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Abstract: Synchrotron-radiation-computed tomography (SRCT) allows more accurate calcified plaque
and coronary stenosis assessment as a result of its superior spatial resolution; however, typical micro-
computed tomography (micro-CT) systems have even higher resolution. The purpose of this study
was to compare the performance of high-resolution micro-CT with SRCT in the assessment of calcified
plaques and a previously published dataset of coronary stenosis assessment. This experimental study
involved micro-CT scanning of three-dimensional printed coronary artery models with calcification
in situ used in our previously published SRCT study on coronary stenosis assessment. Measurements
of coronary stenosis utilizing both modalities were compared using a paired sample t-test. The
degrees of stenosis measured on all but one micro-CT dataset were statistically significantly lower
than the corresponding SRCT measurements reported in our previous paper (p < 0.0005–0.05). This
indicates that the superior spatial resolution of micro-CT was able to further reduce over-estimation
of stenosis caused by extensive calcification of coronary arteries and, hence, false positive results. Our
results showed that the high-resolution micro-CT used in this study outperformed the Australian
Synchrotron SRCT in both calcified plaque and coronary stenosis assessment. These findings will
become clinically important for cardiovascular event prediction and enable reclassification of individ-
uals with low and intermediate risk into appropriate risk categories when the technical challenges
of micro-CT in clinical practice such as the small field of view and demanding on image processing
power are addressed.

Keywords: 3D printing; accuracy; calcification; cardiovascular disease; computed tomography; coronary
artery disease; coronary stenosis; micro-computed tomography; plaque; synchrotron radiation

1. Introduction

Coronary computed tomography angiography (CCTA) is commonly used for coronary
artery disease (CAD) diagnosis because it is a less-invasive imaging modality and performs
well in coronary stenosis assessment and cardiac event prediction [1–3]. For low to inter-
mediate coronary stenosis, CCTA has very high negative predictive value as a result of its
ability to exclude significant stenosis [4]. Nonetheless, CCTA has high false positive results
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in patients with extensive calcified plaques in the coronary arteries by causing blooming
artifact, which exaggerates plaque size and, hence, affects diagnostic value. Previous
studies showed that its specificity and positive predictive value (PPV) in calcification is
only 18–53% [5,6]. According to the European Society of Cardiology (ESC)’s guidelines
for the diagnosis and management of chronic coronary syndromes, CCTA is the preferred
imaging modality in patients with a lower likelihood of CAD due to its high accuracy for
the detection of obstructive coronary stenosis [7]. However, in the presence of extensive
calcification, CCTA is not recommended because of increased possibility of non-diagnostic
image quality affecting diagnostic value of CCTA in assessing calcified plaques.

Various approaches were investigated for improving CCTA performance in calcifica-
tion such as the use of image post-processing and iterative reconstruction (IR) to reduce
blooming artifact [6,8–10], inclusion of the left coronary bifurcation angle in analysis [11–13],
and through use of thinner slices (230 µm high-resolution computed tomography (CT)) [14].
These methods addressed the limitations of CCTA in diagnosing calcified coronary plaques
to some extent with improved specificity and PPV. Use of IR has become a routine practice
with a variety of IR algorithms introduced into cardiac CT practice by multiple CT ven-
dors [15]. Studies showed that use of IR significantly reduced both the calcium volume and
score in comparison with the filtered back projection, leading to improved specificity and
PPV [16–18]. Despite promising results, use of IR needs to be cautious as some studies re-
ported contradictory findings with no significant impact on calcium volume changes when
IR algorithms were applied to these CCTA images [19,20]. Use of image post-processing
methods such as calcium subtraction as proposed by Tanaka et al. and sharpening method
as indicated by our previous study improved sensitivity and PPV by up to 30% [6,8,21], but
this was still insufficient, as the diagnostic value of CCTA was less than 70% in these studies.
The use of left coronary angulation as an alternative to standard lumen assessment was
shown to significantly increase the specificity and PPV (reaching 79% and 81%, respectively,
on a per-vessel assessment) when assessing calcified plaques on CCTA [11–13]. The main
limitation in measurement of left coronary angulation is due to lack of standard approach
of whether two-dimensional (2D) axial or three-dimensional (3D) volume rendering views
are used to determine the left coronary bifurcation angles. Furthermore, this approach
does not address the fundamental issue of CCTA in diagnosing calcified plaques, as it
only serves as an alternative to the standard approach of lumen measurement rather than
solving the limitations. The improved spatial resolution of CCTA will represent an effective
and feasible approach to solve this challenging issue. Pontone and colleagues in their
randomized controlled trial compared high-resolution with standard CCTA (0.23 mm vs.
0.625 mm) in 184 patients with high risk of CAD [22]. High-resolution CCTA showed
significantly higher specificity and PPV when compared to standard resolution CCTA on
per-segment and per-patient analysis (98% and 92% vs. 95% and 80%; p < 0.001; 91% and
98% vs. 46% and 92%; p < 0.01, respectively). This highlights the significance of using
high-resolution CT in CCTA, especially in patients with heavily calcified plaques.

However, spatial resolution of synchrotron-radiation-CT (SRCT, 19 × 19 × 19 µm3)
is much higher than that of conventional CT [23], as demonstrated in our previous
study [24]. Nonetheless, typical micro-CT systems have spatial resolutions as low as
0.5 × 0.5 × 0.5 µm3, which are far better than that of SRCT and, hence, should improve
diagnostic performance of calcified plaque evaluation [24,25]. To the best of our knowledge,
no study has been conducted to compare the performance of these two imaging modalities
in the assessment of coronary arterial lumen loss and calcification. The purpose of this
study was to compare the performance of high-resolution micro-CT with the SRCT in the
calcified plaques and coronary stenosis assessment. We hypothesized that the superior
resolution of micro-CT allowed for an improvement in assessment of coronary stenosis in
the presence of calcified plaques.
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2. Materials and Methods

We used previously developed 3D-printed coronary models with simulation of calci-
fied plaques to explore the hypothesis given the long scanning time of micro-CT and the
limited field of view [24,26]. The 3D-printed heart and vascular models derived from CT
or magnetic resonance images can replicate anatomical structures and pathologies with a
high degree of accuracy, thus serving as a useful tool for understanding complex cardiac
anatomy and simulating surgical or interventional procedures [27–34]. Our models were
created based on CCTA datasets of three patients with different degrees of coronary artery
stenosis caused by calcified plaques. A Stratasys Objet500 Connex3 multi-material (Poly-
jet) 3D printer (Objective 3D, Melbourne, Victoria, Australia) was used to print coronary
artery walls and calcifications with TangoPlus (83 Hounsfield unit (HU)) and VeroWhite
(136 HU) materials, respectively [35]. These printing materials were chosen because their
attenuation properties matched those of the corresponding structures, which were around
89 HU (artery wall) and at least 130 HU (calcified plaque) [36–38]. A summary of the
anatomical characteristics of these three models is shown below. Further details of the
CCTA datasets, patients, and 3D printing involved in this experimental study were given
in our previous publication [24]. Ethical approval was not required in this study, as only
3D-printed coronary artery models were used (Figure 1).

• Model 1: >90% and <50% stenosis in left main stem (LM) and left anterior descending
(LAD) coronary artery, respectively.

• Model 2: >90% and 70% stenosis in LAD and left circumflex (LCx), respectively.
• Model 3: >90% and 70% stenosis in proximal LCx and middle LCx, respectively.
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Figure 1. Three-dimensional-printed coronary models with simulation of calcified plaques (arrows)
in the left coronary arteries. Reprint from Sun et al. [24] with permission.

Skyscan 1176 micro-CT system (Bruker Corporation, Billerica, MA, USA) available
at Australian National Imaging Facility in Centre for Microscopy, Characterisation, and
Analysis (CMCA) at Harry Perkins Institute of Medical Research was used to scan the three
models at its highest spatial resolution (8.7 × 8.7 × 8.7 µm3) and lowest tube voltage (40 kV)
settings. The selection of the lowest tube voltage was based on our previous SRCT findings
that a lower beam energy (30 keV) provided better visualization of coronary artery walls
and calcified plaques as a result of the materials used: TangoPlus and VeroWhite, which
had low X-ray attenuation properties [24,39–42]. Figure 2 shows the micro-CT scan setup.
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Axial micro-CT images of the three models in tagged image file format (TIFF) were
converted to Analyze 7.5 file format by the open-source image processing program ImageJ
(v1.52a, National Institutes of Health, Bethesda, MD, USA) for importing into the Analyze
12 software package (AnalyzeDirect, Inc., Lexana, KS, USA) with multi-dimensional image
display, processing, and measurement capabilities on an image processing workstation
(Hewlett-Packard Z4 G4 (Palo Alto, CA, USA) with Intel Xeon W-2255 3.7 GHz central
processing unit (Santa Clara, CA, USA), 512 GB random access memory and Nvidia RTX
A6000 48 GB graphics processing unit (Santa Clara, CA, USA)). The degree of coronary
lumen stenosis was measured on 2D axial images of the three models by one observer
with more than 20 years of CCTA image interpretation experience. Three measurements
were performed for each stenotic area with their average value used as the final value, to
minimize intra-observer variation. Intra-observer agreement was determined by randomly
selecting images of each model and repeating the measurements by the same observer
after two weeks. Good intra-observer reliability between these measurements was found
(r = 0.835, p < 0.01). Details of the measurement approach were given in our previous
reports [40,41,43–45].

SPSS Statistics 28 (International Business Machines Corporation, Armonk, NY, USA)
was used for statistical analysis. Mean and standard deviation were calculated for contin-
uous variables. The measurements of coronary lumen stenosis on the micro-CT images
of the three models were compared with the corresponding measurements performed on
SRCT acquired with a beam energy of 30 keV reported previously using a paired sample
t-test to determine the modality able to provide better coronary stenosis assessment [24]. A
p-value less than 0.05 represented statistical significance.

3. Results

Tables 1 and 2 show the micro-CT stenosis assessment performances for all six plaques
in the three 3D-printed coronary artery models. The degrees of stenosis measured on
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the micro-CT images of the models (except the one caused by plaque 2 in model 3) were
statistically significantly lower than the corresponding SRCT measurements reported in
our previous paper (p < 0.0005–0.05) [24]. This indicates that the superior spatial resolution
of micro-CT was able to further suppress the blooming artifact caused by the extensive
calcification. Nonetheless, the degrees of stenosis measured on the micro-CT images of
plaques 1 and 2 of models 1 and 2 were lower than the ground truths (degrees of stenosis
calculated based on the true sizes of simulated plaques and models).

Table 1. Comparison of micro-computed tomography (micro-CT) and synchrotron-radiation-CT
(SRCT) performance in measuring left coronary stenosis in plaque 1 > 90% stenosis [24].

Model

Degree of Lumen Stenosis (%)

p-Value
Micro CT SRCT
0.009 mm

ST
0.095 mm

ST
0.208 mm

ST
0.302 mm

ST
0.491 mm

ST

1 86.2 ± 0.033 99.1 ± 0.004 98.8 ± 0.003 99.1 ± 0.004 100 ± 0.000 <0.005
2 80.0 ± 0.044 97.2 ± 0.025 97.8 ± 0.022 96.4 ± 0.012 96.4 ± 0.010 <0.0005
3 94.4 ± 0.000 99.2 ± 0.005 97.2 ± 0.009 97.8 ± 0.005 100 ± 0.000 <0.0005

CT, computed tomography; ST, slice thickness.

Table 2. Comparison of micro-computed tomography (micro-CT) and synchrotron-radiation-CT
(SRCT) performance in measuring left coronary stenosis in plaque 2: <50% stenosis (model 1), and
70% stenosis (models 2 and 3) [24].

Model

Degree of Lumen Stenosis (%)

p-Value
Micro CT SRCT
0.009 mm

ST
0.095 mm

ST
0.208 mm

ST
0.302 mm

ST
0.491 mm

ST

1 46.4 ± 0.035 47.4 ± 0.007 47.3 ± 0.001 48.6 ± 0.022 55.1 ± 0.036 <0.05
2 60.0 ± 0.031 70.0 ± 0.003 71.7 ± 0.022 77.8 ± 0.011 84.8 ± 0.008 <0.0005
3 75.0 ± 0.000 71.5 ± 0.011 75.2 ± 0.017 74.7 ± 0.021 85.1 ± 0.078 0.091

CT, computed tomography; ST, slice thickness.

Figures 3–8 show the micro-CT and SRCT images of plaques 1 and 2 in models 1–3 that
were used for the stenosis assessments. For the micro-CT (0.009 mm slice thickness) images,
only the stenotic areas were illustrated due to the processing power limit of the workstation
for handling data with a very large matrix (7872 × 7872). The micro-CT (0.009 mm slice
thickness) images were able to clearly demonstrate patent areas between the calcification
and the left coronary arterial walls, especially in severe stenosis compared with SRCT
(0.095–0.491 mm slice thickness) images (Figures 3–5 with >90% stenosis).
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4. Discussion

To the best of our knowledge, this is the first study to compare the performance of high-
resolution micro-CT with SRCT in calcified plaque and coronary stenosis assessment. Our
findings show that the superior resolution of micro-CT allows for statistically significant
improvements (p < 0.0005–0.05) in the assessment of stenosis in the presence of calcified
plaques (except plaque 2 within model 3) with regard to blooming artifact suppression,
hence minimizing over-estimation when compared with the corresponding results of our
previous SRCT study [24]. This potentially reduces the false positive rate and improves
specificity and PPV, if the micro-CT is applied to clinical practice for addressing the well-
known weakness of the CCTA in the assessment of coronary stenosis with extensive
calcification [5,6,46,47].

Although micro-CT seemed to outperform SRCT for blooming artifact suppression,
Tables 1 and 2 reveal that the degree of stenosis measured on the micro-CT images of
plaques 1 and 2 of models 1 and 2 were obviously lower than the ground truths, representing
under-estimation of the stenoses. Similar findings were also noted in the results of our
previous study, where higher SRCT beam energies such as 50 keV were able to further
reduce blooming artifact but affected visualization of coronary artery walls and calcified
plaques [24]. The use of a higher beam energy (tube potential) is one of the well-known
strategies to suppress blooming artifact because the calcified plaque is a high-density
material that can easily attenuate radiation with lower energies [42]. However, a higher
tube potential was deemed unsuitable for soft tissue visualization such as coronary arteries
because its density was lower than that of the calcification. Unfortunately, the lowest tube
potential available on the Skyscan 1176 micro-CT scanner was 40 kV.

Another issue of micro-CT was its small field of view (FOV). As shown in Figure 1,
the scan table was just large enough to accommodate the 3D-printed coronary artery
models and, therefore, not applicable for clinical use. However, micro-CT scanners with
greater FOVs such as 43.2 × 43.2 cm2 have become available more recently [48]. This may
make it possible to manufacture a clinical CT scanner with superior spatial resolution
matching micro-CT performance in the future. Nevertheless, it is still a challenge for
current image processing workstations to handle high-resolution CT images with large
matrix size. For example, each model dataset in this study had around 10,000 images with
7872 × 7872 pixels and bit depth of 16 (2 bytes), and hence, every dataset size was about
1 TB (7872 × 7872 pixels × 2 bytes × 10,000 images). Additionally, the long scanning time
of micro-CT needs to be addressed, and so, it may take some years for micro-CT technology
to be applied in clinical practice. This would be similar to the previous CT system develop-
ment that took decades for implementing iterative reconstruction into clinical practice since
its emergence in 1970s due to the previous processing power limit of computers which also
affected its scanning time and spatial resolution improvements [49–51].
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When the aforementioned issues of micro-CT are addressed, it will be useful for
cardiovascular event prediction by reclassifying individuals with low and intermediate
risk categories to the appropriate risk categories and, therefore, safer clinical management
along a spectrum where high-risk individuals often undergo interventional treatment,
whereas low risk are usually followed up without any need for treatment [52,53]. If the
use of micro-CT is combined with other blooming artifact suppression approaches such as
the latest deep learning image reconstruction strategy, this may enable CT to become the
imaging modality with a diagnostic performance matching the current gold standard of
invasive coronary angiography. This has significant implications for interventional risks,
radiation, and healthcare costs [9,10].

Although it is currently impossible to use micro-CT in patient imaging, the findings of
this study highlight the importance of using high-resolution imaging for the improvement
of assessing calcified coronary plaques and a reduction in false positive rates. Compared
to the current medical CT scanners with 0.5 × 0.5 × 0.5 mm spatial resolution, photon-
counting CT represents the latest technological advancement with ultra-high-resolution
of 0.2 mm, excellent image quality, and a further reduction in blooming artifact caused
by the severe calcification or coronary stents [54–58]. Recent studies based on phantom
experiments showed that photon-counting CT improved quantification of coronary stenosis
with reduced blooming artifact, independent of heart rates when compared to the standard
CCTA (0.2 mm vs. 0.4 mm slice thickness) [54,55]. This was also confirmed by patient
studies using the photon-counting CT. Si-Mohamed et al. reported their initial experience
with photon-counting CT in patients with 100% improvement in overall image quality
in calcification [56]. Hagar et al. analyzed imaging of 68 patients showing that photon-
counting CT had 96% sensitivity, 84% specificity, and 88% accuracy in the assessment of
significant CAD. Even in patients with severe calcification (Agatston score of at least 1000),
photon-counting CT still had a high performance with 93% sensitivity, 70% specificity, and
83% accuracy [57]. Soschynski et al., in their multi-center study consisting of 92 patients,
further validated these findings with a high diagnostic performance: 92% sensitivity,
96% specificity, and 95% accuracy (Figure 9) [58]. Photon-counting CT is likely to make
significant contributions to the improvement of diagnostic assessment of calcified coronary
plaques in future.

This study had several limitations. Only one tube potential and one slice thickness
were used for the micro-CT image acquisition. A comparison of high-resolution micro-CT
with use of different resolutions such as 0.1–0.4 mm deserves to be investigated, as this is
close to the CT resolution available in clinical practice. There were no thoracic structures
surrounding the coronary models, and contrast medium was not used. However, these
should not affect the assessment of calcified plaques and coronary stenosis, as evident in
Figures 3–8, that the margins of vessel walls and plaques demonstrated on the micro-CT
images were as sharp as those on the SRCT images or even better [24]. Although plaques
of differing degree and location were simulated, only six were present in this study and
clinical variation of arterial diameter, degree of disease, and location and number of plaques
is wider. Most importantly, plaques can still be heterogeneous even when calcified, and
this has implications on interpretation of detailed images [26].
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significant coronary stenosis could be excluded with high certainty. Reprinted from Soschynski et al.
with permission under open access Creative Commons CC BY 4.0 license [58].

5. Future Directions and Perspectives

This study’s findings suggest the future directions in improving diagnostic value of
CCTA in assessing calcified plaques with a focus on improving spatial resolution as a
practical approach from clinical perspectives. Although a variety of strategies have been
proposed in the literature to address the limitation of CCTA in the diagnosis of extensive
calcification in coronary arteries, the results were not so promising, due to use of different
approaches from different studies, lack of standardized methodology, or unsatisfactory
results to achieve a high diagnostic value of CCTA [6,8,16–22]. CT resolution significantly
improved since the introduction of multislice CT in clinical practice more than 20 years ago.
With current CT scanners, the spatial resolution is between 0.5 mm and 0.625 mm, with
0.2 mm available with the latest CT model of photon-counting CT [54–58]. Therefore, CT
spatial resolution reached the same level as that of invasive coronary angiography (0.2 mm),
allowing it to provide accurate assessment of coronary artery and its branches, regardless of
the diameter of coronary artery segments. With further improvement in spatial resolution,
as shown in this study’s results, diagnostic performance of CCTA in calcified plaques will
be further enhanced, making it a reliable less-invasive modality in cardiac imaging practice.

Another research direction of CCTA in CAD including calcified plaques is the use
of combination of anatomic and functional approaches to determine ischemic coronary
lesions. CT-derived fractional flow reserve (CT-FFR) has been increasingly reported in the
literature with increased specificity over standard anatomic assessment with CCTA alone.
Single-center and randomized controlled trials have proved incremental value of CT-FFR
over CCTA in guiding patient management, playing an important role in clinical decision-
making and use of resources by avoiding unnecessary downstream examinations [59–61].
Gao et al., in their recent study, reported that CT-FFR had high specificity and PPV when
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compared to the CCTA (84% and 82% vs. 54% and 61%), while CT perfusion-FFR showed
better results, even in the presence of high calcium scores (total Agatston score on per-vessel:
≥400) with specificity and PPV being 93% and 89% [62]. Thus, the use of high-resolution
CCTA-FFR will further augment the performance of CCTA in calcified plaques and this
could make CCTA a more effective and reliable diagnostic method in patients with CAD.

6. Conclusions

Our results showed that the high-resolution micro-CT used in this study outperformed
the Australian Synchrotron SRCT in calcified plaques and coronary stenosis assessment
with regard to blooming artifact reduction. This highlights the importance of using high-
resolution imaging for the improvement of assessing calcified coronary plaques and a
reduction in false positive rates. This study’s findings will become clinically important
for cardiovascular risk prediction and allow reclassification of individuals with low and
intermediate risk into the appropriate risk categories when the technical challenges of
using micro-CT in clinical practice, such as small FOV and highly demanding image
processing power, are addressed. Potentially, this will lead to optimal clinical management
according to accurate risk prediction in a disease process where intervention carries risks
and minimization of unnecessary coronary angiography and treatment must be paramount.
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