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Abstract: The maintenance of critical infrastructure is a costly necessity that developing countries
often struggle to deliver timely repairs. The transport system acts as the arteries of any economy
in development, and the formation of potholes on roads can lead to injuries and the loss of lives.
Recently, several countries have enabled pothole reporting platforms for their citizens, so that repair
work data can be centralised and visible for everyone. Nevertheless, many of these platforms have
been interrupted because of the rapid growth of requests made by users. Not only have these
platforms failed to filter duplicate or fake reports, but they have also failed to classify their severity,
albeit that this information would be key in prioritising repair work and improving the safety of
roads. In this work, we aimed to develop a prioritisation system that combines deep learning models
and traditional computer vision techniques to automate the analysis of road irregularities reported
by citizens. The system consists of three main components. First, we propose a processing pipeline
that segments road sections of repair requests with a UNet-based model that integrates a pretrained
Resnet34 as the encoder. Second, we assessed the performance of two object detection architectures—
EfficientDet and YOLOv5—in the task of road damage localisation and classification. Two public
datasets, the Indian Driving Dataset (IDD) and the Road Damage Detection Dataset (RDD2020), were
preprocessed and augmented to train and evaluate our segmentation and damage detection models.
Third, we applied feature extraction and feature matching to find possible duplicated reports. The
combination of these three approaches allowed us to cluster reports according to their location and
severity using clustering techniques. The results showed that this approach is a promising direction
for authorities to leverage limited road maintenance resources in an impactful and effective way.

Keywords: road damage detection; computer vision; deep learning; smart maintenance

1. Introduction

Roads are an essential factor in the economic and social development of any coun-
try. The investment in new road infrastructure always results in new opportunities for
services and asset interchange between the connected populations. Once a new road is
finished, it can provide many years of satisfactory service. However, similar to any type
of infrastructure, roads can be damaged over time, due to a number of factors including
weather conditions, traffic action (starting and stopping), and moisture infiltration. Conse-
quently, different types of distress start appearing on the surface of roads as cracks, potholes,
and corrugation, of which potholes are the most threatening. A pothole can cause serious
accidents to motorcycle and car drivers, up to the point of causing deaths. For instance,
the Ministry of Transport and Highways in India declared that 2015 people lost their lives
in 2018 due to pothole-related accidents [1]. Surprisingly, this figure corresponds to an
average of more than five daily deaths, which according to the same source keeps growing
year by year.

Although many local governments in developing countries have created entire road
maintenance departments to collect, process, and complete repair tasks, the majority cannot
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afford new technologies to automate them. Normally, potholes and road abnormalities
are detected in situ by professional inspectors, even though this adds delays to the road
maintenance process [2]. In many cases, other maintenance departments ask complainers
to register their requests via phone calls, letters, or emails [3], but these do not include a
graphical visualisation of the road defect and, hence, cannot alleviate the volume of work
of professional inspectors. To improve citizen participation in road damage reporting,
some governments have launched public reporting initiatives to let citizens register and
track their repair requests online. Some examples are provided in Table 1. From basic web
forms to sophisticated mobile apps, many institutions let citizens report road issues and
other infrastructure-related repairs. These solutions are beneficial to road maintenance
departments because they convert citizens into public infrastructure sensors. However, this
process comes with its own set of challenges because road authorities still require human
intervention to find duplicate or fake reports, as well as to classify reports’ severity, which
frequently causes delays, the rapid accumulation of reports, and public disappointment.

Table 1. Public reporting platforms in developing countries.

App/Website City, Country Status

Bache 24 Mexico City, Mexico Active
Reporta Monterrey Monterrey, Mexico Active
Ciudadano Activo Cochabamba, Bolivia Active

HuecosMed Medellin, Colombia Active
Baches.CBA Buenos Aires, Argentina Discontinued

Publiko Bogota, Colombia Discontinued
Sukhad Yatra New Dheli, India Active
Pothole Fix Bangalore, India Active

JRA Find & Fix Johannesburg, South Africa Discontinued

In this work, we propose a system that automates the process of receiving, validating,
and prioritising road repair requests by analysing visual data from crowdsourced road
reports. We made use and augmented existent large datasets collected in developing
countries to fit the proposed unstructured urban environment, where streets are not well
delineated with crosswalks or lanes, contain multiple flaws, and are maintained infre-
quently [4,5]. Some examples of these unstructured environments can be seen in Figure 1.
Our main contributions are as follows:

• We investigated a semantic segmentation model that extracts road segments from im-
ages attached to the repair requests. Since reports provided by citizens are unreliable,
the system compares feature descriptors of new and previous images in order to find
potential duplicate or fake reports;

• We experimented with recent deep learning architectures to detect and classify road
defects into three categories: single cracks, crocodile cracks, and potholes. In contrast
to many real-time road damage detection proposals, we focused on finding accurate
detection methods for offline automated image analysis;

• We propose a combined supervised and unsupervised approach for request clustering
according to their location. Then, all clusters and inner repair requests are prioritised
based on the number and types of issues found in them from visual data, so that the
worst areas are attended to first and the less affected ones later.

The remainder of this paper is organised as follows. In Section 2, we analyse the
current strategies for automatic road damage inspection and prioritisation. Section 3
describes the deep learning methods, as well as the computer vision pipeline implemented
in the project. The evaluation results presented in Section 4 are promising and show the
potential benefits of deep learning and computer vision to prioritise the work performed
by any road maintenance authority. Section 5 draws the conclusions based on the results
and provides suggestions for future work.
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Figure 1. Preprocessed samples of the Indian Driving Dataset (IDD) [4], which depict unstructured
urban environments where streets are not well delineated and pedestrians or drivers rarely stick to
the rules. The centre and right columns show the ground truth segmentation masks per sample.

2. Related Works
2.1. Active and Passive Sensing

Even though extensive research has been carried out on automatic road damage recogni-
tion, the majority has focused on potholes since they are the worst structural failures on roads.
No road surface is purely impermeable, and moisture, in addition to overloaded vehicles and
a lack of maintenance, is the main cause of pothole formation. Current research on pothole
detection algorithms can be clustered into three groups: 2D vision based [6–14], 3D recon-
struction based [6,15–25], and IoT based [26–29]. Usually, this last group proposes to fit
Internet of Things (IoT) sensors (accelerometer, gyroscope, and GPS sensors) onto citizens’
vehicles to map surface irregularities while driving. Nevertheless, the IoT strategy was
initially discarded for this work not only because it requires tracking users continuously,
but also because it was proven to cause many false positives due to bumps, train tracks,
or trash [7]. Due to privacy concerns, more research may be needed to collect pothole
information with this approach.

Three-dimensional reconstruction for road surface modelling is the main technique
applied by private companies that offer road monitoring services [30]. Two major sensing
modalities are used in 3D reconstruction for road modelling, namely active sensing with
RGB-D cameras [15,16], LiDAR sensors [17], or laser scanners [6,18], and passive sensing
with two or more synchronised stereo vision cameras [19–25]. A major problem of active
sensing is that a shortage of funding can make it inaccessible to low-income governments.
Although there have been significant attempts to make active sensing accessible to the
public using affordable devices such as Microsoft Kinect, these devices do not work out-
doors or under sunlight. To cope with these problems, the researchers in [16] proposed
to use four Kinect sensors inside a closed box heading to the ground in order to detect
road anomalies. Furthermore, the authors in [18] posed the combination of a single camera
and a laser pointer to reconstruct potholes by recognising the light patterns; however, this
strategy is not effective in wet conditions [7].
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In contrast with active sensing, 3D reconstruction based on passive sensing benefits
from lower costs and greater accessibility. The main passive sensing technology is stereo
vision, which can be implemented in road condition assessment using two regular cameras
aligned at the same height, calibrated with a chessboard, and pointed at the surface. Then,
both input images can be compared to estimate the depth or distance per pixel in the
scene. The result, also known as a disparity map, can be compared later with the disparity
map of a regular road surface to find potential anomalies [7]. Even though the authors
in [20,21] proposed new techniques to more accurately calculate the disparity between
normal and irregular surfaces, these approaches would be severely affected by the road
surface variability present in unstructured urban environments where streets are not well
delineated and maintained. In addition, stereo vision also demands detecting matching
points and extrinsic/intrinsic parameters frequently for accurate alignment and calibration,
which might require expert knowledge to use the tool. Although the authors in [19–25]
highlighted that stereo vision is not affected by illumination changes and is more accurate
when volume/distance measurements are needed, its major drawback is that it is not
widely available. Thus, this approach would limit public engagement for crowdsourcing
for road data collection.

This review led us to focus on 2D vision methods, whose data can be collected by
digital cameras, mobile devices, and embedded systems. Furthermore, this type of data
is predominantly present in the pothole reporting systems listed in Table 1. Due to the
ever-increasing availability of embedded cameras, many studies have focused on real-time
pothole avoidance for autonomous and conventional vehicles [10,11], while others have
prioritised offline automatic analysis for maintenance optimisation [8]. Two groups of
2D vision-based strategies can be clearly recognised in this research thread [7]: image
processing and feature extraction techniques for road distress segmentation and deep learn-
ing for automatic pothole detection. The former commonly enhances images using point
processing and image filtering techniques and then applies classical thresholding algo-
rithms such as Otsu’s method [12,13] or watershed segmentation [13]. In contrast, the latter
leverages the recent progress of deep neural networks to obtain better generalisation than
overly elaborate processing pipelines [7]. For example, the researchers in [7] compared the
results of stereo-vision-based techniques with deep-learning-based models, and they found
that fine-tuning Mask-RCNN and YOLOv2 with the CIMAT Challenging Sequences for
Autonomous Driving dataset (CCSAD) [31] could be used to detect potholes under very
challenging weather conditions, whereas stereo vision failed in this attempt.

2.2. Deep-Learning-Based Road Assessment

Several comprehensive studies have covered the application of deep neural networks
for pothole detection. For instance, the authors in [10] collected and annotated images of
real-world scenes and fine-tuned various object detection models. An average precision of
82% using a combination of R-CNN and Resnet101 ended up being their best experiment.
In 2020, Silva et al. [14] proposed the use of YOLOv4 for pothole detection from images
taken by a drone, where the model achieved a promising accuracy of 95%. Furthermore,
the authors in [11] presented the implementation of YOLOv3 for geolocated potholes in
330 images sampled in Malaysia. These and other papers showed that learning methods
to address the pothole detection problem have become the norm currently. Nonetheless,
progress in the development of methods for locating and classifying different types of road
defects remain slower, as a consequence of the lack of large public datasets.

By 2016, some research centres collected and published large street image datasets such
as KITTI [32] (2013) and CityScapes [33] (2016). Nevertheless, the majority of samples was
collected in well-structured street scenarios where drivers, as well as pedestrians behave in
a predictable manner. In such scenarios, roads are well defined and properly maintained
during the year. Since then, the advent of more powerful cameras embedded in mobile
phones allowed access to low-cost outdoor data collection. For example, in 2018, researchers
at the University of Tokyo [34] presented a new road damage dataset (RDD) [5], which
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was collected in many Japanese municipalities. Over the years, this dataset has become the
biggest multi-country road damage dataset as new samples per damage category and from
different cities were included.

The class distribution and current damage categories of the last version of RDD (as
of October 2021) are summarised in Table 2. In addition, the authors also launched three
contests named the Global Road Damage Detection Challenge (2018, 2019, and 2020) that
yielded compelling proposals for road damage localisation and classification [34]. For in-
stance, V. Hegde et al. [35] won the last version of this contest by training an Ultralytics-
YOLO (u-YOLO) model with data generated from the test time data augmentation method.
Then, they applied non-maximum suppression to select the best bounding boxes and
obtained an F1-score of 0.67. This paper motivated us to choose Ultralytics-YOLO, which
evolved to become YOLOv5, to perform our experiments.

Table 2 reveals that the dataset is unbalanced and requires further work to equalise
the number of damage instances per category. Furthermore, some state-of-the-art papers,
which are listed in Table 3, used the dataset and proposed models considering the most
meaningful categories for better performance: D00, D10, D20, and D40. Apart from the
works listed in Table 3, the researchers in [36] posited the application of YOLO with a
dataset of 45,788 images that were collected in the streets of Shanghai with an industrial
high-resolution camera for damage classification. This approach deviates from what is
proposed in the current paper: analysing images taken by mid-range mobile phones. On the
other hand, Reference [37] proposed to use an algorithm to collect street images from Google
Earth for road irregularity classification and localisation. Although the annotation process
was the main constraint for taking advantage of this source, it would be a compelling
strategy for future works.

Table 2. Road damage types and definitions considered in Maeda et al. [5].

Damage Type Detail Class Name Instances

Longitudinal crack Wheel-marked part D00 6592
Construction joint part D01 179

Lateral crack Equal interval D10 4446
Construction joint part D11 45

Alligator crack Partial/overall pavement D20 8381

Pothole D40 5627
Other damages Crosswalk blur D43 793

White line blur D44 5057

Utility Manhole D50 3581

Table 3. State-of-the-art proposals applied to the Road Damage Dataset (RDD) (2020 version) [5].

Authors and Date Supported Classes DL Method F1-Score

Hegde [35] D00, D10, D20, D40 Ensemble learning 0.67December 2020 Ultralytics-YOLO

Doshi [38] D00, D10, D20, D40 Ensemble learning 0.64December 2020 YOLO-v4

YOLOv5l (Ours) D20, D40 YOLOv5 0.62December 2021 D00 and D10 combined

Menghini [37] D00, D10, D20, D40, D50 YOLOv5 0.60September 2021

Arya [39] D00, D10, D20, D40 Transfer learning Various according
December 2021 SSD MobileNet to the target subset
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Although images with street scenes contain rich information, only parts with road
segments are important for road damage analysis. Such segments would contribute later
to finding potential duplicated or fake repair requests. Semantic segmentation is the task
of labelling each pixel in an image with a single class such as lane, road, or traffic sign.
The Indian Driving Dataset (IDD) [4] is currently one of the biggest image collections with
16,062 unstructured urban images annotated for semantic segmentation tasks. Similar
to the RDD dataset, researchers at IIIT Hyderabad, Intel Bangalore, and University of
California San Diego created a dataset for autonomous navigation suitable for the needs of
the Indian context. Later, they organised the AutoNUE 2019 and NCVPRIPG 2019 contests
where the best teams achieved meaningful results. The first part of our methodology was
inspired by the NCVPRIPG 2019 winners [40], who proposed a transfer-learning-based
architecture named Eff-UNet. This proposal combines EfficientNet as the encoder for
feature extraction, with UNet as the decoder. Different from our problem, the NCVPRIPG
2019 organisers challenged the participants to use a subset of IDD, known as IDD Lite,
in order to develop resource-constrained models. The proposal developed by [40] managed
to achieve a 0.7376 and 0.6276 mean Intersection over Union (mIoU) on the validation and
test subsets, respectively.

2.3. Road Maintenance Prioritisation

The management and optimisation of road maintenance based on computational
modelling is not a recent approach and dates back at least to the 1980s, when road informa-
tion computer systems were available [41]. Since then, many maintenance systems have
been proposed to optimise how resources are located from a series of financial, location,
social, and political perspectives. For instance, in 2018, Ma et al. [42] introduced a dy-
namic programming method to minimise the traffic caused by road maintenance in cities.
The method was capable of identifying the best combination of roads to be maintained
at the same time and considered the available resources, the vehicle fluency per street,
and the travel time to go through them. A similar research problem was investigated by
Ankang et al. [43] in 2020, who presented the application of particle swarm optimisation
and Markov chains to predict the pavement post-conditions after simulating multiple
maintenance strategies. Consequently, the approach was able to find the optimal strategy
while meeting multiple constraints.

Different from the optimisation strategies, clustering approaches can be applied to
real scenarios when available data is unstructured or when the optimisation search space
becomes high dimensional. Road damage clusters can provide meaningful information
about the similitude among their samples. In the present paper, visual data attached to
reports can provide factual information about road damages in an area and can notably
help find clustering patterns. The researchers in [44] considered this approach to cluster
potholes and road distress sensed by moving vehicles with accelerometers. Given that
these sensors can register false positives due to trash or mud, the proposal introduced a
clustering algorithm to find true anomalies in multiple records. Even more sophisticated
clustering algorithms were applied in [45], where the authors combined georeferenced data
on roads and crashes to identify streets that needed urgent, regular, or any maintenance.

3. Materials and Methods

In this section, we first describe the architecture of our framework. Second, we
explain the methods and datasets used for the road damage segmentation and detection
models. Then, we define our approach to detect duplicated repair requests based on their
attached images. Finally, we discuss different aspects of the road damage clustering and
prioritisation methods.

3.1. Proposed Architecture

The architecture diagram of the proposed system is illustrated in Figure 2, where the
system consists of three main layers:
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(A) Data collection: New pothole reports can be created by citizens using a web appli-
cation, whose architecture and main interface can be seen in Figures 2 and A1, respectively.
The web application is accessible from any web browser and communicates with the server
to retrieve or save road damage information. Figure 2 also depicts some subfolders and
databases where segmentation masks, images, feature descriptors, prioritisation ranks,
and reports are saved;

(B) Computer vision analysis: This layer processes images and extracts visual infor-
mation such as road segments and irregularities. Furthermore, this component is responsi-
ble for identifying potential fake or duplicated repair requests based on the road segments;

(C) Prioritisation: This uses clustering techniques to find clusters of repair requests
that need urgent maintenance according to the location and damage information found by
the previous layer. Inside each cluster, reports are also prioritised according to the number
of present road irregularities.

In this paper, we focused on detailing the (B) and (C) components. They are part
of our computer vision analysis framework and are shown in Figure 3. Each part of this
framework is described in the following sections.

Figure 2. Proposed architecture of a road damage acquisition and analysis system.

Figure 3. Proposed methodology for the automated computer-vision-based analysis of repair requests
sent by users. Section (A) receives new repair requests and preprocesses them. Section (B) extracts
road segments, finds and locates road damages, and retrieves potential duplicated requests. Section
(C) has the task of clustering and prioritising all repair requests according to the number and types of
damages detected in the images.
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3.2. Road Segmentation
3.2.1. Dataset Description and Preprocessing

The Indian Driving Dataset (IDD), proposed by G. Varma et al. [4], is 25.8 Gb and con-
tains 16,063 colour images in PNG format, where each sample has its respective polygonal
annotations in a JSON file. All images contain Indian urban and rural scenes where one can
find muddy terrain and few traffic signs and lanes. Such scenarios are typical in developing
countries, where models previously trained in well-structured scenarios might probably
fail. After applying Exploratory Data Analysis (EDA), we noticed that each annotated
polygon belongs to 1 of 41 classes; however, only the “road” polygons were potentially
relevant for the present task. Furthermore, EDA let us notice that 96% of the dataset has a
16:9 aspect ratio (1920 × 1080 and 1280 × 720 resolutions) while 4% has variable sizes.

The required preprocessing steps were defined by our findings with EDA and by
what we would require to correctly fit the data into a deep learning model. Thus, we
initially converted polygon annotations to segmentation masks considering all 41 classes
and then discarded all pixels labelled different from “road”. Since 96% of the dataset
had a 16:9 ratio, we started augmenting the dataset by splitting the images into two,
flipping one side, and resizing them as 394 × 394 images. To avoid the risk of overfitting,
several data augmentation techniques that were based on special weather conditions were
applied. For instance, we applied sudden brightening or darkening, shadows, raining, fog,
gravel, and sun flares. The semantic segmentation task required applying all preprocessing
methods in parallel to both images and masks. In the end, the augmented version of the
dataset contained 40,000 images with their corresponding segmentation masks. Three
resulting samples are shown in Figure 1.

3.2.2. UNet Architecture and Training

We considered road segmentation methods offering high precision at inference time,
even if they involved longer computation times. This approach was motivated by the
fact that reports sent by citizens do not require an immediate response. We implemented
the UNet architecture, proposed by Ronneberg et al. in 2015 [46]. UNet first captures
high- and low-level visual features in the original image by applying sequentially multiple
convolution, pooling, and downsampling steps. This stage is known as the encoder and
outputs low-dimensional feature maps. UNet then proceeds by sequentially upsampling
via deconvolutions the low-dimensional feature map produced by the encoder, until a
label image is produced. This stage is known as the decoder, and the produced label
image contains the predicted label for each pixel in the input image. The reasons for
choosing UNet are as follows: (i) compared to other architectures, UNet has demonstrated
an excellent performance in image segmentation by better restoring the initial visual
information through its encoder–decoder mechanism; (ii) UNet has proven to achieve good
results with small datasets, so the initial 40,000 images would be a good starting point
before collecting more images from citizen reports.

Rather than only training from scratch, we also propose to use a Resnet34 network
as the encoder and our base UNet implementation as the decoder. This practice is known
as fine-tuning and can help a model recognise basic shapes faster in its initial layers, as
well as complex features in its final layers. Resnet34 is a 34-layer deep convolutional neural
network that is known for overcoming the vanishing gradient problem [47]. Currently, most
deep learning frameworks provide a version of Resnet34 pretrained with the well-known
ImageNet dataset. Leveraging a pretrained version of Resnet34 helped us reach good
metrics faster than the previous UNet implementation. The layers, resolution, and channels
of the final architecture are illustrated in Figure 4. Previous proposals based on the IDD
considered the problem of classifying pixels with all 41 classes. In contrast, our method
considers the problem of classifying a pixel as road or background. Therefore, comparing
other methods trained on the IDD with our proposal is not appropriate as their purposes
were different.
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Figure 4. Resnet34+UNet: final architecture implemented with PyTorch for road segmentation.

To optimise the model, we used the BCEWithLogitsLoss function provided by PyTorch
to achieve greater numerical stability. This loss function extends the binary cross entropy
loss function by applying additional sigmoid activations f to the output vectors coming from
the decoder. In general, binary cross entropy has the purpose of quantifying the probability
that each data point belongs to each class in a binary classification task. A mathematical
representation of BCEWithLogitsLoss is shown in Equation (1), where yi and ŷi represent
a ground truth binary classification vector and a predicted binary classification vector,
respectively. Moreover, T is the number of data points, and the sigmoid activation function
f is shown in Equation (2).

BCE = − 1
T

T

∑
i=0

yi · log( f (ŷi)) + (1− yi) · log(1− f (ŷi)) (1)

f (si) =
1

1 + e−si
(2)

The output of the UNet implementation is a tensor of dimensions N ×M × X × Y,
where N is the input image batch size, M is the number of pixel classes, X is the image
width, and Y is the height. We computed the similarity between the predicted mask and
the ground truth mask using the intersection over union metric, also known as the Jaccard
index [5], commonly defined as:

IoU =
|G ∩ P|
|G ∪ P| (3)

where G is the ground truth segmentation mask and P is the predicted segmentation mask.
Finally, we used the Adam optimiser combined with schedulers such as ReduceLROnPlateau
and ChainedScheduler to optimise the learning rate dynamically.

3.3. Road Damage Detection and Classification
3.3.1. Dataset Description and Preprocessing

Road damage detection requires further analysis because there are more types of road
irregularities than only potholes. According to the U.S. Department of Transportation,
a road irregularity can be classified into fatigue cracking, block cracking, edge cracking,
longitudinal cracking, reflection cracking, and transverse cracking [48]. On the other
hand, the Japanese government classifies road damages into longitudinal cracks (D00,
D01), lateral cracks (D10, D11), alligator cracks (D20), and other damages (D40, D43,
D44), which are further explained in Table 2. In general, road damage classification might
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differ from country to country and from local authorities to general authorities. For this
paper, we used the RDD [5] to build a road damage detection model because it is the
largest dataset with road damage images collected in Japan, India, and the Czech Republic.
Furthermore, we used the Japanese category system because RDD is based on it. However,
we combined longitudinal cracks with lateral cracks and defined three main categories
for the project: single cracks (D00, D10), crocodile cracks (D20), and potholes (D40). This
approach was motivated by the fact that repair request images sent by citizens may be
captured from different perspectives, and lateral and longitudinal cracks are very similar if
they change their orientation. The final classes also depict how roads start deteriorating
with separate cracks, progressing to form crocodile patterns with multiple criss-crossed
cracks, and continuing with small to big potholes on roads.

Another important reason to use RDD is because it was fully collected using middle-
range smartphones. These devices are commonly used by citizens, so new images sent
by them would be similar to the ones used to build the road damage detection model.
The initial EDA process let us identify and quantify all damage types, which are shown
in Table 2. Later, we found that the new object distribution was imbalanced with the
merging of D00 and D10 and the definition of the new target categories: single cracks
(11,038), crocodile cracks (8381), and potholes (5627). A model trained with such an
imbalanced dataset would perform well with only some types of damages; consequently, it
was important to balance all categories first.

In 2018, Angulo et al. [49], concerned by the present category imbalance in a previous
version of the RDD dataset, proposed to include 2979, 1042, 1036, and 1609 instances
collected in Mexico for the D00, D10, D20, and D40 categories, respectively. The dataset
collected by the authors, named RSDD, is available online and was used for the current
project. Our EDA process let us find many flaws in its annotations, so we labelled it
manually again with the Roboflow annotation tool for better performance. In addition, we
also included the Roboflow Pothole Dataset (RPD) available at Roboflow.com [50] with
1740 pothole instances.

After combining the three datasets, namely RDD, RSDD, and RPD, we augmented the
dataset by implementing a series of random geometrical and quality distortions: flipping,
warping, blurring, and zooming, so that each category consisted of 20,000 instances now.
Moreover, an additional segmented version of the augmented dataset was generated by
passing all images through the Resnet34+UNet model, as detailed in Section 3.2. Table 4
shows the number of instances in the original RDD, the combined version, the augmented
dataset, and the segmented one. The total number of images in the augmented and
segmented dataset was 26,120.

Table 4. Road damage categories considered in the project and number of instances per class.

Dataset/Class Single Crack Crocodile Crack Pothole

Maeda [5] 11,038 8381 5627
Angulo [49] (Curated) 5669 7339 5573

Joint 16,707 15,720 12,940
Augmented 20,000 20,000 20,000
Segmented 20,000 20,000 20,000

3.3.2. Model Selection and Training

Our approach to implement, train, and evaluate state-of-the-art object detection models
was different than the semantic segmentation task because some of the best performing
models are available from deep learning libraries such as TensorFlow 2 [51] or YOLO [52].
These deep learning frameworks mainly require the use of command-line interfaces to train
and evaluate a model, which means that they mainly need the data in a specific format
(COCO or VOC), as well as some hyperparameters to start training. Based on the stated
performance of the listed models with regards to the COCO dataset [51,52], the YOLO5
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and EfficientDet models outperform the others; hence, they were selected in this project. It
follows that each of these models, with different hyper-parameters, is trained for 10 to 15
epochs. We discarded the low-performing models before moving to the next step.

We downloaded pretrained versions of YOLOv5 and EfficientDet from the Ultralytics
official repository [52] and the TensorFlow 2 Object Detection Zoo Model [51], respectively.
In the case of YOLOv5, this is available in four versions for its reuse with a custom
dataset: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. These versions are ordered
by the number of parameters and model footprint with YOLOv5s as the lightest and
YOLOv5x as the heaviest. Since the classification problem at hand does not require an
immediate response, the selection criteria were governed by the best accuracy as opposed
to the fastest response. As such, the YOLO51 and YOLO5x versions were used in this
project. In contrast, EfficientDet comes in eight versions that range from EfficientDet D0 to
EfficientDet D7. For this project, EfficientDet D1 was sufficient to outperform the state-of-
the-art models available on the TensorFlow 2 Object Detection Zoo Model repository [51],
e.g., models based on the ResNet architecture or SSD architectures. We evaluated each
model considering their Average Precision (AP) per class, which can be calculated by
finding the area under the precision–recall curve [53]:

AP =
∫ 1

0
p(r)dr. (4)

where p is the proportion of true positives (precision) and r is the proportion of true
positives out of the possible positives (recall). Both variables are always between 0 and 1.
Therefore, the average precision per class falls within 0 and 1 as well.

3.4. Fake and Duplicate Report Detection

The number of road damage reports sent by citizens may increase considerably in a
day due to the wide access to mobile devices and the Internet. Although a great number
of reports are expected to be sent by citizens who want prompt maintenance of their
streets, it is unavoidable that several reports could be fake or duplicated. In the current
project, a report is considered fake if it does not contain road segments detected by the road
segmentation model. This discrimination between fake and real repair request images is
defined by the percentage of road pixels in the image and a road segment threshold, usually
set as 3%. On the other hand, a report is considered duplicated if the same road damage
or damages were already reported by the same or different citizen. To detect duplicate
reports, we propose an approach based on content-based image retrieval systems, where
an image is represented by a feature vocabulary that consists of low-level image features.
These feature vocabularies are obtained with local feature extractors such as Scale-Invariant
Feature Transform (SIFT) [54], Speeded Up Robust Features (SURF) [55], and Oriented Fast
and Rotated Brief (ORB) [56] and can be compared with feature matching algorithms such
as Brute Force Matcher (BFM) or the Fast Library for Approximate Nearest Neighbours
(FLANN) [57]. Once an image is recognised as fake or duplicated, it is labelled as such and
presented in the web interface for further scrutiny by the road maintenance authorities.

Our experiments let us find SIFT descriptors as the best visual features to retrieve
duplicate images. SIFT was proposed by Lowe D. in [54] to create visual descriptors
that represent the main local features in an image, also known as image keypoints . This
method comprises five steps: space scale creation, keypoint localisation, keypoint selection,
orientation assignment, and histogram of gradients. The first step comprises a series of
Difference of Gaussians (DoG) applications to Gaussian-blurred versions of an image at
different scales, which ensures that the features are scale independent. Secondly, each
pixel neighbourhood in the resulting images from applying DoG is evaluated keeping the
maxima and the minima as potential keypoints. Third, Taylor series is applied to remove
those keypoints that had low contrast or were poorly localised along an edge. The following
step calculates the magnitude and orientation of each pixel in the raw image and creates
a weighted direction histogram in the neighbourhood of each keypoint. Consequently,
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the longest orientation in the histogram is assigned to the keypoint so that it became
consistent with the image rotation. Finally, the neighbouring pixels, their orientations, and
their magnitude are used to generate a unique fingerprint for each keypoint. All generated
fingerprints of an image become a SIFT descriptor, and they are invariant to contrast, scale,
and rotation.

Feature descriptors generated by SIFT are usually compared using the Euclidean
distance or other histogram-based metrics. In this paper, although we experimented with
BFM and FLANN algorithms, we ended up finding FLANN as the best method to compare
the similarity and distance between the descriptors of two images. The accuracy of FLANN
is determined by the quality of the extracted features. Our experimental process let us find
many false positive matching features in street images due to the presence of people, cars,
and buildings. Therefore, we defined segmenting all road sections first with a semantic
segmentation model. Figure 5 displays an example of duplicate image retrieval from the
segmented dataset, which was augmented and found two similar instances in the figure.
All extracted features were saved in text files so that they could be rapidly consulted in the
next search for duplicate images.

Figure 5. Sample of duplicate images found by combining the Scale-Invariant Feature Transform
(SIFT) and Fast Library for Approximate Nearest Neighbors (FLANN) algorithms.

3.5. Prioritisation

The final part of this investigation was oriented toward categorising the importance of
reports sent by citizens. As road maintenance departments plan their work according to
streets or areas that require urgent maintenance, the proposed approach creates clusters
of reports based on their geolocation. This unsupervised clustering is performed by the
k-means algorithm, which aims to split all samples into k clusters that minimise the intra-
cluster sample scatter, i.e., the dispersion of samples around the centre of the cluster [58].
Even though k-means is a popular clustering method, it has some major issues such as the
initial specification of the number of clusters and their high sensitivity to outliers.

In order to deal with outliers, we identified all outliers first by performing thresholding
against the highest and lowest quantiles of the latitudes and longitudes. After performing
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clustering with k-means, outliers were classified with the supervised learning algorithm K-
Nearest Neighbour (k-NN) [59]. As its name suggest, this method classifies new instances
according to their closeness to the pre-categorised samples. Then, in order to select the
number of clusters K automatically, we performed a series of k-means runs with different k
number of clusters, and we calculated the silhouette score per each run. This score, which
is defined in Equation (5) [53], evaluates the quality of clusters created by calculating the
average similarity among the instances inside every cluster a and the average difference
among all clusters b. Furthermore, it ranges from −1 to 1, meaning wrongly assigned
clusters and well-distinguished clusters, respectively.

Silhouette Score =
(b− a)

max(a, b)
(5)

Finally, we assigned priorities to all clusters according to the weighted sum of damages
recognised in their reports. This weighting is defined as:

Priority = npwp + mcwc + osws (6)

where np, mc, and os are the number of potholes, cracks in crocodile shapes, and single
cracks, respectively. We usually set wp with higher values (e.g., 0.6) than wc and ws (e.g., 0.3
and 0.1, respectively). Once this weighting was calculated, we proceeded to sort all clusters
according to their priorities, and we also ordered all reports inside each cluster to attend
urgent areas first. A sample of this clustering approach can be seen in Figure 6, where the
central pop up is shown after selecting a repair request. This contains the cluster priority
and the repair request priority with respect to the other requests in the cluster. In both
cases, the smaller the number, the higher the priority is.

Figure 6. Example of repair request clustering and prioritisation using k-means and k-Nearest
Neighbours (k-NN).



J. Sens. Actuator Netw. 2022, 11, 15 14 of 23

4. Experimental Results
4.1. Road Segmentation

The model implementation, training, and testing were all completed with PyTorch
1.0.2, whose torchvision module provided a pretrained version of Resnet34. Before the
training stage, the dataset was split into a training set (70%), a validation set (20%), and a
test set (10%). While the training and testing subsets were used in the training and testing
stages separately, the validation set was used after each training epoch to evaluate the
model learning continually. Google Colab enabled us to implement the model and the
processing pipeline, as well as the training, validating, and testing functions. All data
processing and storage were carried out remotely by mounting Google Drive on Google
Colab. This platform also let us use the NVIDIA Tesla K80 GPU with 12 Gb of memory
to train the models. Each image and segmentation mask had a 394 × 394 resolution for
all learning stages. Consequently, new images for inference would require regularisation
first to fit these dimensions. Finally, we optimised the training and validation process by
implementing MLFlow to log the partial results into the Neptune web platform.

We performed parallel experiments varying some variables to find that 30 epochs,
a batch size of 32, a learning rate of 0.0003, and the Adam optimiser were the best hy-
perparameters for the UNet and Resnet34+UNet models. The best-performing models
are shown in Table 5, for which Resnet34+UNet achieved a 0.90 IoU for the augmented
dataset. Furthermore, the experimentation process enabled us to discover that the model
was obtaining better results with colour images and image dimensions of 394 × 394 pixels.
Furthermore, Neptune showed us visually that the training process was struggling to
enhance the performance after the 30th epoch. Figure 7 displays some examples of the
semantic segmentation results using the test subset. Note the unstructured nature of the
second example where the street is not delimited and does not have lanes. Although the
segmentation mask prediction failed to predict some pixels of this sample, the model recog-
nised the road segment acceptably. In the project, predicted road segments did not have to
be perfect, but needed to differentiate between roads and the rest of the elements present in
a street. Then, that condition was met for the second sample in Figure 7. Furthermore, this
example of an unstructured environment is common in developing countries and entails
challenges for models trained with images of structured urban environments.

Table 5. Intersection over Union (IoU) on the test set with the original UNet implementation and
the Resnet34+UNet model. Both models were trained and tested with the preprocessed dataset first
and with the weather-based augmented dataset later.

Dataset/Model UNet Resnet34+UNet

Preprocessed 0.88 0.91
Augmented 0.86 0.90
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Figure 7. Results of road segmentation on the augmented dataset. The first column shows the
input images, while the second and third columns show the ground truth masks and predicted
segmentation masks overlapped on the input image, respectively.

Finally, we evaluated the ResNet43+UNet model using the KITTI road benchmark [60].
This is a subset of the KITTI dataset [32] to evaluate road segmentation models and con-
siders three categories: Urban Unmarked (UU), Urban Marked (UM), and Urban Multiple
Marked (UMM) roads. Similar to IDD [4], we normalised the KITTI road benchmark dataset
and converted its dimensions to 394 × 394 px images, so the number of labelled samples
grew from 289 to 867. The average precision and maximum F1-score were calculated with
the test subset and are included in Table 6, achieving 0.91 and 0.93, respectively. Even
though these results did not overpass the results of the state-of-the-art models [61,62], they
are promising because our model was trained with an augmented dataset that contains
more complex data than KITTI. For instance, our model can segment road sections despite
the weather conditions, which was described in Section 3.2.1. The unstructured nature of
the IDD gives our model better chances to deal with unseen unstructured and complex
street environments where roads are not delineated.

Table 6. Results on the KITTI road benchmark [60] sorted by Average Precision.

Approach AP MaxF

PLARD [61] 0.94 0.97
SNE-RoadSeg+ [62] 0.94 0.97

Resnet34+UNet (Ours) 0.91 0.93
RBNet [63] 0.91 0.95

LC-CRF [64] 0.88 0.96

4.2. Road Damage Detection and Classification

YOLOv5l, YOLOv5x, and EfficientDet D1 achieved compelling results with 100 epochs
and a batch size of 16. Their AP per class can be seen in Table 7. Furthermore, Figure 8
shows the confusion matrix for the best-performing model YOLOv5l, which reports that
any misclassified area inside an image is considered a false negative, namely a background
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FN. The results showed that the task was performed well in comparison with initial
training iterations where the AP per class did not overpass 0.50 in many cases. Based on
the results, 0.61 and 0.53 for single and crocodile cracks, respectively, we note that the
road damage detection classification and localisation task is indeed challenging because
single cracks are very similar to cracks in crocodile patterns. As a consequence, potholes
were the best identified objects since they can be easily differentiated from the other two
classes. Although the models would have achieved better metrics with the original dataset
proposed by Maeda et al. [5], the preprocessing and augmentation steps improved the
generalisation. Even though we expected YOLOv5x to achieve better results, the model
started overfitting from the 50th epoch because of its longer architecture.

In Figure 9, we show some inference examples of the test subset processed by the
best model, namely YOLOv5l. This clearly shows that road irregularities were correctly
localised and classified. Furthermore, a comparison of the training loss curves using
YOLOv5l, the augmented dataset, and the base RDD is shown in Figure 10. Despite
the increase in road damage cases, this plot depicts a clear improvement in the model’s
generalisation when using the augmented dataset. Furthermore, the plot shows that the
learning rate decreased after the first sixty epochs.

Table 7. Average precision comparison between the YOLOv5 and EfficientDet object detectors.

Metric/Class Single Crack Crocodile Crack Pothole mAP

YOLOv5x 0.57 0.50 0.69 0.59
EfficientDet D1 0.68 0.51 0.63 0.60

YOLOv5l 0.61 0.53 0.74 0.63

Figure 8. Confusion matrix on the test subset of the augmented dataset running YOLOv5l.
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Figure 9. Examples of detection results with the best-performing model: YOLOv5l. It is good to note
that the sample at the centre of the bottom row fails to contain an additional bounding box for the
visible crocodile crack.

Figure 10. Training and validation loss curves for the augmented and RDD base datasets.

Given that the segmented dataset had the same annotations as the augmented version,
we also tried to train YOLOv5l with it, but the results were not successful. In that exper-
iment, the model reached an AP lower than 0.30 for all categories. This was performed
with the goal of creating an attention mechanism for road damage detection. Attention,
in human visual perception, can be described as the way humans focus on important
sections in a scene instead of focusing on everything at the same time. In the road damage
detection context, it made sense to only focus on road sections instead of the complete
street scene. The bad results were probably caused by the different properties of the RDD
and IDD datasets. However, this approach remains as an open research thread for road
damage detection based on deep learning models.

Finally, we performed a comparative assessment to evaluate whether our best model
achieved compelling results against other state-of-the-art models. The outcome of this
analytical exercise is summarised in Table 3. We can assert that the data augmentation and
preprocessing methods to improve the original dataset were effective because our model
obtained a 0.62 F1-score in the test subset, which positions it among the best models for
the RDD. In addition, we must highlight that our model can deal with more complex cases
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because we joined two additional big datasets [49,50] in order to minimise the existent
problems in the RDD dataset. For instance, RDD is unbalanced and has less samples with
potholes, whereas they are more common in developing countries. Thus, our model is
more suitable for unstructured street environments than the other models listed in Table 3.
Note that the D00 and D10 classes were combined for our model because they are similar
in shape and only vary in their direction. Since our proposed system is meant to process
any image sent by citizens, the direction and perspective of depicted road issues might
vary, and the system should deal with this variance. In contrast, the RDD dataset uniquely
considers images captured from the front window of a vehicle. Consequently, our model is
more invariant to rotation and viewpoint changes.

4.3. Duplicate Detection

This section provides the details about the evaluation approach to find the best com-
bination of the feature extraction and feature matching algorithms. We made use of the
segmented dataset, described in Table 4, to find coincidences in road segments. To perform
an experiment, we tested and examined ten times the possible duplicate images retrieved in
response to a query image. All query images were compared with 5000 randomly selected
images based on their features. For feature extraction, we initially tested the SIFT, SURF,
and ORB methods. Furthermore, comparisons were performed with the BFM and FLANN
feature matchers to find coincidences between the extracted keypoints from two images.

Since extracting features might require long times for a big number of samples, we
saved all feature descriptors in text files, so that they would be loaded when trying to
find matches between two road segments. Two parameters affected the experiments
significantly: the number of feature vectors found by the feature extraction algorithm
and the threshold number of good matches. Each set of runs for an experiment resulted in
a sum of the number relevant retrieved images and the total number of retrieved images,
which were used to calculate the precision defined as:

Precision =
Number o f relevant images retrieved

Total number o f images retrieved
(7)

The initial experiments combining SIFT, SURF, BFM, and FLANN guided us to try fur-
ther with SIFT and FLANN. Therefore, we focused on varying the matching threshold and
the vocabulary size parameters for retrieving potential duplicates in 10 runs. The precision
results can be seen in Table 8. The best mean average precision was obtained using the
algorithms with a descriptor size of 90 keypoints and a threshold of 20. Finally, a query
example using the method can be seen in Figure 5.

Table 8. Precision metric obtained with 10 queries using SIFT and FLANN varying the matcher
threshold and the vocabulary size from 5 to 40 and from 50 to 100, respectively. The sigma and CI
rows represent the deviation and Confidence Interval for each column.

Threshold/Vocabulary Size 50 60 70 80 90 100

5 78.86 80.12 84.12 84.47 84.95 84.51
10 79.61 82.51 84.41 84.73 84.97 85.03
20 78.3 82.13 83.59 85.18 85.55 84.4
30 79.91 81.76 83.21 85.23 84.72 85.53
40 79.88 82.61 84.24 84.04 85.34 85.05

Mean 79.31 81.82 83.91 84.73 85.11 84.9
Sigma 0.63 0.59 0.41 0.60 0.30 0.40

CI ±0.70 ±0.67 ±0.56 ±0.68 ±0.48 ±0.56

5. Conclusions

In this paper, we proposed deep-learning and computer-vision-based methods for
an automatic road damage detection and prioritisation system. The approach aimed to
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leverage pictures sent by citizens that report road damage cases, namely crowdsourcing,
and want them fixed as soon as possible. The final output of the system is a map with
information about what clusters of reported cases have high and low priority. Furthermore,
the approach is aligned to work in developing countries where road conditions vary
and more irregularities are present, previously defined as unstructured urban environments.
With this idea, we aimed at finding and processing large datasets collected in countries
where unstructured urban environments are common such as the Czech Republic, India,
and Mexico (IDD [4] and RDD [5]). Moreover, we applied several data processing strategies
to balance and augment the datasets, which in turn let us obtain a better generalisation of
our models.

To begin with, UNet—a widely used deep CNN architecture for semantic segmentation
—was able to detect road areas in images. Then, the initial implementation of UNet was
combined with a pretrained instance of the Resnet34 architecture as its encoder and yielded
better results. The model achieved a 0.91 average precision with the benchmark dataset
proposed in [60], showing its high accuracy to extract road segments from images. Those
segments were used to label repair request images without road sections as “fake” for
further evaluation by road maintenance authorities. Furthermore, road segments helped
identify potentially duplicated reports that could add noise to the prioritisation process.
We explored three feature extractors (ORB, SIFT, and SURF) and two feature matching
algorithms (BFM and FLANN) that let us query a big archive of 5000 randomly selected
images to find potential duplicates. Our results showed that we could achieve high accuracy
by combining SIFT and FLANN with a threshold of 20 best keypoints and a vocabulary
size of 90 feature vectors.

After filtering fake and duplicate images, we conducted a series of experiments with
the YOLOv5 and EfficientDet architectures to find the most accurate road damage detector
for the RDD [5]. Following the processing of the RDD, we extended it by including
other big image datasets with road damage issues [49,50]. The results demonstrated that
YOLOv5l was the best road damage detector model for our joint dataset and our proposed
types of road damage: single cracks, crocodile cracks, and potholes. Consequently, we
compared our best model with various state-of-the-art models proposed for the RDD
dataset, from which we can conclude that our model was among the best recent models as
described in Table 3. This classification benefits the system because citizens could report
any road damage as a pothole without considering the different severities of road damages.
Thus, a road damage detection and classification model helps provide the correct input for
the prioritisation approach.

Finally, we proposed to use an unsupervised method (k-means) to cluster crowd-
sourced images by their geolocation, so that zones with multiple reported issues in urban
areas can be easily distinguished. Outliers were separated first and classified later with
k-NN to avoid adding noise to the clustering process. Then, the importance of all clusters
was assigned based on single cracks, crocodile cracks, and potholes. Reports inside a
cluster were also prioritised to guide the work of a maintenance team in situ. Given that
the clustering experiments were based on synthetic data, future work for the clustering
approach should also consider external data sources such as financial budget, traffic density,
and the number of historic accidents per street.

As a continuation of this research, we plan to extend the prioritisation framework by
including variables such as traffic density, importance, and approximate time needed to
maintain per street. In addition, we intend to enhance the models’ accuracy by including
newer sample images. Enhancing the approach could let us realise a more accurate decision-
making tool for road maintenance authorities. Furthermore, complementing the current
solution with a mobile light-weight road damage detector deployed at the edge would
increase the sources for data collection.
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