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Abstract: User experience (UX) evaluation investigates how people feel about using products or
services and is considered an important factor in the design process. However, there is no com-
prehensive UX evaluation method for time-continuous situations during the use of products or
services. Because user experience changes over time, it is difficult to discern the relationship between
momentary UX and episodic or cumulative UX, which is related to final user satisfaction. This
research aimed to predict final user satisfaction by using momentary UX data and machine learning
techniques. The participants were 50 and 25 university students who were asked to evaluate a service
(Experiment I) or a product (Experiment II), respectively, during usage by answering a satisfaction
survey. Responses were used to draw a customized UX curve. Participants were also asked to
complete a final satisfaction questionnaire about the product or service. Momentary UX data and
participant satisfaction scores were used to build machine learning models, and the experimental
results were compared with those obtained using seven built machine learning models. This study
shows that participants’ momentary UX can be understood using a support vector machine (SVM)
with a polynomial kernel and that momentary UX can be used to make more accurate predictions
about final user satisfaction regarding product and service usage.
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1. Introduction

User experience (UX) refers to all aspects of how people interact with a product or
service. UX emphasizes the experiential, affective, meaningful, and value aspects of human–
computer interaction and product ownership but also includes a person’s perceptions of
practical aspects such as utility, ease of use, and product or service efficiency. UX is highly
context-dependent, subjective, and dynamic [1], as it concerns an individual’s performance,
feelings, and thoughts about the product or service. Moreover, these can change over time
as circumstances change.

The design processes of products and services are often evaluated using the compre-
hensive full user experience (UX) evaluation method for time-continuous situations [2,3].
From the first to the final stage of usage, the user’s emotions and perceptions can change
continuously through the receipt of multiple stimulatory experiences while using products
or services.

After usage, users are asked about their overall satisfaction as an indicator of final
user satisfaction regarding one or more aspects of the product or service. Answers relating
to final user satisfaction are often expressed on a scale that includes negative and positive
values, ranging from −10 to +10 [4,5], with higher scores indicating higher satisfaction.

In particular, final user satisfaction following their experiences has been considered
an extremely important factor in users’ decisions about further use or recommending the
products or services to other people [6]. However, final user satisfaction reported after use
may be imprecise because it varies according to situations such as user activities, as shown
in Figure 1.
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Figure 1 shows several stages of usage, each of which may impact the user’s emotions 
and perceptions and, in turn, affect final user satisfaction. Roto et al. presented the User 
Experience White Paper, a document reporting Dagstuhl Seminar’s results on categorizing 
user experience from the viewpoint of time axis [7]. In that document, the importance of 
analyzing UX across time was underlined. There are four types of UX—anticipated, 
momentary, episodic, and cumulative (Figure 2)—each of which is defined based on usage 
time: (1) anticipated UX relates to the period before first use; (2) momentary UX relates to 
the period during usage; this type refers to any perceived change that occurs during the 
interaction, at the very moment [8]; (3) episodic UX relates to the period after usage; and 
(4) cumulative UX relates to the entire period, including from before first use, during 
usage, and after usage. The four types of UX can affect the final user satisfaction. 
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Figure 2. The four types of user experience (UX), adapted from Roto et al. (2011). 

Previously, Kurosu et al. defined the meaning of user satisfaction as the vertical axes 
of satisfaction based on the UX graph being the same as user satisfaction [3,9]. Final user 
satisfaction means satisfaction after momentary UX. In the present study, we defined the 
meaning of final user satisfaction similar to Kurosu et al., that is, user satisfaction after 
finished usage [3,9]. Based on this definition, the final user satisfaction is similar to 
episodic UX and cumulative UX. 

In the past decade, there have been many studies of episodic UX and cumulative UX, 
with most focusing on only one type [10]. Many studies have tried to estimate the 
satisfaction of users using various machine learning techniques [11–13]. Matsuda studied 

Figure 1. Evaluation of final user satisfaction after website usage.

Figure 1 shows several stages of usage, each of which may impact the user’s emotions
and perceptions and, in turn, affect final user satisfaction. Roto et al. presented the User
Experience White Paper, a document reporting Dagstuhl Seminar’s results on categorizing
user experience from the viewpoint of time axis [7]. In that document, the importance
of analyzing UX across time was underlined. There are four types of UX—anticipated,
momentary, episodic, and cumulative (Figure 2)—each of which is defined based on usage
time: (1) anticipated UX relates to the period before first use; (2) momentary UX relates
to the period during usage; this type refers to any perceived change that occurs during
the interaction, at the very moment [8]; (3) episodic UX relates to the period after usage;
and (4) cumulative UX relates to the entire period, including from before first use, during
usage, and after usage. The four types of UX can affect the final user satisfaction.
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Previously, Kurosu et al. defined the meaning of user satisfaction as the vertical axes
of satisfaction based on the UX graph being the same as user satisfaction [3,9]. Final user
satisfaction means satisfaction after momentary UX. In the present study, we defined the
meaning of final user satisfaction similar to Kurosu et al., that is, user satisfaction after
finished usage [3,9]. Based on this definition, the final user satisfaction is similar to episodic
UX and cumulative UX.

In the past decade, there have been many studies of episodic UX and cumulative
UX, with most focusing on only one type [10]. Many studies have tried to estimate the
satisfaction of users using various machine learning techniques [11–13]. Matsuda studied
the satisfaction level of tourists during sightseeing by using the tourists’ unconscious,
natural actions [11]. They conducted experiments with 22 tourists in two different touristic
areas in Germany and Japan. Their results confirmed the feasibility of estimating both the
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emotional status and satisfaction level of tourists. Cavalcante applied machine learning
techniques including decision trees, support vector machines and ensemble learning to
predict customer satisfaction from service data [12]. The results indicated that the develop-
ment of an intelligent algorithm may assist in identifying customer satisfaction. Kumar
presented a machine learning approach to analyze tweets to improve customer experi-
ence [13]. They found that a machine learning approach can provide better classifications
for customer satisfaction in the airline industry. All of the aforementioned studies gathered
data and measured satisfaction using episodic UX and cumulative UX from sensors or
devices. However, during actual usage by customers, there are many external factors that
can affect their satisfaction.

A major problem with assessments of both episodic UX and cumulative UX, however,
is that the graph or curve is recorded after the user has finished the task. Moreover, studies
of both episodic UX and cumulative UX evaluation have employed the usage time to
collect data, rather than using other methods to evaluate UX type. It has been pointed
out that these two types of UX evaluation require participants’ dedication over time [14],
with assessments typically spanning intervals ranging from a few days to a month or
more. Therefore, this paper focuses on momentary UX and examines the emerging role of
momentary UX in the context of final user satisfaction.

Momentary UX has been measured and evaluated by questionnaire (subjective eval-
uation) surveys, with question items for each step of the experience. However, compre-
hensive evaluation of subjective answers to these questionnaires is difficult because the
conventional methods of analyzing subjective evaluation may not adequately relate to the
momentary UX. Instead, the quality of conventional analytic methods is determined by
the experts and is directly dependent on their level of expertise. Furthermore, multiple-
evaluation comparisons may be difficult due to the variety of checklists used and difficulty
in quantifying expert opinions [15].

Some previous studies have measured UX at each stage of usage [16,17]. Despite
the relationships between momentary UX and episodic UX, various factors will interact
intricately during the actual user experience, and the final satisfaction (episodic UX) will be
determined from the accumulation of experiences at each stage. This view is supported by
Sánchez-Adame [18], who writes that, as an example, the user might experience a strong,
albeit temporary, negative reaction when evaluating momentary UX during usage, but
when episodic UX is measured again after usage, the user may be more likely to prioritize
good aspects over bad ones. These data are interesting because the evaluative judgment at
each stage is related to overall final satisfaction with the product.

UX is subjective, relating to an individual’s feelings and satisfaction. Expert evalua-
tions of UX may lead to bias, and such opinions are not easily quantifiable. Humans are
prone to many types of bias. Despite algorithms having their own challenges, machine
learning algorithms may conceivably be capable of producing more fair, efficient, and
bias-free outcomes than humans. This study aimed to predict final user satisfaction by
combining momentary user experience data and machine learning techniques. Our hy-
pothesis is that machine learning will perform well on momentary user experience data in
the prediction of final user satisfaction.

2. Literature Review

Customer relationship management (CRM) is an approach to maintain positive cus-
tomer relationships and to improve customer satisfaction [19]. This new management
process is aimed at improving the business and customer relationships, strategically re-
garding the core enterprise business customers as an important resource, meeting customer
needs through the improvement of customer service and in-depth analysis of the customer,
so that enterprises can maximize customer satisfaction and loyalty, establish mutual long-
term stable and trusted relationships, thereby maximizing customer lifetime value [20].

Furthermore, CRM provides data and information about customers, such as their
feelings, shopping behavior, and product consumer habits, among others. These user data
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and information provide essential feedback from the customers’ perspective, including
their opinions, favors, preferences, and past experiences. The information thus obtained is
used to improve communication with customers to create value and satisfaction [21]. CRM
analytics can help facilitate better product or service decisions.

Some recent research reported that customer relationship capability and CRM tech-
nology in the service industry are important variables in building customer satisfaction
post-purchase [22,23]. In other related work, Taufik proposed a method to utilize user
data from a CRM system. They developed an online analytical processing (OLAP)-based
analytical CRM system to analyze customer data and classify it into two main segments,
based on geography and demographics [24]. The benefit of his approach is that the analyti-
cal process can operate upon user data from various dimensional perspectives to quickly
capture customer needs in real-time. This analytical CRM system can be easily accessed
by managers to make decisions. A recent study presenting an approach to processing
user data and information obtained from the CRM system to satisfy customers concluded
that CRM plays a major role in increasing customer satisfaction. Thus, it improves both
in-depth customer knowledge and higher customer satisfaction [19].

One highly interesting aspect of customer data from CRM is user experience [25].
Several articles regarding the measurement of UX to gauge satisfaction have been pub-
lished [26]. In the modern digital world there are many methods to gather UX data via
automation technologies, such as interactive responses, and online questionnaires [27]. In
most approaches, UX is generally measured by a questionnaire or survey method. However,
evaluation of the final user satisfaction with products and services using UX questionnaires
has been considered challenging because it is difficult to measure the final user satisfaction.
Due to differences in user experience for each user, both humans and computers have
had difficulty in classifying these data for developing or improving products and services.
Furthermore, although answers from UX questionnaires can provide abundant information
about a range of feelings, their high complexity substantially increases the computational
burden in interpretation for experts. In this context, a new approach integrates knowl-
edge between UX obtained from CRM and intelligent systems with machine learning
techniques. This approach can be of practical value for customer relationship management
by improving understanding of user satisfaction [28,29].

2.1. User Experience (UX)

The term “user experience” refers to a person’s overall experience of interacting with
a product or service [30]. UX covers not only direct interactions with the product, for
example, but also how the resulting experience fits into the overall task completion process.
Every interaction between the user and product or service is factored into the overall user
experience. As a result, final satisfaction with respect to these UXs has been regarded as
highly important in the users’ decision to continue using or recommending the products or
services to others [6].

2.2. UX Evaluation Method (UXE)

Many approaches to evaluating UX have been proposed [31], with studies proposing
various methods and ways of categorizing the data. Some UXEs that might appear similar
are, in fact, not. We decided to classify the many UXEs into five groups by considering “pe-
riods” of experience [31]. Methods are defined as uniquely applicable to a specific period,
such as before, during, or after usage, and are sensitive to that period’s characteristics, for
example, momentary UXE, episodic UXE, and cumulative UXE. Accordingly, we classified
the UXE methods as follows:

• Before usage (prior to interacting with products/services);
• Momentary (a snapshot, e.g., perceptions, emotions);
• Single (a single episode in which a user explores design features to address a task goal);
• Typical test session (e.g., 100 min in which a user performs a specific task).
• Long-term (e.g., interacting with products/services in everyday life).
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When these five methods are applied, momentary evaluation is considered as short-
term, and a reliable way to capture feelings and user experiences during usage. Although
the short-term evaluation method may miss data between stages of user experience [17,32],
it is one of the most reliable methods [33] because it records time-varying subjective
experiences, reducing response biases and memory distortions. This is reflected in UX’s
dynamic nature in the longer term. During momentary use, users may experience various
unexpected events during their interaction. As momentary data logs can be useful for UX
evaluation, we decided to use momentary evaluation for this research.

Most research on UXs [31] has described changes in user experience over time. Exam-
ples include the UX Curve method [32], UX Graph method [3,9], and iScale method [34] as
shown in Table 1.

Table 1. Summary of user experience evaluation through user experience (UX) curve, UX graph,
and iScale.

Approach. Description

UX Curve [32] UX Curve is a tool for drawing a timeline and a horizontal line that
splits positive and negative experiences.

UX Graph [3,22] UX Graph is a tool for drawing the degree of satisfaction on a time
scale. It is an improved version of the conventional UX Curve.

iScale [34] iScale is a tool for the backward-looking expression of long-term
user experience data.

These three UXE methods involve self-reported measurements over time, whereby
the participants report their feelings and emotions in the form of line graphs drawn by
hand. However, these methods are not suitable for determining final user satisfaction
because drawings are made after plotting each episodic event. This means that the UX
curve and UX graph are drawn, and the points specified only after the task is finished,
which makes the method time-consuming [3]. Furthermore, most UXE methods are used to
describe only how user experience changes during usage. Untidy handwriting means that
characters in text can be difficult to read [32], so that evaluation results may be difficult to
analyze and interpret. Thus, iScale, UX curve, and UX graph fall short of the requirements
for appropriate final user assessment.

2.3. Classification Techniques

The various UX data concerning momentary usage can be problematic when it comes
to analysis. For example, UX data are not simply one-dimensional, and each questionnaire
may have a different scoring range. This makes for characteristically tedious work that is
considered repetitive by UX researchers; in particular, the use of human labor to explain
and analyze user satisfaction is not optimal. Consequently, the field of feedback and user
satisfaction from pilot product studies has shown little progress or improvement over
time. Hence, machine learning methods that facilitate analysis and understanding of final
satisfaction have long been sought [35].

The type of machine learning algorithms used in the present study were determined
by multiple factors, ranging from the type of problem at hand to the type of output desired,
including type and size of the data, available computational time, number of features,
and observations in the data. All such factors are important when choosing an algorithm
before conducting research. Many scholars hold the view that support vector machines
(SVMs) [36] can efficiently perform non-linear classification when the correct kernel and
an optimal set of parameters are used [37]. Recent research has suggested that SVMs
can be used for classification as well as pattern recognition purposes, especially with
speech and emotion data [38]. Furthermore, algorithms such as SVM, K-nearest neighbors
(KNN) [39], and logistic regression [40] are easy to implement and run [41]. By contrast,
neural networks with high convergence time require significant time to train the data.



J. Theor. Appl. Electron. Commer. Res. 2021, 16 3141

We chose seven machine learning algorithms as simple and easy-to-build classification
models. We compared these seven different methods including polynomial kernel SVM,
radial basis kernel SVM, linear kernel SVM, sigmoid kernel SVM, logistic regression [40],
K-nearest neighbors [39], and multilayer perceptron [42] as shown in Table 2.

Table 2. Summary of classification techniques.

Approaches Description

Support Vector Machine
with Polynomial Kernel Function

The SVM algorithm uses the best line to separate
n-dimensional space into classes by the hyperplane. The
learning of the hyperplane is processed by transforming

the problem using Polynomial Function [40].

Support Vector Machine
with Radial Basis Kernel Function

SVM models classify data by optimizing a hyperplane
that separates the classes using Radial Basis Kernel

Function [40].

Support Vector Machine
with Linear Kernel Function

This classifier is formally defined by a separating line.
The learning of the hyperplane is processed by

transforming the problem using linear algebra [40].

Support Vector Machine
with Sigmoid Kernel Function

SVM models process data points by drawing decision
boundaries with the Sigmoid Kernel Function [40].

K-Nearest Neighbors
K-Nearest Neighbors uses the label of data points

surrounding a target data point to define the class label
by a plurality vote of its neighbors [39].

Logistic Regression

Linear Regression is a technique to predict a continuous
output value from a linear relationship. However, the

output of Logistic Regression will provide a value
between 0 and 1, a probability [40].

Multilayer Perceptron

A multilayer perceptron (MLP) is a technique to classify
the class label. It is the same structure as a single layer
perceptron with one or more hidden layers. It can only
classify separable cases with a binary target (1, 0) [42].

2.4. Sampling Techniques

The number of data points plays an important factor in the creating of machine
learning models. The issue of limited amounts of data has received considerable critical
attention. Investigators have recently examined the effects of the sample size on machine
learning algorithms. Although it may be hard to determine the exact number of data points
that any given algorithm requires, some studies demonstrate that using small sample sizes
for building classical machine learning model leads to better performance [43]. Other
studies discuss the number of samples per class for small general datasets [44].

A lack of sufficient data may lead to serious problems, such as an imbalanced dis-
tribution across classes [45]. Because many machine learning algorithms are designed to
operate on the assumption of equal numbers of observations for each class, any imbalance
can result in poor predictive performance, specifically for minority classes. To solve the
problem of imbalance in distribution, we covered a suite of data sampling techniques
to generate alternative, synthetic data [46]. The sampling method is obtained from the
creation of new data or a pre-existing original dataset, and then used to create a new
classification model with the machine learning method. Different sampling techniques are
available for imbalanced datasets [46–51].

3. Methods
3.1. Proposed Framework

In the UX approach, classification analytics-built models rely on momentary UX data
to predict user satisfaction levels. Our proposed framework aims to predict final user
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satisfaction guided by momentary UX data to answer satisfaction-related questions. The
evaluation process workflow architecture is shown in Figure 3.
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Our proposed framework was organized into three steps. First, data collection in-
volved gathering and measuring information through satisfaction survey questions. Sec-
ond, we built a machine learning process to classify the final user satisfaction into different
classes. To confirm the effectiveness of the proposed framework for a product and a service,
two experiments were run, using different momentary UX data. Each experiment included
momentary UX data from satisfaction survey questions representing changes in emotion.
Experiment I included momentary UX data from visiting a travel agency site, a website
service. Experiment II included UX usage data from Google Nest Mini [52], which is a
smart AI speaker product. Finally, after the classification model was built, we evaluated it
using leave-one-out cross-validation and data splitting techniques.

3.2. Experiments

Two experiments were conducted: the first concerned use of a service in the form
of a travel agency website; and the second concerned use of a product, namely Google
Nest Mini.

3.2.1. Travel Agency Website (Service Group)

Fifty healthy university students aged 21 to 24 years were recruited as participants.
The main reason for choosing people of this generation is that they typically have a
better understanding of how to use products by themselves, with fewer gaps in relevant
knowledge and education. We used snowball sampling to recruit participants [53]. This is
a network-based sampling method that starts with a convenience sample and incentivizes
participants or respondents not only to participate in the survey themselves but also to
ask their contacts in the target population to participate. Snowball sampling is similar to
peer-to-peer marketing, which is the best sampling method for new products or brands
to reach new customers via word of mouth from one person to another [54]. For the
main experiment, participants confirmed that they understood the procedure, and they
responded to seven satisfaction survey questions concerning the travel agency website,
as shown in Figure 4. Before they started the task, we instructed them to use the agency
website to find a place they wanted to visit once in their life. All participants appeared to
perform the task attentively.
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Ranges of rating scales can vary widely; for example, from 1–10 points to 1–100 points.
One view is that overdetailed point scales may produce more variance. According to Spool
(2015), enlarging a scale to see higher-resolution data may reveal that the data are meaning-
less [55]. Moreover, other evidence [56] suggests that a semantic differential scale may be
appropriate for measuring satisfaction, with bipolar alternatives such as positive/negative,
good/bad, helpful/unhelpful, and useless/valuable. These considerations led us to design
and combine rating scales and the semantic differential for this evaluation. For momentary
UX evaluation, we used a 21-point scale that included negative values ranging from −1
to −10 and positive values ranging from 0 and +1 to +10 [5]. Adaption of the 21-point
scale was done with reference to the UX graph form [9]. A new classification model was
then built using these data and the machine learning process. Finally, we measured the
classification model’s efficiency in terms of accuracy, precision, and recall.

Participants went through the six steps of their task in fixed order, completing the
customized UX curve after each one (steps 1–6), as shown in Table 3 and the left side of
Figure 5. This procedure is often implemented in actual service or product usage. Then,
after completing the seventh step, they recorded “final satisfaction” based on several
experiences, as shown in Figure 5. The seventh step was conducted for the study only and
is not integral to the UX of the actual website itself. The data obtained in step 7 were used
as a target variable for supervised learning. The right side of Figure 5 shows a final user
satisfaction score of 4, based on a 21-point scale.

Table 3. Details of the travel agency (service) task.

Steps Directions

1st Find where you want to visit once in your life. Then, evaluate user satisfaction.
2nd Find the country of interest. Then, evaluate user satisfaction.
3rd Visit the homepage of the travel agency website. Then, evaluate user satisfaction.
4th View information on the travel agency website. Then, evaluate user satisfaction.
5th Select a tour in which you are interested. Then, evaluate user satisfaction.
6th Select and then purchase a favorite tour. Then, evaluate user satisfaction.
7th Evaluate your final user satisfaction with the travel agency website.

https://www.his-j.com
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Table 4. Original data scale was reduced by scaling down to improve the predictive performance.

Meaning of
Satisfaction

Rating

Dataset I Meaning of
Satisfaction

Rating

Dataset II

Original
Data

After
Shrinking

Original
Data

After
Shrinking

Extremely
satisfied

10
3

Extremely
satisfied

10

2
9 9
8 8

Satisfied

7

2

7
6 6

5

Satisfied

5

1
4 4

Slightly
satisfied

3
1

3
2 2
1 1

Neutral 0 0 Neutral 0 0

Slightly
unsatisfied

−1
−1

Unsatisfied

−1

−1
−2 −2
−3 −3

Unsatisfied

−4

−2

−4
−5 −5

−6

Extremely
unsatisfied

−6

−2
−7 −7

Extremely
unsatisfied

−8
−3

−8
−9 −9
−10 −10
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Figure 5. Customized UX curve for data collection.Six satisfaction datapoints and one final satis-
faction datapoint were obtained for each participant. The resulting dataset for building the model
consisted of a 7 × 50 matrix (seven features, 50 participants). Because the original dataset revealed
an accuracy score less than 0.50, we considered that results obtained using the 21-point scale were
insufficiently accurate. Thus, we scaled down, converting the original dataset into two datasets based
on a seven-point scale and a five-point scale (see Table 4). Dataset I comprised seven classes (from −3
to 3), and Dataset II comprised five classes (from −2 to 2). After shrinking, in actual results, we found
that Dataset I comprised six classes due to zero samples in one class, while Dataset II still comprised
five classes.

Furthermore, we found that the number of samples per class increased when the
number of classes decreased. One advantage of shrinking is that the increased number of
samples per class can be useful for building machine learning models.
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Before processing the dataset, we used variance inflation factor (VIF) to check for
multicollinearity of predictor variables (six answers about satisfaction score from the six-
item questionnaire) where the dependent variable was final user satisfaction. VIF values
exceeding 5 or 10 indicate problematic collinearity [57]. We confirmed that all our VIF
values were under 5.

3.2.2. Google Nest Mini (Product Group)

Twenty-five university students aged 21–24 years were recruited as participants. In
this experiment, the task was to remove the smart speaker (Google Nest Mini, as shown
in Figure 6) from the box, set it up, and start using it through 12 steps in a fixed order.
At the end of each step, the participants recorded their satisfaction on a form based on
the customized UX curve. The data from the first experiment (service group) show good
accuracy when rescaled in the form of a UX curve. Therefore, in this experiment, we used
a new form based on the customized UX curve with a 15-point scale ranging from −7 to
+7. Their final user satisfaction for the product was recorded after the experimental task
was completed.
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Figure 6. Using Google Nest Mini.

The task assumed that a new smart speaker was purchased, removed from the box, set
up, and made ready for use. The participants proceeded through each step while referring
to the enclosed instructions. The 12 steps of the task are shown in Table 5.

Table 5. Details of the Google Nest Mini (product) task.

Steps Directions

1st Browse nest mini on Google Store.
2nd Open the box, take out the smart speaker.
3rd Read the instructions, turn on the smart speaker.
4th Install the Google app on your smartphone, select an account.

5th Connect apps and smart speakers using Wi-Fi connection with smartphone location
information and router.

6th Open a Wi-Fi connection between the smart speaker and router using the app.

7th Follow the instructions in the app and using voice recognition on the smart speaker.
8th Connect and set various setting services in the app.
9th Play music on a smart speaker that has been set up.

10th Set alarm timers with smart speakers.
11th Listen to weather forecasts with smart speakers.
12th Evaluate your final user satisfaction with the Google Nest Mini.

Eleven satisfaction datapoints and one final satisfaction datapoint were obtained
for each participant, as shown in Figure 7. The resulting dataset for building the model
consisted of a 12 × 25 matrix (12 features, 25 participants).
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Figure 7. Example of a customized UX curve with participant’s final satisfaction.

The original dataset from our preliminary experiment showed an accuracy score less
than 0.50, indicating that sufficiently accurate results were not obtained using the 15-point
scale. Thus, we scaled down, converting the original dataset into two datasets, including a
seven-point scale and a five-point scale (see Table 6). Dataset I comprised seven classes
(from −3 to 3), and Dataset II comprised five classes (from −2 to 2). The actual results
after shrinking showed three classes in Dataset I, and two classes in Dataset II due to zero
samples in some classes.

Table 6. Original data scale was reduced by scaling down to improve the predictive performance.

Meaning of
Satisfaction

Rating

Dataset I Meaning of
Satisfaction

Rating

Dataset II

Original
Data

After
Shrinking

Original
Data

After
Shrinking

Extremely
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7
3 Extremely
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7
26 6

Satisfied
5

2
5

4
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4
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3
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3
2 2
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Neutral 0 0 Neutral 0 0
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−1
−2 −2
−3 −3

Unsatisfied
−4 −2

−4

−5
Extremely
unsatisfied

−5
−2Extremely

unsatisfied
−6 −3

−6
−7 −7

Furthermore, the number of samples per class was found to increase when the number
of classes decreased. The increased number of samples per class can be useful for building
machine learning models; this is one advantage of shrinking.

Before processing the dataset, we used VIF to check multicollinearity for predictor
variables (11 answers about satisfaction from the 11-item questionnaire), where the depen-
dent variable was final user satisfaction. VIF values exceeding 5 or 10 indicate problematic
collinearity [57]. All our VIF values were under 5.

In the current study, the first stage of the experiment to predict final user satisfaction
using momentary UX was through the satisfaction survey form. For website evaluation,
we used a satisfaction survey form at the bottom of the webpage to be filled out after the
completion of each task. For product evaluation, we requested that the satisfaction survey
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be manually evaluated during product set up. We found that it may not be easy to gather
these satisfaction scores in an actual product evaluation situation. Future research could
use other techniques for product evaluation to collect momentary UX data, such as facial
expression or gaze data.

3.3. Evaluation

Several studies have attempted to demonstrate that SVM and KNN algorithms can
perform well with small datasets [58,59]. Thus, we selected seven appropriate machine
learning algorithms: SVM [36] including SVM with linear kernel, SVM with sigmoid kernel,
SVM with RBF kernel, SVM with polynomial kernel, logistic regression [40], K-nearest
neighbors (KNN) [39], and multilayer perceptron (MLP) [42]. Each model was trained
by these algorithms using the datasets, and then classification models were tuned with
various hyperparameters while evaluating machine learning models by a random search
method to provide the best performance [60].

In Experiments I and II (Travel agency website and Google Nest Mini, respectively),
we found an unequal distribution of classes within the datasets; for example, the ratios of
seven classes in Experiment I (class “−3”, class “−2”, class “−1”, class “0”, class “1”, class
“2”, and class “3”) were 1, 0, 4, 1, 13, 25, and 6, respectively. As indicated in Section 2.4,
multiple techniques exist for dealing with imbalanced sample distributions. Oversampling
the minority class is one such approach used in data science [46]. This can be achieved by
synthesizing new examples from the minority class in the training dataset prior to fitting a
model. This can balance the class distribution and be highly effective for the created model.
For example, in Experiment I, the number of samples increased from 50 to approximately
150. In Experiment II, the number of samples increased from 25 to approximately 36. By
checking that the number of minority and majority class samples were equal, we confirmed
that the imbalance disappeared. The most basic method involves creating examples from
the minority class; even though these examples add no new information to the model,
they can be created by combining existing data. Thus, we selected the synthetic minority
oversampling technique, or SMOTE [46], based on results of the preliminary experiment.

One issue is that oversampling before performing cross-validation allows leakage
from the test data into the training data. Because of the overlap between training and test
data, this can lead to an optimistic bias in performance evaluation, as shown in Figure 8.
This is why we used SMOTE oversampling techniques inside the cross-validation (CV) loop
in the evaluation step. Oversampling inside the CV loop [61] is appropriate for revealing
the model’s true performance.
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In the evaluation step, two conventional methods were used to evaluate the performance
of each classification model as follows: (1) leave-one-out cross-validation (LOOCV) [62], as
shown in Figure 9 and (2) validation with training (80%)/test (20%) splitting by three
indices: accuracy, recall, and precision, as shown in Figure 10 [63].
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Figure 10. Evaluation workflow for created models using data splitting.

Moreover, performance can be measured using the percentage of accuracy observed
in both data sets to conclude on the presence of overfitting. Overfitting is characterized by
high accuracy for a classifier when evaluated on the training set but low accuracy when
evaluated on a separate test set [64]. In our experiments, we confirmed that the accuracy
score of the testing set was nearest when compared with that of the training set. Thus, all
models were not overfitting.
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In data science, data splitting according to an 80/20 ratio between the training set and
test set provides the most practice for the machine learning model. The performance of each
classification model is reported in terms of accuracy, precision, and recall. Accuracy is the
most intuitive performance measure; namely, the ratio of correctly predicted observation
to total observations. Precision is the ratio of correctly predicted positive observations
to total predicted positive observations. Recall is the ratio of correctly predicted positive
observations to all observations in the actual class.

4. Results
4.1. Results from Experiment I: Service Usage with Travel Agency Site

In Experiment I (travel agency website), we measured the combination of oversam-
pling techniques with the created machine learning models, including SVM with polyno-
mial kernel, SVM with RBF kernel, SVM with linear kernel, SVM with sigmoid kernel,
K-nearest neighbors, logistic regression, and multilayer perceptron techniques. We then
compared the performance between polynomial kernel SVM and polynomial kernel SVM
with oversampling.

Table 7 shows a comparison of the classification models’ performance for a combined
synthetic minority oversampling technique (SMOTE) and machine learning techniques for
two datasets (seven classes and five classes). Performance was measured by LOOCV and
splitting the data into two subsets: training and test. The accuracy score can range between
0.00 and 1.00; a higher value indicates higher accuracy.

Table 7. Performance scores of created models from travel agency website.

Scores Dataset SVM
Poly

SVM
RBF

SVM
Linear

SVM
Sigmoid KNN LR MLP

LOOCV
Cross-Validation

Accuracy
I (7 Classes) 0.93 0.79 0.80 0.50 0.84 0.72 0.80
II (5 Classes) 0.90 0.87 0.88 0.45 0.80 0.87 0.84

Split for
training/test

(80/20)

Accuracy I (7 Classes) 0.87 0.60 0.73 0.33 0.73 0.60 0.67
II (5 Classes) 0.93 0.93 0.86 0.54 0.86 0.89 0.93

Recall
I (7 Classes) 0.87 0.60 0.73 0.33 0.73 0.60 0.67
II (5 Classes) 0.93 0.93 0.86 0.54 0.86 0.89 0.93

Precision
I (7 Classes) 0.90 0.64 0.85 0.21 0.75 0.70 0.65
II (5 Classes) 0.96 0.95 0.87 0.42 0.88 0.90 0.93

SVM = support vector machine; Poly = polynomial kernel; LR = logistic regression; KNN = K-nearest neighbors; MLP = multilayer
perceptron.

SVM with polynomial kernel using Dataset I (seven classes) had the highest LOOCV
accuracy score (0.93). Moreover, each model was evaluated by splitting the training and
test set techniques. SVM with polynomial kernel using Dataset I provided the highest
accuracy (0.87), recall (0.87), and precision (0.90) scores.

However, SVM with the polynomial kernel using Dataset II (five classes) also showed
the highest LOOCV (0.90). It also provided the highest scores for accuracy (0.93), recall
(0.93), and precision (0.96).

Based on the results shown in Table 7, we then focused on SVM with the polynomial
kernel. Table 8 summarizes the results of comparisons between polynomial kernel SVM
and polynomial kernel SVM with oversampling into the cross-validation step. Polynomial
kernel SVM with oversampling into the cross-validation step provided the highest cross-
validation accuracies (0.93 and 0.90) on Datasets I and II, respectively. Moreover, the
accuracy of polynomial kernel SVM with oversampling into the cross-validation step was
higher than for polynomial kernel SVM without oversampling.
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Table 8. Comparison of performance between polynomial kernel SVM and polynomial kernel SVM with oversampling into
the cross-validation step (travel agency website).

Model Performance Dataset I: 7 Classes
(7-Point Scale Data)

Dataset II: 5 Classes
(5-Point Scale Data)

Score Polynomial
Kernel SVM

Polynomial Kernel
SVM with

Oversampling into the
Cross-Validation Step

Polynomial
Kernel SVM

Polynomial Kernel
SVM with

Oversampling into the
Cross-Validation Step

LOOCV Cross-Validation
Accuracy 0.48 0.93 0.72 0.90

Split for
training/test

(80/20)

Accuracy 0.40 0.87 0.70 0.93
Recall 0.40 0.87 0.70 0.93

Precision 0.65 0.90 0.61 0.96

Comparing classification results from two datasets differing in the number of classes
revealed differences in accuracy scores between Datasets I (seven classes) and II (five
classes). Overall, the accuracy with Dataset II was better than that with Dataset I, which
suggests that the accuracy depends on the number of classes.

4.2. Results from Experiment II: Product Usage with Google Nest Mini

In Experiment II (use of Google Nest Mini), the models were validated by LOOCV. The
results show that the SVM with polynomial kernel model provided the highest accuracy
(Table 9). The correct answer rate when using the SVM with polynomial kernel method was
the highest, at 0.76, suggesting the high effectiveness of this proposed method. Moreover,
comparison of the classification result from two datasets differing in the number of classes
revealed differences in accuracy scores between Datasets I (seven classes) and II (five
classes). Furthermore, the accuracy score with Dataset II was higher than that with Dataset
I. Taken together, these results confirm that the proposed framework is feasible, and it
is possible to predict final user satisfaction guided by momentary UX data to answer
product-satisfaction-related questions.

Table 9. Performance scores of created models from Google Nest Mini usage.

Scores Dataset SVM
Poly

SVM
RBF

SVM
Linear

SVM
Sigmoid KNN LR MLP

LOOCV
Cross-Validation

Accuracy
I (7 Classes) 0.60 0.52 0.52 0.16 0.52 0.44 0.40
II (5 Classes) 0.76 0.68 0.64 0.32 0.68 0.68 0.48

Split for
training/test

(80/20)

Accuracy I (7 Classes) 0.88 0.80 0.80 0.20 0.40 0.20 0.60
II (5 Classes) 0.86 0.60 0.80 0.40 0.40 0.40 0.60

Recall
I (7 Classes) 0.88 0.80 0.80 0.20 0.40 0.20 0.60
II (5 Classes) 0.86 0.60 0.80 0.40 0.40 0.40 0.60

Precision
I (7 Classes) 0.92 0.87 0.80 0.60 0.37 0.20 0.67
II (5 Classes) 0.89 0.60 0.85 0.53 0.53 0.53 0.87

SVM = support vector machine; Poly = polynomial kernel; LR = logistic regression; KNN = K-nearest neighbors; MLP = multilayer
perceptron.

Based on the results shown in Table 9, we focused on SVM with the polynomial kernel.
Table 10 summarizes the results of comparisons between polynomial kernel SVM and
polynomial kernel SVM with oversampling into the cross-validation step. Polynomial
kernel SVM with oversampling into the cross-validation step provided the highest cross-
validation accuracies (0.60 and 0.76) with Datasets I and II, respectively. Moreover, the
accuracy of polynomial kernel SVM with oversampling into the cross-validation step was
higher than that of polynomial kernel SVM without oversampling.
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Table 10. Comparison of performance between polynomial kernel SVM and polynomial kernel SVM with oversampling
into the cross-validation step (Google Nest Mini usage).

Model Performance Dataset I: 7 Classes
(7-Point Scale Data)

Dataset II: 5 Classes
(5-Point Scale Data)

Score Polynomial
Kernel SVM

Polynomial Kernel
SVM with

Oversampling into the
Cross-Validation Step

Polynomial
Kernel SVM

Polynomial Kernel
SVM with

Oversampling into the
Cross-Validation Step

LOOCV Cross-Validation
Accuracy 0.52 0.60 0.60 0.76

Split for
training/test

(80/20)

Accuracy 0.60 0.88 0.60 0.86
Recall 0.60 0.88 0.60 0.86

Precision 0.50 0.92 0.80 0.89

When comparing the classification results from two datasets differing in the number
of classes, differences in cross-validation accuracy between Datasets I (seven classes) and II
(five classes) emerged. Overall, the cross-validation accuracy with Dataset II was better
than with Dataset I, which suggests that accuracy depends on the number of classes.

5. Discussion

The present study was designed to predict final user satisfaction by machine learn-
ing techniques based on momentary UX Curve data. This study has several research
implications, as discussed below.

5.1. Experiment I: Service Usage with Travel Agency Site

In the evaluation of service usage, performed with a travel agency website, we found
that the SVM with the polynomial kernel algorithm provided the highest cross-validation
accuracy, at 0.93; all other algorithms scored lower, with the next-highest being KNN, at 0.84,
and slightly higher than the rest. Thus, SVM and KNN appear to be good at predicting final
user satisfaction. To test the performance of these machine learning methods, we considered
recall and precision on 20% testing and 80% training data. For travel agency website usage,
SVM with polynomial kernel with both five and seven classes yielded the highest recall
(0.87) and precision (0.90) among the seven candidate algorithms. Several previous studies
have reported that recall and precision with imbalanced datasets may be poor [65] and
lead to an optimistic bias in performance validation even after oversampling datasets [61].
In this study, however, recall and precision with oversampling resulted in data that were
better than the original data, as shown in Tables 8 and 10. Two possible explanations for
these improved results are, first, that we optimized the machine learning model by finding
the best parameters for the dataset, and second, we performed oversampling during the
cross-validation loop, which is the correct way to handle imbalanced data. Hence, to reveal
the true performance of the model, it is appropriate that oversampling be conducted inside
the cross-validation loop [61].

It is conceivable that the dimension of a dataset might be one factor influencing
predictive performance. Some authors have reported that SVM and KNN might perform
well on small datasets [58,59]. Moreover, in this study, accuracy was consistently higher
with five classes (Dataset II) than that with seven classes (Dataset I), which suggests that
accuracy depends on the number of classes. However, the ability of SVM and KNN to
predict final user satisfaction should be further examined using other kinds of services.

5.2. Experiment II: Product Usage with Google Nest Mini

To evaluate product usage, we used a Google Nest Mini task and found that SVM
with polynomial kernel with five classes had the highest cross-validation accuracy, at 0.76.
Moreover, SVM with polynomial kernel with five classes had the highest recall (0.86) and
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precision (0.89) of the seven candidate algorithms. Again, SVM with polynomial kernel
performs better when the dataset has few classes.

Comparing oversampling and no oversampling revealed that the former five classes
resulted in high cross-validation accuracy, at more than 76%. In this context, it is noteworthy
that the use of momentary UX during service usage and classification models had the
highest predictive accuracy for final user satisfaction.

5.3. Findings

With regard to assessment of the use of momentary UX and classification models,
the most interesting finding was that momentary UX and machine learning can predict
final user satisfaction, which is important for users’ decisions about further use or whether
they recommend products or services to other people. One unanticipated finding was that
polynomial kernel SVM with an oversampling technique achieved the best classification
accuracy (more than 90%). These results match those of machine learning studies where
polynomial kernel SVM also performed better with oversampling because a higher degree
of polynomial kernel, which is one of the parameters of the SVM algorithm, allows a more
flexible decision boundary [66].

In this investigation, the aim was to predict final user satisfaction using momentary
UX data and machine learning techniques. The results show that the machine learning
process can help in predicting final user satisfaction in at least two contexts: Experiment I,
service usage, and Experiment II, product usage.

The strongest feature of our proposed method is that it is based on data supporting the
idea of the relationship between UX time intervals: momentary UX might affect episodic
UX (final user satisfaction). Due to practical constraints, our preliminary study did not
extend to evaluations involving a wider variety of products or services, and so we are
cautious about extrapolating to other situations. Nevertheless, the study has demonstrated
significant relationships between momentary UX data and final user satisfaction, which is
consistent with the argument of Feng and Wei (2019) that a first-time user experience is
generally seen as a factor related to long-term user experience [16].

6. Conclusions

Customer relationship management is a tool to improve both the business and cus-
tomer satisfaction with products or service [19]. It is generally accepted that CRM provides
essential feedback and reflective data from the customers’ perspective, including their
opinions, preferences, and past UX regarding to products or services. These data and
information are used to improve communication with customers to enhance value and
satisfaction.

In this study we aimed to predict final user satisfaction using momentary UX data
and machine learning techniques. The findings indicate that machine learning techniques
such as polynomial kernel SVM can comprehend participants’ momentary UX and make
better predictions than six other machine learning algorithms concerning their final user
satisfaction. Moreover, machine learning integrated with the oversampling technique
yielded higher accuracy than that without oversampling. This technique integrated with
the oversampling method could deal with imbalanced classes by synthesizing new samples
and adjusting the class distribution of a data set.

The study was divided into two different experiments, the first concerning evaluation
of a service (travel agency website), and the second concerning a product (Google Nest
Mini). For service usage with the travel agency site, the results showed that SVM with
polynomial kernel had the highest cross-validation accuracy, at 0.93. For product usage
with Google Nest Mini, the results showed that SVM with polynomial kernel again had
the highest cross-validation accuracy, at 0.76. The proposed method, therefore, shows
promise for accurately predicting final user satisfaction using machine learning techniques;
it facilitates classification and estimation of final user satisfaction based on momentary UX
Curve data.
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6.1. Theoretical Implications

Our study has contributed to knowledge in the field in various ways.
First, our contribution relates to the outcomes of UX. Data of time sequence question-

naire or UX curve is often difficult to understand and analyze. We found the relationship
between momentary UX and episodic or cumulative UX, which is related to final user
satisfaction. Our study indicates how understanding of momentary UX data can help
determine the final user satisfaction during the changes of UX curve [32].

Second, machine learning like SVM could accurately predict final user satisfaction
and contribute towards developing products and services by analyzing the UX obtained
from CRM [19]. Hence, we need to monitor the momentary UX carefully.

Third, combining and integrating machine learning and oversampling techniques
could constitute a new approach for improving the predictive accuracy of final user satis-
faction.

This finding shows the relevance of considering UX in the analysis of customer
satisfaction.

6.2. Practical Implications

The majority of businesses that consider adopting a CRM system are looking for a
way to improve the quality and consistency of their relationships with customers and
build customer loyalty. UX data from CRM has gradually become the main source of
businesses’ sustainable competitive advantage. In terms of the practical implication of this
study, the result of our proposed method is that it is based on data supporting the idea
of the relationship between UX time intervals: momentary UX might affect episodic UX
(final user satisfaction). The understanding of those aforementioned relationships could
provide the best UX for customers, build a good brand image, and launch customer-centric
marketing campaigns. It can help businesses to achieve a better user satisfaction and the
goals of sustaining long-term competitive advantages. For example, in service industry, the
product or service developers could discover the worst points of products or services at
which a customer requires assistance during product or service usage. They need to ensure
that customers can finish their transaction without difficulty in different usage situations.
As a result, the understanding of momentary UX could boost overall customer satisfaction
as well as repeat purchase rate, maintain long-term sustainable customer satisfaction and
achieve sustainability. It could help to understand customers better and thus enhance
communication with stakeholders with regard to efficiency, performance, and sustainability
of products or services.

6.3. Limitations and Future Research

Our study confirmed the relationships between momentary UX data and final user
satisfaction from evaluations involving products and services. In both experiments, the
participants were university students. However, the low number of samples is one limita-
tion of this study. Further validation of the methods requires studies with larger sample
sizes. Regarding future work, it may also be possible to introduce other measures and
features such as eye movement data and operation time data, with the aim of improving
upon the predictive performance reported here.
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