
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algorithm specified in Equation (7) across the three main metrics. Values were calculated
for each home and then averaged to get the mean across all homes.

Table 4. Prediction results of the ARXLR algorithm for each house. Standard deviations are for the
different testing groups in each home. Std. dev. in the final row gives the standard deviation of the
mean accuracy for all homes.

Accuracy F1 F1−

Home Mean Std dev. Mean Std dev. Mean Std dev.

H1 84% 0.07 0.91 0.04 0.09 0.23
H2 83% 0.07 0.85 0.06 0.80 0.09
H3 87% 0.05 0.93 0.03 0.13 0.12
H5 82% 0.22 0.89 0.14 0.02 0.03
H6 56% 0.19 0.64 0.19 0.42 0.15

Mean 78% 0.13 0.84 0.12 0.29 0.32

As can be seen in the table, accuracy was around 85% in all homes, with the exception
of home H6, which had much lower accuracy. This pattern was seen across all trials,
and there are several possible explanations for the discrepancy. One reason could simply
be that H6 had poorer-quality data. There were only four sensor hubs in H6, and on one
of them, the audio did not work. It also could be lower because the occupant lived alone
and so was not talking with roommates, as occurred in the other houses.

Figure 15 shows one week of predictions in H2, with the probability of occupancy
according to the algorithm plotted along with ground truth (0.5 was used as the decision
boundary, or cut-off threshold, above which the whole house was predicted to be occupied).
As can be seen from the figure, the algorithm performed reasonably well in terms of
matching ground truth when the pattern is regular (on the 14th and 15th); however, on the
16th and 17th (a weekend), when the occupant was home for most of the day, the algorithm
attempted the same pattern, but then corrected, most likely when it received signals
of activity.
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Figure 15. One week of predictions in home H2, made with the ARXLR model. Blue line shows the
probability of occupancy prediction made by the ARXLR algorithms, and orange shows the ground
truth (binary) occupancy status.

Figure 16 shows a distribution of how the points were labeled for that week, color-
coded according to ground truth. While we do not see the ideal situation, which would be
if the two groups were perfectly separated, such that all points above a certain threshold
could be labeled as occupied and below labeled as vacant, there is still some reasonable
separation between the two groups. The fact that there is a small hump of vacant points
around the 0.95 probability (seen behind the blue peak) indicates that a number of vacant
points were mislabeled as occupied, while a lack of blue points on the low end indicates
that few occupied points were mistakenly labeled as vacant.
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Figure 16. Distribution depicting how points were classified with the ARXLR model (for one week
in H2).

Comparison to Baselines

The performance of the ARXLR model was compared to several different baselines: a
minority vote (MV) algorithm; a non-probabilistic method, based only on the time of day;
and a version of the ARXLR model that used ground truth occupancy, instead of predicted
occupancy, for the lagged values. In addition to the three accuracy metrics previously
described, true and false positive and negative rates were calculated for each, as described
by Equations (10)–(13).

TPR =
TP
P
⇒ recall (10)

TNR =
TN
N

(11)

FPR =
FP
N

= 1− TNR (12)

FNR =
FN
P

= 1− TPR (13)

Minority vote is the incumbent sensor fusion algorithm, implemented in the first
iteration of the WHISPER system. This algorithm considers the results of the modality
inferences and predicts the whole house to be occupied if any individual modality presents
a prediction of occupied. While this algorithm does well at identifying people in direct
view or ear-shot of sensors, it does not perform well overnight, when the house is quiet
and still.

As can be seen from Table 5, using just acoustic energy and images led to an accuracy
only slightly above 50%, meaning the results were not much better than chance. The F1
and F1− scores are comparable, and both the true negative and false negative rates were
fairly high, indicating the the algorithm over-predicted vacancy and under-predicted
occupancy. This is in line with what would be expected if using just the zone indicators,
as audio and images are good at detecting when a person is in the same zone as the sensor,
but not otherwise.

Table 5. Results of the three baseline algorithms compared with the ARXLR algorithm. Reported
are three accuracy metrics, along with the change in that metric (difference between ARXLR and the
baseline). Ground truth is the ARXLR algorithm, using ground truth occupancy.

Classifier Accuracy F1 F1− TPR FPR TNR FNR

ARXLR 78% 0.85 0.26 96% 76% 24% 4%
Minority-vote 51% 0.46 0.46 31% 9% 91% 67%
Non-probabilistic 71% 0.81 0.14 97% 91% 9% 3%
Ground truth 96% 0.97 0.83 97% 20% 80% 3%

The non-probabilistic (NP) model showed quite good results, and in most cases
performed similarly to the ARXLR algorithm. Recall that NP models generate likelihoods
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of occupancy based on historically observed occupancy states, which give a predicted
probability of occupancy at any time of day. Times with a probability above some threshold
are classified as occupied, and those below the threshold are classified as vacant. These
models are called non-probabilistic, or deterministic, since there is no chance or randomness
in the final decision—it is based only on the time of day (and possibly the day of the week).

In all metrics, other than FNR, the ARXLR algorithm outperformed the NP model.
The best performance increase was in F1− , where the ARXLR model showed a perfor-
mance twice as good as the NP model; however, the raw values for F1− , in both cases,
were still very low, indicating that both the ARXLR and NP models had a difficult time
correctly identifying vacant states. The high false positive rates (or low true negative rates,
as TNR = 1 − FPR) further show that both models had a difficult time correctly identify-
ing vacant (negative) states, although ARXLR did a better job on both counts than the
NP model.

A possible reason for the increased performance over the NP model lies in ability
of ARXLR to take in instantaneous state information. While both models rely heavily on
historical patterns (NP exclusively, and ARXLR through the /sin and /cos terms), ARXLR
can have its belief due to time-of-day overwritten by activity in the space, as we see on the
18th, in Figure 15. When trained on aggregated information from different homes, the NP
model does an acceptable job of predicting this occupant’s patterns and does not seem to
do much better when trained on its own data. This shows that, if a wealth of ground truth
information is available for training, a non-probabilistic could potentially perform well;
however, when transferring a model to a new home, with some (indirect) feedback from
the occupants, the inclusion of instantaneous readings can serve to train the model as it
is used.

As a final comparison, ARXLR was compared to a version of itself that uses ground
truth occupancy for the lagged values. This represents a best-case scenario for ARXLR
and, as expected, had very good performance. The comparison shows how, with perfect
historical predictions, the algorithm could perform very well. While perfect historical
predictions are unattainable, this shows how increasing the predictive accuracy of the
model has compounding effects, because of its high reliance on the past predictions.
The (relatively) high false positive rate of the ground truth model indicates that most
of the prediction errors are when the algorithm believes the house is occupied but it is
actually vacant.

3.4. Energy Savings Potential

The US funding agency ARPA-E estimated that including reliable occupancy informa-
tion in the operation of HVAC systems can lead to energy savings up to 30% over baseline
usage [89], while Panchabikesan et al. estimate the savings at 5–25% [90]. Turley et al.
showed that including occupancy information in a model predictive control (MPC) strategy
in a home can result in savings of 13% [21]—a goal that appears to be more attainable than
the funding agency’s aspirational target of 30%.

4. Discussion

WHISPER’s primary focus has been presence detection for residential applications,
primarily for homes where there is adequate savings potential in binary on/off decision
making or through the modulation of set points. Its strength lies in optimizing the trade-
offs associated with energy or power, carbon impact or emissions, and time-dependent
comfort criteria. Since comfort criteria are subjective (although quantifiable), the objective
function may change according to user scenario.

The crucial fact remains that human experiences and their (indirect) manipulation of
the WHISPER system will ultimately determine its benefits. That is, savings from HVAC
temperature setpoint modulation in conjunction with battery dispatch (electric vehicle or
home scale) are bounded by the proportion of time spent in occupied versus unoccupied
states (along with pricing or other incentives), as well as by weather—the other main,
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uncontrollable forcing function defining any window of opportunity for building energy
efficiency technologies.

4.1. System Extension

Numerous extensions to the task of residential building energy conservation through
binary occupancy detection present themselves, as briefly outlined below.

4.1.1. Additional Sensor Modalities

Sensing of CO2 is feasible and was demonstrated on early versions of WHISPER’s
daughterboard design; likewise, high-frequency electromagnetic interference (EMI) sam-
pling was demonstrated with the goal of adaptive-rate power quality sampling for grid
integration (detailed below) in conjunction with environment sampling. The current itera-
tion of WHISPER does not utilize these additional sensor modalities due to cost constraints.
However, future research may seek to quantify occupancy events from both the high-
frequency electrical waveform perspective and the human temporal dynamics perspective,
such as how a human activity, such as cooking, impacts the space. This information could be
used for time-synchronous grid-interactive efficient buildings with labeled activity events.

4.1.2. Occupancy Counting

Extending WHISPER’s functionality to move beyond occupancy presence into count-
ing may be achieved through WHISPER’s image sensor node. Popular image processing
packages already include subroutines for (human) figure, posture, and face detection,
which could be enabled through straightforward coupling to WHISPER’s codebase. How-
ever, these elements were considered out-of-scope as driven by constraints for privacy;
i.e., integrating high-resolution imagery from a range of commercially available cameras is
feasible but begs the question as to whether end users desire to be recorded.

4.2. Non-Energy Benefits

Human engagement with smart devices is an evolving topic, with end users span-
ning a range of technology acceptance levels. From a conceptual standpoint, WHISPER
fundamentally monitors and contributes to the understanding of humans’ engagement
with devices in a smart home. Although countless smart device integrations are feasible,
WHISPER’s focus is the interface between humans and smart homes for message bus
signaling and automating smart grid engagement.

4.2.1. Health Care

Monitoring health care environments for notable events is attracting interest due to its
trivial cost in comparison to dedicated, professional health care. As combined with health
data from wearables, image sensors in smart homes could be used as part of healthcare
monitoring systems, such as the SPHERE IoT network [91]. Additionally, the longitudinal
monitoring of human activity in a home may help diagnose trends, such as the onset
or escalation of Parkinson’s disease [92].

4.2.2. Security

Security systems can benefit from WHISPER in two ways: (1) as a component of exist-
ing security systems or (2) with further development of WHISPER to distinguish between
welcome and unwelcome occupants, similar to the pet detection problem, but likely requir-
ing more sophistication to distinguish user type. As such, WHISPER’s inherent security
features could be expanded to door and window sensors, traditional IoT cameras, and as-
sociated devices. Crucial to the future development of WHISPER are its machine learning
capabilities, which could be expanded to include time-dependent activity identification,
allowing for whole-home or zone-specific security; e.g., exposure to critical infrastructure
or passage through unauthorized spaces.
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4.2.3. Indoor Environmental Quality

Indoor environmental quality (IEQ) encapsulates the majority of the empirical data
that one might capture to assess a given occupant’s satisfaction with their ambient environ-
ment, well beyond simple thermal comfort assessment. In this context, WHISPER may be
expanded to interface with smart devices to display not only the binary occupancy state
but the instantaneous assessment of IEQ including thermal, indoor air quality, acoustic,
olfactory, and visual comfort dimensions. This would require the IEQ attributes to be
included in the machine learning framework of WHISPER such that IEQ may be estimated
at a higher fidelity. Quantifying and tracking IEQ represents a more valuable and informa-
tive characterization of occupied spaces, offering feedback to architects, building design
engineers, owners, and operators.

4.3. Conclusions

WHISPER is an end-to-end system for human occupancy detection that can be lever-
aged to improve the energy efficiency of homes and buildings. Ultra low-power sensor
nodes are utilized to collect and wirelessly transmit data to a base station. WHISPER’s base
station is designed to perform edge computing and couple sensor data with machine learn-
ing to provide valuable insights on human presence and, in turn, provide energy savings
and capabilities for smart electric grid participation. Our proposed system preserves the
residents’ privacy by relying on low-resolution image sensors and acoustic sensors that
report lossy energy-by-frequency audio (uninterpretable) and uses a local wireless network
that does not rely on any cloud platform.

The WHISPER hardware platform builds upon novel technologies, including backscat-
ter communication and customized machine learning algorithms integrated in a hierarchi-
cal sensor fusion algorithm, to enable a seamless sensing system that requires little to no
maintenance and provides accurate predictions on building occupant presence. WHISPER
was deployed in multiple homes for approximately one week and demonstrated a detection
accuracy of more than 95%. Finally, we highlight several future research directions for
WHISPER in healthcare, security, and indoor environmental quality.
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