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Abstract: In the current paradigm for the retail industry, which is experiencing a rapid evolution,
especially in textile companies, the generic problem of product allocation in a distribution and supply
chain consisting of one main warehouse and several locations, belonging to different sales channels,
is a challenge. The omnichannel replenishment process focuses on dynamically optimizing a shop or
intermediate warehouse inventory for a wide range of products based on a forecast of sales, in order
to fulfill the demand of all of the channels considered. In this context, the aims of this work were
(a) to optimize inventory replenishment for multiple channels and products that are not perishable
but devalue over time, and (b) to implement a methodology that combines the benefits of the Particle
Swarm Optimization metaheuristic and Simulated Annealing. This study was carried out for different
sales periods, channels and product configurations by performing a sensitivity analysis between the
way new solutions are updated and the degree of intensification used in local search.

Keywords: omnichannel; multiproduct; replenishment; metaheuristics; Particle Swarm Optimization;
Simulated Annealing; fashion retail; depreciation

1. Introduction

In the current context of a rapidly evolving retail industry, the generic problem of
allocating inventory from a main warehouse or central distribution center to various
locations (intermediate warehouses or end customers—stores) is a challenge due to supply
chain and distribution issues. Omnichannel replenishment must satisfy independent
demand flows, in form and time, fulfilling each channel’s demands without increasing their
associated warehousing costs. This is considered to be one of the most important supply
chain management problems, especially for companies that operate extensive networks of
either physical or online sale points.

Omnichannel retailing can be defined as “an integrated multichannel approach to
sales and marketing” [1]. Through the omnichannel approach, firms can improve their
overall performance by coordinating their resources and operations across their multiple
channels [2].

However, while omnichannel retailing increases shopping flexibility for customers,
and thus improves customer satisfaction, it entails a series of challenges for firms concerning
the design of effective omnichannel strategies [3]. Particularly, omnichannel retailing can
create conflicts between channels from the store fulfillment standpoint [4]:

• Cannibalization, that is, the shifting of sales from one channel to another.
• Heterogeneity of prices and margins between the different channels of a firm [5].
• Complexity of inventory replenishment between channels when a certain other chan-

nel holds a strong demand for a limited-inventory good [6].

The general replenishment process focuses on dynamically optimizing the shops or
channels’ inventories with a wide assortment of different products, in terms of items,
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sizes and colors. This is to ensure high product availability and minimize the costs of
overstocking or stock-outs.

Various sectors, such as the fashion retail sector, have a specific casuistry when faced
with product shortages. Under normal conditions this event is penalized, but in some cases
this effect is not so pronounced as to cause customers to decide to buy another product
through the same channel or through other channels of the same firm. Customers’ trust
can, however, be affected by these product shortages, which is particularly harmful in the
current e-commerce paradigm, in which trust is the most important factor determining
consumers’ online activities [7].

A different case would occur with overstocking due to the fact that fashion items
suffer strong depreciation over time, particularly at the end of the sales season. As a
result, unsold stock will be available at heavily discounted prices, which will significantly
reduce profit margins. Overstocking issues are especially harmful with customizable
products, which needs to be taken into account, since the fashion retail sector can adopt
the customization capabilities enabled by the e-commerce paradigm to a higher degree
than other industries [8], and even more so, considering that the customization features
of e-commerce systems significantly influence customer satisfaction [9], which, in turn,
positively affects brand loyalty [10].

This work contributes to the literature by presenting a novel approach to the op-
timization of the multiproduct omnichannel replenishment problem by ensuring high
product availability and turnover, thereby minimizing costs, especially those resulting
from overstocking, or conversely, from stock-outs. The proposed method combines two
different metaheuristics: Particle Swarm Optimization (PSO) for updating the solutions
and Simulated Annealing (SA) to calculate the changes experienced in the solution and
limit the simulation time.

Thus, the research question addressed in this work is the following: Can metaheuristic
methods be applied to obtain efficient solutions for the depreciable-multiproduct omnichannel
inventory replenishment problem?

For the example used in our study, we have followed the work by Martino et al. [11],
which served as a guide to define the model and its equations and the study of the inventory
replenishment problem. We adapted their case, corresponding to an Italian fashion retailer,
to fit the omnichannel paradigm and propose a novel method to solve it, reaching sub-
optimal solutions in contained execution times.

The rest of the article is divided as follows: in Section 2, the relevant literature is
reviewed; Section 3 provides an overview of the methodology followed in this study;
Section 4 describes the generic problem together with the data and model equations;
Section 5 presents the proposed metaheuristic, a combination of the PSO and SA algorithms;
the analysis and results are presented in Section 6, followed by the conclusions in Section 7
and the references used in this work.

2. Literature Review

Although there is an extensive literature on supply chain and retail replenishment
planning and optimization work, only a few researchers have focused on the textile sec-
tor [12] or in luxury fashion firms [13]. The textile industry sector presents several problems:
a wide variety of products and customers, short product life cycle and highly unpredictable
demand, which in turn is seasonal, impulsive and influenced by shelf availability, as [14]
show in their work.

However, the problem of replenishment has been approached from various other
perspectives. Firstly, the authors of [15] considered economic lot and shop replenishment
models, but they did so by using the influences of uncertain factors as a basis, such as
market changes or seasonality. In the same vein, the authors of [16,17] evaluated price
sensitivity as a function of randomness and seasonality of demand, and considered the
latter as discrete events. The authors of [18] went further by attempting to predict demand
based on heterogeneity in customer decision-making.
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In supply chain management, decisions such as the supplier selection and the replen-
ishment can be optimized at once [19]. Moreover, the authors of [20] suggest the benefits
of integrating the supplier selection, pricing and replenishment decisions through a joint
approach that considers stochastic demand scenarios of perishable products. Regarding
the aspect of product shelf-life, the authors of [21] proposed a simulation optimization
framework for inventory management of highly perishable products, with the goal of
avoiding product shortages while minimizing the product outdate rate. Additionally, [22]
posits a mathematical model for the ordering problem of highly-perishable products under
the first expired–first out policy, which they solve using the Genetic Algorithm (GA) and
PSO metaheuristics.

Other studies, such as [23,24], solved the problem of inventory replenishment, but
solely for industrial sectors involving perishable or deteriorating products, or multi-stage
and stochastic production settings [25]. Along the same lines, the author of [26] developed
an inventory system based on a multi-location model with periodic review that is suitable
for various industrial environments. The author focused his studies on quantifying optimal
decisions regarding in-store replenishment and transhipment between locations. To this
end, three replenishment policies based on simple heuristics were implemented for sys-
tems with numerous locations. The author presented a classification of inventory models
according to the point in time at which movements are allowed for shop replenishment:

• Periodic review systems with single-point replenishment during a period before
the demand for that period is fully known. On this issue, [27] sought to minimize
cost under the assumption that the lead time is zero. Throughout the literature it is
noted that retailers sometimes request an order after a period of stock-outs. For this
reason, these models do not fully meet the demand satisfaction requirements of the
retail industry.

• Periodic review systems that allow in-store replenishment after the period’s demand
is known but before it is satisfied. The work in [28] investigates the problem of maxi-
mizing system benefits in a two-location model. These models cannot disregard the
procurement lead time or the time windows for service delivery. All this information,
and the condition of demand satisfaction, must be known before organizing transfers
or journeys. In the competitive context of textile companies, a delay in delivery would
lead to a loss of sales.

• Continuous review systems that allow for replenishment during certain stock-outs
using a restocking policy consisting of restocking with the same number of units
that have previously been removed from inventory. The authors of [29] developed
a method for calculating the minimum cost of an inventory with transhipments for
replenishment in shops, located in the same geographical region. In addition, it finds
good approximations of the expected number of backlogs and transhipments to be
made. Later, the authors of [30] developed a heuristic to determine the best shop
replenishment policies like that in [29], but in this case for shops located in different
geographical regions under the objective of minimizing cost. These models are well
suited for slow movements, low product turnover, replenishment of expensive and/or
repairable items.

Other important aspects of inventory replenishment are the optimization of the safety
stock levels and of transhipments (the movement of freights between retailers). The authors
of [31] developed a novel safety stock formula that minimizes the average inventory levels
and the stockout risk. The authors of [32,33] developed heuristics to determine whether
or not it is appropriate to replenish or move items in a multi-location continuous review
inventory system where destocking is allowed. The authors of [34] employed the same
scenario as the previous authors but implemented a restocking policy where the out-of-
stock shop can obtain products from other shops that have lower out-of-stock costs than its
own. In this way, it is intended that the phenomenon of stock-outs will only occur in shops
with lower costs.
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A particular extension of the replenishment problem is the inventory routing problem
(IRP), which requires determining not only the stock policies followed each store or selling
point but also the routes followed by the delivery transports, thereby generally attempting
to minimize the sum of the inventory and transport costs. There have been several different
approaches to this class of problems, also known as the joint replenishment and delivery
problem. Given its complexity, most researchers address it with approximate methods
such as metaheuristics and matheuristics (the combination of metaheuristic procedures
and exact mathematical programming models). The authors of [35] posited a bounding
procedure that improves the performance of a variable neighborhood search metaheuristic
for a joint replenishment and delivery problem with multiple suppliers, a single warehouse
and multiple retailers. The authors of [36] presented a matheuristic approach to the single-
vehicle, single-product IRP, combining the tabu search metaheuristic with ad-hoc mixed
integer programming models. The authors of [37] proposed another matheuristic for the
general IRP with one warehouse and multiple retailers and products. Their approach
combines and iterative local search with a mixed integer linear programming model.

Despite the complexity of the IRP, some attempts have been made to solve the problem
using mathematical programming approaches. The authors of [38] proposed a Benders
decomposition based on, among other acceleration strategies, the greedy random adap-
tive search procedure (GRASP) metaheuristics. Their solution method also considers the
environmental costs and the expiration of products. The authors of [39] posited a two-
commodity flow formulation of the IRP, which is solved using a branch-and-cut algorithm.

Other researchers, such as Venkatachalam and Narayanan [40], integrate the replen-
ishment and distribution problem by considering freight transportation discounts for
consolidated deliveries. Their approach is similar to the one presented in this paper in that
the distribution costs are taken into account for the replenishment planning, but the actual
delivery routes are not determined by the models.

There have also been several attempts to optimize inventory replenishment within
the omnichannel paradigm. The authors of [4] addressed inventory management for
omnichannel shops, proposing a base-stock policy that differentiates between physical
and online orders. The authors of [41] studied an omnichannel retailers’ distribution
network with the ship-from-store strategy. The author implements a two-stage approach,
first deciding the replenishment links and then computing the appropriate quantities for
replenishment and fulfillment. Reference [42] also addresses the inventory replenishment
problem allowing shipping from stores, incorporating both cost and demand uncertainty.
The authors of [43] propose a heuristic to solve the combined replenishment and fulfillment
problem through a network of fulfillment centers and shops. Along the same lines, the
authors of [44] posit a replenishment system for a multichannel network with several
different fulfillment capabilities. Their stochastic model includes capacity constraints at
each node, which are critical, particularly considering the extreme demand conditions
considered in their case study. The authors of [45] developed an imperialist competitive
metaheuristic to optimize the replenishment of a multi-retailer vendor managed inventory
(VMI) system, adding an overstock penalty at the vendor’s warehouse, which holds certain
similarities to the model presented in this paper. However, while their metaheuristic
approach produces replenishment solutions able to avoid overstock penalties, the model
does not include a multiproduct perspective or variable costs due to the distance or volume
of the freight distribution.

In this article, we present a novel approach to the omnichannel inventory replen-
ishment problem, considering a dynamic but deterministic demand, a single warehouse,
multiple products and multiple channels. While the routing problem is not addressed, we
propose a hybrid metaheuristic based on the PSO and SA algorithms to solve the replenish-
ment problem considering transport expenses as a sum of fixed and distance-dependent
costs. Based on the review of the relevant literature, such a method has not been applied
before to the inventory replenishment problem, much less so in an omnichannel paradigm.
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Additionally, the inclusion of both the depreciation and transport costs in the replenishment
decision for omnichannel settings has also been unexplored in previous works.

3. Materials and Methods

As stated in the previous section, in this work we provide a meta-heuristic-based
method to solve the omnichannel inventory replenishment problem. In order to fully
explain and contextualize both the problem and our approach, the methodology described
below is followed:

Firstly, the general inventory replenishment problem for multiple channels and mul-
tiple products is described, including the main assumptions considered for this work.
It must be stressed that the model and approach presented are tailored to a network in
which each channel or group of channels functions an independent stock point. Thus, the
problem that is addressed in this work considers a higher-level, centralized warehouse and
several inventory sinks, be they intermediate warehouses (used when the sales channel
implies last-mile delivery to the customers’ locations) or stores. For example, in the case
of a firm using three sales channels -a brick-and-mortar store, their own webpage and a
third-party marketplace with centralized inventory- the replenishment problem would
include three delivery points: the store, an intermediate warehouse for the webpage sales
and the third-party marketplace warehouse.

Therefore, hereinafter we will use the term “channel” to represent interchangeably a
physical shop or a warehouse used to store the inventory for a specific sales channel.

Next, a description of the example utilized is provided. We first present the additional
assumptions used in the example in order to simplify the case, for the sake of clarity. Then,
we present the parameters of the problem, and particularize their values for the example
at hand. The dataset, adapted from [11], comprehends three periods of sales referring to
5 products and 3 channels. In particular, we have chosen the data in order to represent
a physical store, a third-party marketplace (which centralizes the distribution of all the
products) and a proprietary webpage. This is a common configuration for medium and
large sized fashion retailers.

The mathematical model depicting the omnichannel multiproduct replenishment
problem addressed in this article is then provided. The constraints and objective function
of the model are explained and discussed.

Next, the proposed solving method, based on the PSO and SA algorithms, is described.
Then, using said approach, the example problem is solved, and the results are presented
and discussed.

4. Generic Problem Description and Example

In this section, the problem is first described in detail under general conditions, and
then the data and parameters of the concrete example simulated on the basis of this problem
are presented.

4.1. Description of the Generic Problem

The focus of this work is on solving the inventory management and replenishment
problem for a multi-product model, where products are sold or stored in multiple locations
and over various periods of time. The main objective of the problem is profit maximization,
calculated as the difference between total revenues and total costs. These total costs include
out-of-stock costs (stock-outs), procurement, transport and storage.

The main characteristics of the problem considered in this work are presented below:

• Demand generation follows a uniform distribution in a fixed range centered on sales
forecasts with a small uncertainty.

• Sales are directly dependent on demand and ending inventory from the previous period.
• Each channel will receive an order for each period at the beginning of the period.
• Periods can be defined as a range of days, weeks, months or years.
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• No routes are established between channels. Instead, inventory replenishment is done
from the main warehouse to the shop or intermediate warehouse. Thus, transhipment
between channels is not allowed.

• All demand classes are assigned the same preference, that is, the retailer does not
preemptively favor fulfilling the demand from a specific channel over the rest of them.

• An initial budget has been considered which should be lower than the purchase costs
of all products.

• The model is suitable for non-perishable products but with some devaluation over time.
• The model has two different modes of operation depending on whether demand

information is initialized or sales forecast data is initialized.
• All channels are supposed to offer the same typology of products, i.e., all channels can

have demand for all the different types of products.
• The same shops or warehouses are considered for all the periods, as their locations do

not change over time.

4.2. Description of the Specific Example

As previously stated, the numerical example studied uses a dataset comprising 5
different product types, for the replenishment of 3 different channels (and thus locations)
and in 3 periods from the pre-Christmas season to the sales period (a total of 112 days). It
must be recalled that the data, adapted from [11], are meant to represent three different
channels: a third-party marketplace (channel 1), the firms’ own webpage (channel 2) and a
brick-and-mortar shop (channel 3).

However, the maximum number of items, channels and periods can be adjusted at
the user’s request as long as there is a match between the data entered and the maximum
parameters of the dataset (maximum number of items, channels and periods).

The assumptions considered in the particular example are presented below:

• Total number of items: The first five product types of the total number of items in the
dataset were used.

• Total number of channels: The first three locations of the total number of channels in
the dataset were used.

• Total number of periods: All periods collected in the dataset were used—that is,
3 periods corresponding to calendar days, i.e., a total of 112 days.

• The sales forecasts, due to the randomness of demand, were to be considered average
values, each resulting from 10 simulations previously carried out.

4.2.1. Descriptions of the Nomenclature of the Example

First of all, the variables and parameters used in the model are described in detail,
with their nomenclature and the value or the reference to the table where said value can be
found. Table 1 presents the variables of the problem:

Table 1. Descriptions of the nomenclature of the variables in the model.

Nomenclature Description Ref-Value

Sijt Sales of product type i in channel j in period t (units) See Equation (2)
Invijt Inventory of product type i in channel j in period t (units) See Equation (4)

Qijt
Quantity delivered of product type i for channel j during period t in an

order (units). Variable to be optimized to maximize profit Iterable variable

The number of items, channels/locations and periods (i, j, t) used in this example
is shown in Table 2, but they can be altered as long as the value of the sales or demand
forecast data is correctly matched with the sample size parameters.
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Table 2. Descriptions of the nomenclature and values of the model parameters.

Nomenclature Description Ref-Value

i = 1, . . . , n No. of different types of textile products 5
j = 1, . . . , m No. of channels (physical locations) 3
t = 1, . . . , T No. of periods (in calendar days) 3

pri Retail Price of product type i, not channel or period dependent (monetary units) See Table 6
Invij0 Initial inventory (t = 0) for each type of product i in location j (units) 25% on demand (dijt)

dijt Demand for product type i for channel j in period t (units) See Equation (3)
fijt Sales forecast for product type i in channel j and period t (units). See Tables 3–5

unc Uncertainty degree used to estimate demand from sales forecast See Table 9
cui Unit purchase cost of product type i (monetary units) See Table 6
Cs Unit cost of stock breakage expressed as a percentage of unit purchase cost (%) See Table 9
Ctf Fixed Cost Transport (monetary units/order) See Table 9
Ctv Variable Transport Cost (monetary units/product∗km) See Table 9
distj Distance travelled (one way + return) from the central warehouse to each location j (km) See Table 7
Chf Fixed cost Storage (monetary units) See Table 9

Chv,i
Variable cost of Storage for product type i expressed as a percentage of the unit

purchase cost of that product (%) See Table 6

trange,t Range of each period t composed of calendar days See Table 8

The nomenclature of the model parameters and the values used in our example are
described in Table 2.

4.2.2. Example Data Values and Parameters

The sales forecast for each product type and channel for the periods studied in the
example can be seen in Tables 3–5. At the end of each row, the sum of the total demand of
product units that each channel is expected to sustain is obtained. To set a value for the
maximum inventory per location, one of the two following measures can be considered: a
total inventory for all products; or an inventory for each type of product. On the other hand,
for each product type (column), the total number of units expected to be demanded through
all channels has been calculated in order to establish the total inventory per product type in
the central warehouse. Firstly, the data for the sales forecast for the first period are shown
Table 3.

Table 3. Sales forecasting. Number of units of each product type for each channel during period 1.

Period 1

Product
Total

1 2 3 4 5

C
ha

nn
el 1 0 31 3 13 13 60

2 0 14 4 15 15 48

3 13 26 9 12 12 72

Total 13 71 16 40 40
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Table 4. Sales forecasting. Number of units of each type of product for each channel during period 2.

Period 2

Product
Total

1 2 3 4 5

C
ha

nn
el 1 8 21 7 13 13 62

2 4 7 1 13 10 35

3 13 16 17 13 13 72

Total 25 44 25 39 36

Table 5. Sales forecasting. Number of units of each product type for each channel during period 3.

Period 3

Product
Total

1 2 3 4 5

C
ha

nn
el 1 11 15 5 0 2 33

2 44 25 46 0 50 165

3 21 5 11 50 8 95

Total 76 45 62 50 60

Tables 4 and 5 show information about the sales forecast for periods 2 and 3 respectively.
Table 6 shows all the specified model parameters related to the product typology.

Table 6. Parameters related to product typology.

Product

1 2 3 4 5

Unit purchase cost (cui)—m.u. 8 8 40 13 15

Retail Price (pri)—m.u. 25 25 120 40 50

Cost of storage as a percentage of cui
(
Chv,i )—% 6 3 20 10 15

Similarly, Table 7 shows the distance from each location to the central warehouse from
where all the merchandise departs. The data in Table 7 show the total distance travelled,
i.e., round trip included. In this way, journeys only go from the central warehouse to the
location and back to the store without any route linking the other shops or intermediate
warehouses.

Table 7. Location related parameters.

Location

1 2 3

Round trip distance (distj)—km 40 50 55

Table 8 shows the length in days for each of the 3 periods. The decision was made to
use a total of 112 days, divided into 42 days for the pre-Christmas sales season, another
42 days for the Christmas season and finally 28 days in the sales season. These data are
shown in Table 8:
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Table 8. Time period related parameters.

Time Range

Description Interval Total Days

Period 1 Pre-Christmas shopping season 1–42 42

Period 2 Christmas shopping season 43–84 42

Period 3 Sales shopping season 85–112 28

Finally, Table 9 shows the rest of the parameters used in the example:

Table 9. Other relevant model parameters.

Further Information

Budget—m.u. 1,000,000

Variable Transport Cost (Ctv)—m.u./(product ∗ km) 0.05

Fixed Transport Cost (Ctf)—m.u./order 5

Fixed Cost Storage (Chf)—m.u. 5

Cost of Stock Breakage (Cs)—% of cui 1

Uncertainty Sales Forecast (unc) 0.2

4.3. Model Equations and Parameters

Each equation that makes up the model will be explained below, and the objective
function will be broken down into simpler expressions, along with the constraints of
the model.

First, revenue is defined as the product of the unit sales price times the number of
sales of all products (n) sold through all channels (m) during the (T) stated time periods.

R =
n

∑
i=1

m

∑
j=1

T

∑
t=1

Sijt∗pri (1)

The sales of each product and in each location are assumed to be the minimum value
between the existing inventory in the previous period and the demand in the current
period, all of which is applicable for each product and channel. In the case of t = 1, an initial
inventory (t = 0) has been pre-set, the values of which were previously described.

Sijt = min
{

Invi,j,t−1, dijt
}

(2)

The demand for each product, through each channel and for each period will be
a value between the range of sales predictions (fijt) with an uncertainty threshold of up
to 20%.

dijt ∈
[
fijt ∗ (1− unc), fijt ∗ (1 + unc)

]
(3)

The inventory level for each product in each location and for each period is the quantity
of units received in that period plus the existing inventory of the previous period, less the
sales made. Again, for t = 1, there will be an initial inventory (t = 0) set initially.

Invijt = Qijt − Sijt + Invi,j,t−1 (4)

The cost of stock breakage is only considered if the demand to be satisfied is higher
than the existing inventory in the previous period; in this case, the value of this cost will be
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obtained from Equation (5). If the demand is lower than the stock of the previous period,
there will be no stock breakage cost.

Cs =


n
∑

i=1
Cs∗cui ∗

m
∑

j=1

T
∑

t=1

(
dijt − Invi,j,t−1

)
; if dijt > Invi,j,t−1

0; if dijt ≤ Invi,j,t−1

(5)

Purchase cost is understood as the cost of acquiring all the products in each location
and period, i.e., the product of the unit cost and the units received in the different orders.

CP =
n

∑
i=1

cui ∗
m

∑
j=1

T

∑
t=1

Qijt (6)

Transport cost is broken down into two items:

• Fixed vehicle routing cost for each location in each period.
• Variable cost dependent on distance and order to be covered for each type of product

in each location and period.

CT = m ∗ T ∗Ctf + Ctv ∗
m

∑
j=1

distj ∗
n

∑
i=1

T

∑
t=1

Qijt (7)

The Storage Cost also has two distinct concepts:

• Fixed cost for holding inventory in each location.
• Variable cost as a percentage of unit acquisition cost for each product type in each

location and period; and an assessment of inventory depreciation against the period
range (defined in calendar days)

CH = m ∗Chf +
n

∑
i=1

Chv,i∗cui ∗
m

∑
j=1

T

∑
t=1

Invijt

trange,t
(8)

The optimization problem consists of maximizing profit, calculated as the difference
between revenue and costs, which in turn are broken down into the costs of stock breakage,
purchasing, transport and storage. The only constraint is that the purchase cost should not
exceed an estimated budget.

max {R− (CS + CP + CT + CH} (9)

s.t. : CP ≤ Budget

5. Metaheuristic Description

The characteristics of this problem entail that it presents an enormous number of
feasible combinations. Therefore, the methodology employed seeks the best solution until
a stopping criterion is met. Therefore, it cannot be guaranteed to be the optimal solution
to the problem, but it is the best solution found so far (sub-optimal). The flowchart of the
meta-heuristic is shown in Figure 1 for guidance.
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The flow chart is now briefly discussed to allow a better understanding of the method-
ology applied in solving the optimization problem.

Initially, starting from the sales forecast, a random demand is calculated within the
range defined by Equation (3). A random order is determined as the current solution, and
Equations (2) and (4) define the sales and inventory, respectively, for the first solution. This
first solution will serve as a starting point to create a set of solutions (neighborhood: set of
neighbors). All neighbors in a neighborhood are constructed from percentage variations
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of the order values. Such variation can be incremental or decremental within a range of 0
to 40%. It must be noted that a solution consists of the inventory of each type of product
allocated to each channel in each of the periods considered.

Subsequently, a solution is evaluated from this set of solutions, and by doing so a
profit is obtained, with three possibilities:

1. If the profit obtained is higher than the best profit found so far: the current solution is
updated and this is taken as the best profit.

2. If the profit obtained is slightly lower than the best profit found so far: a random
value will be generated to decide whether or not to update the current solution.

3. If the profit obtained is far from the best profit: Do nothing.

Once this solution was analyzed, we continued with the other solutions of the set
(neighbors of the neighborhood). If it was the last solution, it went to a new neighborhood
to create a new set of solutions. For this purpose, a new solution was generated, which was
composed of a weighted average of three terms: the best solution found so far, the current
solution and a random solution. The aim with this is to find solutions far removed from the
ones that have already been evaluated but with the inheritance or influence of the best and
current solutions. This solution generation fulfils the following relationship (the weights
used were fixed after trial-and-error iterations):

solutionnew = 0.25 ∗ solrandom + 0.25 ∗ solcurrent + 0.5 ∗ best_sol (10)

A new solution was also tested by constructing a new solution from the arithmetic
mean of the three terms mentioned above; however, this solution showed worse results,
and the weighted average option was preferred. The expression would be:

solutionnew = (solrandom + solcurrent + bestsol)/3 (11)

Finally, the algorithm will only stop when the set stop condition is met, which can be
an elapsed time limit for the simulation or a maximum number of iterations. Once one of
these conditions has been met, the best results obtained so far will be displayed.

6. Results and Discussion

All the results achieved were possible thanks to a correct adjustment of the search
parameters and the number of iterations to be carried out, in addition to other parameters
that were correctly tuned by means of successive simulations. The results obtained from
the example are shown below.

The differences in the profits obtained using the following methods are compared:

• Mode of generating new solution sets: arithmetic or weighted average.
• Local search mode: intensifying local search with larger neighborhoods (50 neighbors)

and thus higher numbers of iterations, or prioritizing a more delocalized search with
smaller neighborhoods (10 neighbors) and thus a lower number of iterations.

As can be seen in Figure 2, we always obtained better solutions with the weighted
average than with the arithmetic average (Equations (10) and (11), respectively), for both
neighborhoods of 10 and 50 neighbors. Therefore, it is evident that when the generation of
a new set of solutions has a strong influence on the best solution found so far (weighted
average), a higher profit is achieved. On the other hand, this profit is smaller when the
solution generated has a greater dependence on randomness (arithmetic mean). The
positive point of randomness is that it allows a larger number of different neighborhoods
to be tracked.
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Figure 2. Comparison of arithmetic vs. weighted average and 10 neighbors vs. 50 neighbors.

Once it has been proven that the best option is to generate a solution using the
weighted average and for a neighborhood size of 50 individuals, it is necessary to evaluate
how the profit would improve with respect to the program execution time. The longer the
simulation time, the more solutions are sought and the more likely a better result is to be
found. As seen in Figure 3, it was decided to use run times from a couple of minutes to
almost 22 h of simulation. The curve starts to flatten out for higher run times. Figure 3
indicates that the benefits do improve with time but tend to stabilize after several hours of
runtime, following a logarithmic pattern. The dotted line included in the graph represents
a logarithmic trendline, which closely adheres to the evolution of the benefits. All the cases
studied for different parameter values were repeated up to five times in order to take an
average value, and thus obtain a more representative result.
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To obtain these results, the metaheuristic was implemented in Python version 3.6.4
within the PyCharm 2017.3 environment, installed on a fixed computer with the follow-
ing characteristics: Intel(R) Core™ i3-10100 3.6 GHz CPU, four main processors and
8.00 GB RAM.

The favorable evolution of the results and the significant improvements achieved in
relatively short runtimes answer the research question proposed in this study positively.
The results also indicate that this approach could be utilized in a dynamic manner, that
is, being frequently rerun to replan for changes in demand or costs, amongst other model
inputs, given the vast improvement to the objective function in a matter of 5 to 6 h of
runtime. Furthermore, as expected, the results are very dependent on the parametrization
of the metaheuristics [46]. In this case, as seen in Figure 2, the experimentation with the pa-
rameters affecting the mechanism for generating new solutions and the local search modes
proves that superior solutions can be achieved if a weighted average generation mode with
fifty solutions per neighborhood is used. However, the higher cost-efficiency of this param-
eter set for this particular instance of the problem does not guarantee that such combination
would still be dominant in other applications. Thus, while the use of metaheuristic methods
(in this case, a hybrid of the PSO and SA metaheuristics) proved useful for the efficient
production of feasible solutions for the proposed depreciable-multiproduct omnichannel
inventory replenishment problem, the results show that an exhaustive parametrization
process must be conducted in order to fully optimize the method’s capabilities.

The use of metaheuristics (in this case, a hybrid of metaheuristics) allows the produc-
tion of feasible and efficient solutions in short runtimes in comparison to other methods,
such as mathematical programming, particularly when the problem scales up in size. Be-
sides, a metaheuristic approach eases the translation of the method to other problems with
expectedly similar results. Furthermore, even though the implementation of the meta-
heuristic itself addresses a particular set of constraints and a particular objective function,
its structure and functioning are applicable to different fields of research.

7. Conclusions

In this work, we presented a hybrid-metaheuristic-based approach for the omnichan-
nel, multiproduct inventory replenishment problem considering stock depreciation with
time. The example problem, characteristic of a common retailer in the fashion sector, was
solved in very limited runtimes, obtaining suboptimal solutions. The proposed metaheuris-
tic combines elements of the PSO and SA algorithms. New solutions are obtained using the
PSO neighborhood generation, and the movement to worse solutions in order to further
explore the solution space is modelled using the SA logic.

Through the proposed approach, suboptimal solutions were achieved in short run-
times. In fact, the method could be incorporated as a real-time replenishment system,
perhaps based on recalculating the inventory allocation using live demand data. This, of
course, will only be applicable if real-time data of each channels’ demand can be obtained,
and if the replenishment lead times are short enough to ensure that stock-outs do not
occur in the meantime. If a live replenishment strategy were effectively implemented, the
inventory levels at the shops and intermediate warehouses could be drastically reduced.

The metaheuristic proposed in this study is suitable for both multichannel and om-
nichannel environments. The methodology allows for the replenishment of several invento-
ries, corresponding to either shops or intermediate warehouses. However, the dynamics of
the sales and fulfillment processes are not addressed, and thus can be adapted to fit either
an omnichannel or a multichannel paradigm.

The results of this study confirm the critical nature of efficient last-mile delivery
management, particularly for fashion retailers. The expansion of the “free-shipping”
strategy, the reduced profit margins and the growing complexity of freight distribution only
foster the need for further research on the optimization of replenishment and distribution
strategies. The cost reduction obtained by carefully balancing stock-out risk, product



J. Theor. Appl. Electron. Commer. Res. 2022, 17 490

depreciation, sales fulfillment and transport costs is noteworthy, judging from the results
shown in the study.

A limitation of this study was the deterministic character assumed for certain pa-
rameters of the model. Given the stochastic nature of demand, unit purchase cost and
retail price, and their significant impacts on the operation of a replenishment network,
including probability-based scenarios in the model and methodology could further increase
the applicability of the presented approach to real-world settings.

A further line of research would be to adapt the proposed metaheuristic to replenish-
ment problems, allowing the transhipment of stock between different channel locations.
Additionally, the method could be adapted to perishable products, such as food, or even
medical products, by strengthening the constraints on the delivery lead times of these
products. Finally, in line with the growing interest in the use of machine learning and
artificial intelligence techniques in the field of supply chain management, the optimiza-
tion metaheuristic presented in this paper could be integrated with prediction models
based on machine learning or neural network techniques, either for the optimization of the
performance of the algorithm or for the forecasting of the model inputs.
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