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Abstract: The ability to accurately predict vehicle trajectories is essential in infrastructure-based 

safety systems that aim to identify critical events such as near-crash situations and traffic violations. 

In a connected environment, important information about these critical events can be communicated 

to road users or the infrastructure to avoid or mitigate potential crashes. Intersections require special 

attention in this context because they are hotspots for crashes and involve numerous and complex 

interactions between road users. In this work, we developed an advanced machine learning method 

for trajectory prediction using B-spline curve representations of vehicle trajectories and inverse re-

inforcement learning (IRL). B-spline curves were used to represent vehicle trajectories; a neural net-

work model was trained to predict the coefficients of these curves. A conditional variational auto-

encoder (CVAE) was used to generate candidate trajectories from these predicted coefficients. These 

candidate trajectories were then ranked according to a reward function that was obtained by train-

ing an IRL model on the (spline smoothed) vehicle trajectories and the surroundings of the vehicles. 

In our experiments we found that the neural network model outperformed a Kalman filter baseline 

and the addition of the IRL ranking module further improved the performance of the overall model. 

Keywords: B-spline curves; neural networks; vehicle trajectory prediction; inverse  

reinforcement learning 

 

1. Introduction 

The problem of trajectory prediction involves forecasting the path a vehicle is going 

to take given its past trajectory and surroundings. A solution to this problem would have 

applications in surrogate safety analysis [1], evaluating road safety, and infrastructure-

based safety systems for providing early crash warnings [2]. Solving this problem is also 

of critical importance for advanced driver assistance systems (ADAS) [3–5] and autono-

mous vehicles (AV) [3,6,7]. Solving this problem would also enable us to generate simu-

lations of intersections that better conform to the reality of human driving. These more 

realistic simulations make it possible to predict the behavior of human drivers at intersec-

tions prior to their construction. This would allow for better safety assessments at inter-

sections [8]. When cast as a control problem, i.e., a problem of finding the correct control 

behavior, solving the problem of trajectory prediction would be equivalent to training a 

model to drive similar to human drivers. This enables applications where human-like 

driving is desired. This problem is partly related to the problem of vehicle tracking, i.e., 

the problem of identifying and following the motion of vehicles in a video feed. While 

vehicle tracking deals with identifying the current motion of vehicles, trajectory predic-

tion deals with predicting their future movements. The data required for trajectory pre-

diction is the output of solving the vehicle tracking problem. In this work, we focused 

solely on the prediction problem. 
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Vehicle trajectory prediction is of particular interest at intersections, where a great 

number of conflicts between road users could increase the likelihood of accidents [9]. Ac-

cording to the National Traffic Safety Administration, between 2014 and 2018, about 40 

percent of all crashes and 24 percent of fatal crashes occurred at intersections. With the 

advent of smart cities and smart vehicles, infrastructure to vehicle (I2V) and vehicle to 

vehicle (V2V) communications will be made possible. In conjunction with a trajectory pre-

diction system, these advances in vehicle and infrastructure technology will enable us to 

enhance the safety of intersections by predicting collisions [10,11] and risky driving be-

havior [12] (e.g., red-light running) and deploying countermeasures to help avoid or mit-

igate crashes, such as early crash warnings [13–17], or real-time signal timing adjustments 

[18]. Being able to project vehicles’ trajectories into the future is also important in auto-

mated driving applications because, so long as automated vehicles share roads with hu-

man driven vehicles, they need to know how human drivers act in different situations and 

must also behave in ways that conform to human drivers’ expectation of other vehicles, 

i.e., similar to other human drivers. It is, therefore, important that automated vehicles 

have a model of vehicle motion in different situations including at intersections. 

A wide range of approaches have been used in tackling the trajectory prediction 

problem, ranging in complexity from models that assume that the vehicle will maintain 

its velocity or acceleration and (rate of change of) heading for the duration for which tra-

jectory prediction is going to be performed [19], to those that try to capture more of the 

complexities of vehicle motion by modeling different maneuvers, but that still disregard 

the influence of other vehicles [20], to models that take the interactions between traffic 

actors into account when predicting the future motion of vehicles [21]. The tools used in 

developing these approaches are also quite varied and include Kalman filters [15], hidden 

Markov models [22], Gaussian processes [20], Bayesian networks [14], Gaussian mixture 

models [9], and neural networks [6]. These studies all formulate the problem of trajectory 

prediction as a prediction task, which is to say that they directly predict the entire future 

trajectory of the vehicle; however, it can also be formulated indirectly as a control task in 

which control actions (e.g., changes in heading and velocity) are determined at each 

timestep and the trajectory can then be predicted by tracing the motion of the vehicle 

based on these actions. In this case, we will be dealing with a learning from demonstration 

(LfD) problem [23] in which we are interested in learning, from human driving data, what 

actions should be taken to properly control a vehicle. 

In this work, we developed a new solution using a hybrid approach combining ele-

ments from the prediction formulation and the control formulation based on a research 

project that we conducted [24]. We adopted a two-step approach to solving the problem. 

In the first step, we represented vehicle trajectories as B-spline curves and trained a neural 

network model to predict the coefficients of these B-spline curves. A conditional varia-

tional autoencoder was then used to generate candidate trajectories from these predicted 

coefficients. Similar approaches to trajectory representation have been used before, such 

as representing trajectories using Chebyshev polynomials [9]; but, to the best of our 

knowledge, this is the first work to use B-spline curves for this purpose. The reason why 

we chose B-spline curves for representing the trajectories is that B-spline curves can ap-

proximate complex curves with local control over the shape of the curve, while avoiding 

problems, such as oscillations at the edges of the interval (known as Runge’s phenome-

non), that are encountered when using high degree polynomials. In the second step, the 

candidate trajectories were ranked using an inverse reinforcement learning (IRL) [25] 

model, in which a convolutional neural network was used as the approximator for the 

recovered reward function. IRL is a technique for solving control problems by learning 

from demonstration and has previously been used to solve the trajectory prediction prob-

lem in highways [26,27]; but, to the best of our knowledge, this is the first work to inves-

tigate its application to the problem at intersections. This is also the first work to use 

MaxEnt IRL to select from a set of candidate trajectories. The work in [28] also used an 
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IRL-like approach to rank candidate trajectories, but used an ad hoc formulation. Trajec-

tory prediction at intersections involves challenges not encountered in highways, such as 

the presence of various conflict types, multiple types of road users (vehicles, pedestrians, 

and bicycles), and more complicated traffic control devices. Here, we used IRL to develop 

methods that can address some of these complexities. The IRL model was trained using 

the B-spline smoothed trajectories and the context of the vehicle at the intersection, i.e., 

the other vehicles present at the intersection. The second step allowed us to predict trajec-

tories that are more human-like and also to take interactions between the vehicles at the 

intersection into account. For the training and evaluation of our method we used the Lank-

ershim boulevard dataset from the Next Generation Simulation (NGSIM) dataset collec-

tion [29]. In summary, the main contributions of this work are investigating (a) the use of 

B-Spline curves to represent vehicle trajectories, (b) the use of inverse reinforcement learn-

ing in trajectory prediction at intersections, and (c) the use of MaxEnt IRL to rank a set of 

candidate trajectories. 

2. Related Work 

The approaches to trajectory prediction can be classified into three broad categories 

[3]: physics-based [10,13,15,19,30–33], maneuver-based [5,7,9,16,17,21], and interaction-

aware [34–37]. Physics-based models, as the name suggests, deal with the physics of ve-

hicle motion and assume that vehicles’ trajectories are determined solely by physical 

forces, disregarding driver decisions that affect steering and acceleration. Consequently, 

these models fail to accurately predict vehicle motion beyond a short horizon. Maneuver-

based models take driver actions into account, but only in a vacuum, i.e., they consider 

these decisions to be determined solely by the position and the preceding trajectory of the 

vehicle of interest, ignoring the influence other road users have on these actions, which 

leads to less reliable projections of future motion. Interaction-aware models perform tra-

jectory prediction by taking the presence of other road users into account. Comprehensive 

reviews of the three modeling approach categories can be found in [3,38]. The present 

work falls within the third category (i.e., interaction-aware models). What follows is a 

summary of interaction-aware models in the literature, previous studies that have applied 

IRL to the problem of trajectory prediction, and works that involve the application of tra-

jectory prediction to intersection safety. 

2.1. Interaction-Aware Models 

In [34], a trajectory prediction framework based on a radial basis function (RBF) net-

work and particle filter proposed in [5] was used to predict the joint trajectory of two 

vehicles at intersections. This was performed by penalizing those trajectories that lead to 

avoidable collisions (i.e., trajectories for which the time to collision is larger than the driv-

ers’ reaction times). Coupled hidden Markov models [22] were used in [21] with the as-

sumption of asymmetric interactions, i.e., other vehicles influence the vehicle of interest, 

but not vice versa, to predict driver behavior. In [35], the intelligent driver model was 

used to infer the intent of drivers at intersections in the presence of a preceding vehicle. A 

probabilistic graphical model and recursive Bayesian filtering were used in [36,39] to per-

form interaction-aware driving behavior prediction. In [37], a dynamic Bayesian network 

(DBN) was used in conjunction with a factored state space that allows for a model with 

less computational complexity. DBNs were also used in [40] to jointly model what drivers 

intend to do and what they are expected to do in a traffic context. In [6], traffic contexts 

were rasterized into two dimensional images and a deep convolutional neural network 

was then used to perform trajectory prediction. In [41], a generative adversarial network 

(GAN) was used to model driver behavior in highways. A solution to a restricted version 

of the trajectory prediction problem, that of predicting the changes in velocity along a 

predetermined path at unsignalized intersections, was proposed in [42]. This work mod-

eled the problem as a partially observable Markov decision process in which the intended 

path of the other vehicles constitute the hidden variables. Partially observable Markov 
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decision processes were also used in [43] for AV decision making in scenarios, including 

roundabouts and T junctions. In [44], deep neural networks (DNNs) and long short term 

memory (LSTM) networks were used to predict vehicle trajectories at intersections. A 

technique called social pooling was used with LSTM and deep CNNs in [45] to address 

the interactions between vehicles in trajectory prediction in a highway setting. In [46], a 

specially designed “influence network” was used in conjunction with a DBN to perform 

vehicle trajectory prediction at intersections. A similar solution to the trajectory prediction 

problem based on DBNs was proposed in [14]. 

2.2. Trajectory Prediction using IRL 

Several studies have used IRL to model driving, mostly in the context of highways. 

In [26], IRL was used to learn driving in highways from human demonstrations in a sim-

ulated environment. The use of IRL was motivated by the desire to achieve more human-

like behavior and a better ability to handle new scenarios. Deep Q-networks were used to 

address the exploding state space issue encountered in using IRL in a setting with a large 

state space. In addition to using a simulated environment instead of real-world data, this 

study contained several other limitations, such as using constant speed and having at 

most two cars in front of the vehicle. The authors in [27] had similar motivations in using 

IRL for the task of learning individual driving styles on highways. The driving behavior 

of a number of drivers was recorded as they drove a car fitted with a variety of sensors on 

a highway. Maximum entropy IRL was then used to train a model to make driving deci-

sions in styles similar to each of the individual drivers. This work used a reward function 

that was a linear function of a number of manually defined features such as acceleration, 

deviation from lane center, and distance to other vehicles. These last two works consid-

ered the control problem that was mentioned earlier in the introduction section. In both 

studies, the use of IRL allowed for faithful replication of human driving behavior and an 

ability to generalize to new situations. In [47], a hierarchical learning framework was pro-

posed, in which IRL was used to predict interactive driving behavior on two levels with 

a case study of ramp merging. The different levels of decision making in their framework 

consisted of discrete, high-level decisions (e.g., whether to merge after or before a given 

car in their case study) and low-level continuous actions (e.g., the acceleration and head-

ing changes at each timestep.) Similar to the previous study, the reward function in this 

work was formulated as a linear function of several manually defined features. A notable 

limitation of this work is that the high-level discrete decisions and their corresponding 

low-level continuous features need to be manually defined based on the particular sce-

nario (e.g., ramp merging) at hand. In [28], a generative framework based on conditional 

variational autoencoders using recurrent neural networks was used to generate possible 

future trajectories. An IRL approach was used to rank and refine the trajectories generated 

by the generative framework. It is noteworthy that this work did not use any of the com-

monly employed IRL formulation, but rather integrated a reward function into a larger 

framework, where the reward function parameters were optimized in tandem with the 

rest of the architecture and the optimization method was dependent upon the sample 

generating component of the framework. IRL was used in [48] to choose from a set of 

trajectories generated using a rule-based method in a highway environment. IRL was cho-

sen as the approach for this study because it allowed for a hybrid method that did not 

require mappings from circumstances to vehicle control to be manually engineered and, 

at the same time, produced interpretable results. In [49], a trajectory prediction method 

based on an encoder-decoder approach using RNNs was proposed, which used IRL as a 

regularizer for the training of the encoder-decoder network. The use of IRL as a regular-

izer was intended to help the model better utilize the scene context information. IRL was 

used to directly predict trajectories in a highway environment in [50]. A summary of the 

studies enumerated above is presented in Table 1. 
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Table 1. An Overview of Studies on Trajectory Prediction using IRL. 

Study Environment Methods Predictors 

[26] Highway IRL and Deep Q-Nets Surroundings 

[27] Highway IRL Surroundings 

[47] Road Segment Hierarchical IRL Surroundings 

[28] Intersection and Road Segment Recurrent Neural Networks and IRL Previous Trajectory and Surroundings 

[48] Highway IRL Surroundings 

[50] Highway IRL Previous Trajectory and Surroundings 

2.3. Trajectory Prediction for Intersection Safety 

In this subsection, we will explore in more detail those studies that have considered 

the trajectory prediction problem from the viewpoint of the infrastructure and whose pro-

posed solutions cover the problem at intersections. 

Trajectory prediction has several applications for intersection safety. One such appli-

cation is the detection of risky driving behaviors such as dangerous turns [16], red-light 

running [12,16,18], abrupt stops, aggressive passes, speeding passes, and aggressive fol-

lowing [12]. Trajectory prediction is also instrumental to the early prediction of turning 

movements, which is helpful in avoiding accidents [43]. Collision prediction, avoid-

ance/mitigation [13–15,19], and risk assessment [10,11,17] also make use of trajectory pre-

diction. Each of the studies reviewed in this subsection used their solutions to the problem 

of trajectory prediction to tackle one or more of these applications. Table 2 presents, for 

each study, the features used for trajectory prediction (Predictors), the sensors used for 

collecting these features’ data (Data Collection Sensors), the number of intersections 

where data were gathered for training (if applicable), the duration for which data needed 

to be collected before starting to make predictions (monitoring period), how far into the 

future the predicted trajectories stretch (prediction horizon), what evaluation metric was 

used for measuring the performance of either the trajectory prediction method, or the 

safety system as a whole (evaluation metric), the applications that were tested if applicable 

(tested applications), interactions between which types of road users were considered (in-

teraction type), and what movements leading to possible hazards were considered. 

Table 2. Summary of studies on trajectory prediction for intersection safety. 

Study 
Predictors 

(Detail) 

Data Collection 

Sensors 

Monitoring 

Period 

Prediction 

Horizon 

Evaluation 

Metric 

Tested  

Applications 

Interaction 

Type 

Movement 

Type 

[12] 

Position, ve-

locity, distance 

to preceding 

vehicle, speed 

difference 

from preced-

ing vehicle 

Video camera 1 s 12 s 

RMSE of 

difference 

between 

predicted 

and actual 

trajectory 

Detect red light 

running, abrupt 

stops, aggres-

sive passes, 

speeding passes, 

and aggressive 

following 

Vehicle, ve-

hicle-vehicle 
all 

[44] 

Vehicle posi-

tion over a 

number of pre-

ceding frames 

Video camera 
1/3 of each 

trajectory 
2 s 

Turning 

prediction 

accuracy 

Early prediction 

of turning 

movements 

Vehicle-ve-

hicle, vehi-

cle-pedes-

trian 

all 

[10] 

Vehicle posi-

tion, velocity, 

and accelera-

tion 

GPS 

Up to the 

prediction 

point 

10 s 

No quanti-

tative eval-

uation 

Collision detec-

tion and risk as-

sessment 

Vehicle-ve-

hicle 
all 
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[13] 

Vehicle posi-

tion and veloc-

ity 

DGPS 
Not Speci-

fied 

Not Speci-

fied 

No Quanti-

tative Eval-

uation 

Collision detec-

tion and warn-

ing 

Vehicle-ve-

hicle 
all 

[46] 

Vehicle posi-

tion, velocity, 

and previous 

trajectory + 

surroundings 

Video camera 
Not speci-

fied 
0–3 s 

RMSE of 

difference 

between 

predicted 

and actual 

trajectory 

- 

Vehicle-ve-

hicle, vehi-

cle-pedes-

trian 

all 

[15] 

Vehicle posi-

tion, speed, ac-

celeration, and 

yaw 

GPS + inertial 

sensors 

Not speci-

fied 

Not speci-

fied 

No quanti-

tative Eval-

uation 

Frontal collision 

prevention/miti-

gation 

vehicle-ve-

hicle 

Frontal col-

lisions 

caused by 

any move-

ment 

[14] 

Vehicle posi-

tion, velocity, 

acceleration, 

distance trav-

eled, turn sig-

nal, road con-

dition 

Simulation 
Not speci-

fied 

Not speci-

fied 

TPR, FPR, 

and FNR 

for collision 

prediction 

and Colli-

sion avoid-

ance suc-

cess 

Collision avoid-

ance and warn-

ing 

Vehicle-ve-

hicle 

All move-

ments 

[11] 
Vehicle posi-

tion, velocity 
Video camera 

Prediction 

performed 

at every 

time step 

Not speci-

fied 

No quanti-

tative Eval-

uation 

Collision detec-

tion 

Vehicle-ve-

hicle, vehi-

cle-pedes-

trian 

All move-

ments 

[16] 

Vehicle posi-

tion, velocity, 

acceleration 

Roadside sen-

sors, on board 

GPS 

Not speci-

fied 

Maximum 

of 10 s 

Levels of 

accident 

mitigation 

Collision miti-

gation 

Vehicle-ve-

hicle, vehi-

cle-cyclist, 

vehicle-pe-

destrian 

Turns and 

red light 

running 

[18] 

Vehicle posi-

tion, velocity, 

and accelera-

tion 

Video camera 
Not speci-

fied 

Not speci-

fied 

Simulated 

SOC curve 

Red light run-

ning prediction 
- 

Red light 

running 

[17] 

Vehicle posi-

tion, velocity, 

acceleration 

Intersection 

mounted cam-

eras and laser 

sensors + on 

board sensors 

Not speci-

fied 
2 s 

No quanti-

tative eval-

uation 

Collision risk 

prediction 

Vehicle-ve-

hicle, vehi-

cle-pedes-

trian, vehi-

cle-cyclist 

All move-

ments 

[19] 

Vehicle posi-

tion, velocity, 

acceleration 

Not specified 
Not speci-

fied 
3 s 

False posi-

tive + false 

negative 

Collision predic-

tion and warn-

ing 

Vehicle-ve-

hicle 

All move-

ments 

Our 

work 

Vehicle posi-

tion, velocity, 

acceleration + 

surroundings 

Video camera 2 s 3 s RMSE - 
Vehicle-ve-

hicle 

All move-

ments 

Most studies have focused on predicting and mitigating crashes. In [10], the authors 

proposed a method for collision risk estimation between vehicles based on real time tra-

jectory prediction. The method used for trajectory prediction in this work was a linear 
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Kalman filter. GPS data was used for determining the position of vehicles, and risk esti-

mation was performed using the time to collision (TTC) predicted from the predicted tra-

jectories. Another work to use TTC from predicted trajectories for collision risk estimation 

was [13], which also used a Kalman filter for trajectory prediction and DGPS as the posi-

tion sensor. A system for threat assessment and decision-making system was proposed in 

[15], which used an unscented Kalman filter for trajectory prediction. A probabilistic 

threat assessment method was also developed for threat assessment, along with a deci-

sion-making protocol for whether an intervention is necessary. In [14], an accident pre-

warning system was developed with a trajectory prediction method based on a DBN and 

a risk assessment method based on the identification of risky driving behavior. They also 

presented a method for deciding the collision avoidance strategy that is based on TTC and 

time to avoidance (TTA) matrices. An intersection safety system was developed in [11], 

which used video data to predict the trajectory of vehicles at intersections and to detect 

dangerous situations involving both vehicles and pedestrians using TTC and post en-

croachment time (PET). For trajectory prediction, it was assumed that vehicles drive ac-

cording to “average drive lines,” which were predefined average trajectories for vehicles. 

In [17], a trajectory prediction method based on extended Kalman filters was developed 

and used to identify conflict areas between vehicles and other road users and calculate 

time to enter (TTE) and time to leave (TTL) for these road users and conflict areas. An 

object-oriented Bayesian network was then used to estimate collision probability. In [16], 

a maneuver prediction model was presented for use in an infrastructure-based intersec-

tion safety system. The proposed system used location, speed, and acceleration data trans-

mitted by vehicles and roadside sensors for maneuver prediction. The objective of the 

system was to provide warnings for red-light violations and right and left turning haz-

ards. 

There are also other studies that have focused on other applications such as the iden-

tification of certain behaviors. In [12], the authors developed a trajectory prediction 

method for identifying risky behavior at high-speed intersections that are caused by the 

lengthy warning sequence at the end of the green phase at these intersections. A notable 

feature of their method is that it divides the problem into two cases: the case where the 

vehicle has enough distance from its leading vehicle that it acts independently of it, and 

the case where the vehicle’s movements are influenced by the behavior of the leading ve-

hicle (i.e., time headway to the leading vehicle is less than 6 s). A trajectory prediction 

method was developed in [44] for predicting turning movements at intersections. Video 

data from three intersections was used to extract vehicle trajectories and to train neural 

network models for predicting vehicle trajectories. In the process of predicting the turning 

movement of the vehicles, after a vehicle’s trajectory has been predicted, it is compared 

against “typical paths” in order to obtain the final turning prediction (left, right, or 

through). In [46], trajectory data transcribed from a video camera was used to train neural 

network models for trajectory prediction of both vehicles and pedestrians, which can be 

used for predicting high level behavior. A red-light running prediction method was pro-

posed in [18], which used trajectory prediction to detect red-light running ahead of time 

and dynamically extend the all-red phase of the intersection signals to mitigate accidents. 

A method for collision risk prediction and warning was proposed in [19], which estimated 

the minimal future distance between possibly conflicting vehicles using a physics-based 

trajectory prediction method. 

3. Materials and Methods 

3.1. Data Description 

For this study we used the Lankershim Boulevard dataset from the Next Generation 

Simulation (NGSIM) dataset collection. This dataset contains vehicle trajectories tran-

scribed from video data providing complete coverage of three signalized intersections and 

covering approximately 500 m in length. The dataset comprises a total of 30 min of data 
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starting from 8:15 a.m. These 30 min of data cover a wide range of traffic conditions at the 

intersections including the intersection being nearly empty and the intersections being 

heavily populated by vehicles. The data is in a tabular format with each row correspond-

ing to the state of a specific vehicle at a specific time. The data is sampled at 10 Hz and 

contains the vehicle’s position, lane number, velocity, acceleration, and the intersection at 

which it is currently located among its columns. In addition to trajectory data, this dataset 

also contains street marking data. 

3.1.1. Data Cleaning and Organization 

The trajectory data in the NGSIM dataset is provided as a single tabular file (in csv 

format) that provides data on the location (in latitude and longitude based both on the CA 

state plane III and also locally relative to the center of the boulevard in feet), type 

(auto/truck/motorcycle), speed (in feet per second), and size (length and width in feet) of 

each vehicle at each point in time. A new column was added to the data to indicate 

whether each row corresponds to a vehicle being in the area of influence of an intersection 

and, if so, which one. This new column was used to remove the data pertaining to the 

times when vehicles were outside the intersection’s area of influence. A vehicle was con-

sidered to be within an intersection’s area of influence if it was no more than 60 m away 

from the closest edge of the intersection; the 60-m threshold was chosen so as to corre-

spond with the length of the longest monitoring period that we wanted to consider. More-

over, the rows belonging to each vehicle were grouped and sorted with respect to time in 

order to obtain the vehicle trajectories. We also calculated the heading (in radians) for each 

vehicle at each point in time and added it as a column. Finally, the trajectories were rotated 

and translated such that their point of entry into the intersection was at the origin of the 

plane; straight movement through the intersection corresponded to movement along the 

y axis. Table 3 provides an overview of the statistics of the dataset. 

Table 3. Dataset Statistics. 

Intersection Total Rows 
Total Tra-

jectories 
Right Turns Left Turns Through 

Number 

of Autos 

Number 

of Trucks 

Number of  

Motorcycles 

2 574,398 2210 157 616 1437 2144 62 4 

3 193,028 1973 24 82 1867 1915 54 4 

4 218,049 1980 214 619 1147 1917 59 4 

3.2. Methodology 

Our method is made up of two steps: In the first step, B-spline curves were fit to 

vehicle trajectories in order to represent each vehicle trajectory using the coefficients of 

the B-splines. A neural network was then trained to predict these coefficients. The B-spline 

coefficients were also used to train a conditional variational autoencoder that was used to 

generate candidate trajectories from the predicted coefficients. In the second step, the B-

spline smoothed trajectories of the vehicles were embedded into images containing the 

geometry of the intersection and the other vehicles present at the intersection. These im-

ages were then used to train an IRL model, which we used for evaluating the candidate 

trajectories and choosing the best among them. Figure 1 provides an overview of our 

method. In the following two subsections, we provide an overview of B-spline curves and 

IRL. 
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Figure 1. An overview of the method, reprinted from [24]. 

3.2.1. B-Splines 

For a given knot sequence �� ≤ �� ≤ ⋯ ≤ ������ the B-Spline basis functions are de-

fined recursively as follows: 

��,�(�) = �
1, �� ≤ � ≤ ����

0, ��ℎ������
 (1)

��,�(�) =
� − ��

���� − ��

��,���(�) +
������ − �

������ − ����

����,���(�) (2)

where 1 ≤ � ≤ � and 0 ≤ � ≤ � + � − �. A one-dimensional B-Spline curve is then de-

fined in the following way: 

�(�) = � ����,�(�)

�

���

 (3)

For a given knot sequence and value of �, the ��s uniquely determine �(�) and are 

referred to as the spline coefficients. In the training phase, these coefficients are estimated 

by finding the values of �� that minimize the following objective function: 

� ��(�) − � ����,�(�)

�

���

�

�

 (4)

In the test phase, these coefficients are predicted by a neural network and the corre-

sponding B-spline curve is the predicted trajectory. Note that we used univariate splines, 

which means that, in order to represent each trajectory, we needed two spline curves, �(�) 

and �(�), corresponding to the � and � coordinates of the trajectory, respectively. 
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3.2.2. Conditional Variational Autoencoders 

A conditional variational autoencoder (CVAE) [51] is a generative model based on 

variational autoencoders (VAEs) [52] that allows us to model and generate samples from 

a distribution conditioned on some input variable(s). A CVAE is made up of an encoder 

�(�|�, �) mapping the input, (�), to gaussian latent variables with the help of the condi-

tioning variable(s) (�) and a decoder �(�|�, �) mapping the latent variables back to the 

input space with the help of the conditioning variables. Here, we have used a CVAE to 

generate trajectories similar to a given initial trajectory by letting � = �. This results in 

�(�|�, �) = �(�|�). 

3.2.3. Inverse Reinforcement Learning 

The Reinforcement Learning (RL) Problem 

The RL problem involves learning what actions to take in an interactive environment 

to maximize an objective function (called reward). The main elements of reinforcement 

learning are the decision-making entity called the agent, the environment with which the 

agent interacts, and a reward signal, which is a numerical value provided by the environ-

ment to the agent at each timestep. The goal of the agent is to maximize the sum of the 

reward it receives over time. 

Formally, an RL problem is defined by a Markov decision process (MDP.) An MDP 

is a tuple (�, �, �, �, �), in which � is the set of all the states that the environment can be 

in, � is the set of actions the agent can take, �(��|�, �) is the probability of the environ-

ment transitioning from state � to state �� if the agent takes action �, � is the discount 

factor, and �(�, �, ��) is the expected reward given to the agent when the environment 

transitions from state � to state �� after the agent has taken action �. A policy �(�|�) 

defines the probability of the agent taking action � when in state �. The expected return 

for a state � under a given policy � is the expected sum of the discounted reward values 

received by an agent starting from � and making decision based on � and is denoted by 

��(�) , leading to ��(�) = ∑ �(�|�)� ∑ �(��|�, �)[�(�, �, ��) + ��������� ] . In reinforcement 

learning, the objective is to find the optimal policy �⋆ which maximizes ��
⋆(�) for every 

state �. 

The Inverse Reinforcement Learning (IRL) Problem 

While the RL problem involves finding an optimal policy given a reward function, 

the IRL problem involves finding a reward function for which a given policy (represented 

by a set of samples from expert demonstrations) is optimal. Finding this reward function 

allows us to derive the policy and reproduce the behavior of the expert. The IRL problem 

as stated is ill-posed, because there are multiple reward functions for which a given policy 

is optimal; for instance, the set of reward functions that are constant everywhere are opti-

mal for every policy. There have been several approaches to addressing this issue, one of 

which is the maximum entropy formulation [53]. In this formulation, it is assumed that 

the probability of a specific sequence of states and actions (denoted by �) being observed 

is equal to �(�) =  
�

�
exp(��(�)), in which ��(�) =  ∑ ��(�, �)�,�∈� , where ��  is the reward 

function parametrized by �. This formulation posits that the expert acts probabilistically 

and is most likely to traverse the optimal sequence of actions and states, with suboptimal 

sequences being exponentially less probable as their associated reward decreases. The 

central problem in this formulation is calculating or estimating the value of �  (often 

called the partition function). Several approaches have been proposed for solving this 

problem. In guided cost learning [54] (GCL), the algorithm we used, this is achieved by 

importance sampling from the set of all possible sequences of states and actions. This im-

portance sampling involves generating samples not present in the dataset. This is ex-

plored in more detail in the “Results and Discussion” section of this paper. The reason for 
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choosing GCL here is that it enables tractably working with high dimensional and contin-

uous state spaces and actions, while allowing for a nonlinear function approximator (here, 

a neural network) to be used for approximating the reward function. 

In our method, we used GCL with a convolutional neural network as the approxima-

tor for the reward function to recover the reward function of the human drivers and then 

used the recovered reward function to rank the candidate trajectories generated in the first 

step of the method. To this end, we first needed to convert each candidate trajectory to a 

sequence of states and actions. The state at time � was specified by creating a 2D image 

of the intersection containing the intersection geometry and the trajectories of all the ve-

hicles at the intersection up to time �. The action at time � was a two-dimensional value 

specifying the change in velocity of the vehicle in the � and � directions at time �. If we 

denote the recovered reward function with �(��, ��), in which �� denotes the state at time 

� and �� = �∆��, ∆���
�
 is the ordered pair representing the action at time �, the score, de-

noted by �, assigned to a trajectory τ = ⟨(s�, a�), … , (s�, a�)⟩ is calculated using the fol-

lowing: 

� =  � �(��, ��)

�

���

 (5)

The value of � was calculated for every candidate trajectory and the candidate tra-

jectory with the highest value was chosen as the final predicted trajectory. 

The asymptotic computational complexity of the prediction algorithm is as follows: 

θ(���) (6)

where � is the number of candidate trajectories, � is the resolution (in hertz) at which 

the simulation for the second step is performed, and � is the prediction horizon (in sec-

onds). It should be noted that the processing required for the prediction algorithm is 

highly parallelizable: candidate trajectories can be scored independently and, in scoring a 

trajectory, every iteration of the loop in Figure 1. is independent of every other; thus, the 

loop can be completely parallelized. 

4. Results and Discussion 

In our experiments, we used the Lankershim Boulevard data from the NGSIM da-

taset. We extracted vehicle trajectories from this data and fit B-spline curves to the ex-

tracted trajectories. Of the resulting data, 10% was set aside as test data (distributed uni-

formly over the three different movement types). We then trained a neural network to 

predict the coefficients of the B-spline curves corresponding to the trajectories using 10-

fold cross validation on the rest of the data. The neural network had the following input 

features: the x and y distance from the center of the approach from which the vehicle en-

tered the intersection to the centers of the three road segments by which the vehicle can 

exit the intersection, the distance of the vehicle from the center of the approach, velocity 

before entering the intersection, vehicle acceleration before entering the intersection, ve-

hicle heading before entering the intersection, average vehicle velocity over the monitor-

ing period (2 s in the final model), average vehicle acceleration over the monitoring pe-

riod, and the turning movements allowed for the lane that the vehicle was in. We then 

generated candidate trajectories by randomly perturbing the predicted coefficients. An 

IRL model was trained in the following manner: the B-Spline smoothed trajectories of the 

vehicles were embedded into images containing the geometry of the intersection, as well 

as the trajectories of the other vehicles present at the intersection (at test time, the trajec-

tories predicted in the first step were used.) For the reward function approximator, we 

used a pretrained convolutional neural network, namely MobileNetV2, with the final soft-

max layer removed. As noted in the “Methods” section, training an IRL model using the 

GCL algorithm involved sample generation. This was done by changing the trajectory of 
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the ego vehicle with respect to the sampled actions while maintaining the original trajec-

tory of other vehicles. The trained IRL model gave us a recovered reward function that 

was subsequently used to score the candidate trajectories generated in the first step of the 

algorithm. The candidate trajectory scoring the highest was the final prediction of the 

model. 

The results of our experiments are summarized in Table 4. We see that the first step 

of our method without ranking by the IRL module already outperformed the baseline 

model. The addition of the IRL module further improved the performance of the model. 

Most of the works reviewed in the “Related Works” section either did not provide quan-

titative results of their methods or reported metrics on downstream tasks only. Of those 

that reported performance on the trajectory prediction task, none reported results on the 

same dataset as ours. However, to give a point of comparison, we have included results 

from two studies that reported results from comparable experiments. 

Table 4. Summary of Results. 

Method Avg. RMSE (m) 

Baseline (Kalman Filter) 5.1 

Neural Network 4.6 

Neural Network + IRL Ranking 4.1 

[5] † 5 

[12] † 5.02 
† On different datasets. 

For a qualitative assessment of the performance of the model, we can consider the 

trajectories in Figure 2. Here, we have the ground truth trajectory of a left turn in blue 

with the prediction of the first step in red and, finally, the trajectory assigned the highest 

score by the IRL method in green. We can observe that the trajectory selected by the IRL 

module is not only closer in location to the ground truth trajectory, but also more similar 

to it in shape and direction. 

 

Figure 2. The trajectory of a left turn and the predictions of our method, reprinted from [24]. 

To better understand the performance of the model, as well as the way in which the 

IRL module improves predictions, we consider the errors of the models broken down by 

movement type, i.e., whether the vehicle in question was going through the intersection, 
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turning right, or turning left. The error values for different movement types are reported 

in Table 5, showing that the effect of the IRL scoring module is more pronounced in pre-

dicting turning movements. This can be explained by the fact that predicting the trajectory 

of turning movements is more difficult; the IRL scoring module is, therefore, more likely 

to find a better trajectory among the generated candidates and return it as the top scoring 

trajectory. In Figure 3, we can see a boxplot of the RMSE values by movement. 

Table 5. RMSE values by movement type. 

Movement 

Type 
Avg. RMSE (m) without IRL Scoring Avg RMSE (m) With IRL Scoring 

Through 2.9 2.6 

Right 14.7 12.8 

Left 13.1 11.3 

 

Figure 3. Boxplot of RMSE values by movement. 

We can also look at the error of the models as a function of the prediction horizon. 

These figures are reported in Table 6. We again notice that, as the task gets more difficult, 

the impact of the IRL scoring module increases. Here, we see that the further the predic-

tion horizon is, the more the IRL scoring module is able to improve predictions. This can 

be explained in the same way as the previous observation with through and turning 

movements: as the trajectories get more difficult to predict, the IRL scoring module is 

more likely to select a trajectory that is considerably more accurate from the set of candi-

date trajectories. 

Table 6. RMSE by prediction horizon. 

Prediction Horizon (s) Avg. RMSE without IRL Scoring Avg RMSE with IRL Scoring 

1 0.7 0.6 

2 2.1 1.9 

3 4.6 4.1 

5. Conclusions 

Here, we have presented a two-step method for vehicle trajectory prediction at inter-

sections. The first step of our method involved representing vehicle trajectories using B-

spline curves, training a neural network to predict the coefficients of these B-spline curves, 

and the use of a conditional variational autoencoder to generated candidate trajectories 

from these predicted B-spline coefficients. The second step of our method consisted of 

using a reward function recovered by training an IRL model to the data to score these 

candidate trajectories and produce the final prediction. We have shown that a hybrid ap-

proach mixing elements from conventional supervised methods with elements from imi-

tation learning can yield viable results for trajectory prediction. Our results indicate that 
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IRL is an effective tool for addressing the shortcomings of conventional supervised meth-

ods with regard to the problem of trajectory prediction. We have, furthermore, demon-

strated the suitability of B-Spline curves for representing vehicle trajectories in such a way 

as to enable prediction. An avenue for future work lies in making context information 

available to the first step of the method. By making the model aware of interactions be-

tween vehicles from the first step, it should be possible to provide better input to the IRL 

scoring module and to further improve the accuracy of the overall model. Another possi-

ble area for improvement would be modifications that allow the model to provide predic-

tions before or after the vehicle reaches the intersection, i.e., flexibility in terms of the start-

ing point of the prediction. The performance of the model could also benefit from im-

provements to the architecture of the neural networks used. In the current work the archi-

tecture of the neural networks was determined by manual iteration; in future work, this 

can be better accomplished by using neural architecture search [55]. Finally, investigating 

the practicality of the developed methodology in solving downstream tasks (e.g., collision 

prediction) is a logical next step. 
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