
Citation: Korányi, R.; Mancera, J.A.;

Kaufmann, M. GDPR-Compliant

Social Network Link Prediction in a

Graph DBMS: The Case of

Know-How Development at

Beekeeper. Knowledge 2022, 2,

286–309. https://doi.org/10.3390/

knowledge2020017

Academic Editors:

Antonio Sarasa-Cabezuelo,

David Villaseca-Morales and

Covadonga Diez Sanmartin

Received: 1 March 2022

Accepted: 26 April 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

GDPR-Compliant Social Network Link Prediction in a Graph
DBMS: The Case of Know-How Development at Beekeeper
Rita Korányi , José A. Mancera * and Michael Kaufmann

Department of Comptuer Science and Information Technology, Lucerne University of Applied Sciences and
Arts (HSLU), CH-6002 Luzern, Switzerland; rita.koranyi@hslu.ch (R.K.); m.kaufmann@hslu.ch (M.K.)
* Correspondence: jose.mancera@hslu.ch

Abstract: The amount of available information in the digital world contains massive amounts of
data, far more than people can consume. Beekeeper AG provides a GDPR-compliant platform for
frontline employees, who typically do not have permanent access to digital information. Finding
relevant information to perform their job requires efficient filtering principles to reduce the time spent
on searching, thus saving work hours. However, with GDPR, it is not always possible to observe
user identification and content. Therefore, this paper proposes link prediction in a graph structure
as an alternative to presenting the information based on GDPR data. In this study, the research of
user interaction data in a graph database was compared with graph machine learning algorithms for
extracting and predicting network patterns among the users. The results showed that although the
accuracy of the models was below expectations, the know-how developed during the process could
generate valuable technical and business insights for Beekeeper AG.

Keywords: know-how development; graph mining; link prediction; social networks; data protection;
use case

1. Introduction

The European Union’s General Data Protection Regulation (GDPR) strictly regulates
data usage, severely limiting available machine learning capabilities. It is challenging for
companies to process data in a GDPR-compliant manner, extract information values, and
use predictive analytics models. Adding to this, social networks such as Facebook and
LinkedIn have gained popularity over the last decade. These networks usually aim to
attract the largest number of users. And then, there are public social networks, which serve
to monetize and support the dissemination of information and knowledge among their
members [1]. These networks produce massive amounts of data, which is too much for any
reader to absorb. Therefore, companies have realized the need to reduce users’ time spent
searching for documents and contact information [2].

Beekeeper AG provides companies with solutions in the form of social networks,
where employees can chat, share posts, and network within their company. Users use
the platforms to communicate and find work-related information. Nevertheless, due to
GDPR, analyzing the textual body of user interactions, such as posts, comments, and chats,
is not allowed without consent. Therefore, it is impossible to gain insights from textual
data across the spectrum of users. Exploring the network structure of employees provides
data-driven insights into how information flows within an organization.

Analyzing a social network structure is still a challenging task today, thanks to the
dynamic and incomplete nature of the data [3]. At another point, the same network
may have meaningful variations in structure and different members. Interpreting user
interactions as a graph, where the nodes are users and elements, enables further extraction
of user-user relationships. In such a graph, sparsity is vital as there are always fewer
existing links than non-existing ones, resulting in an imbalance of relationships. Another

Knowledge 2022, 2, 286–309. https://doi.org/10.3390/knowledge2020017 https://www.mdpi.com/journal/knowledge

https://doi.org/10.3390/knowledge2020017
https://doi.org/10.3390/knowledge2020017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/knowledge
https://www.mdpi.com
https://orcid.org/0000-0003-0457-2092
https://orcid.org/0000-0003-3837-6524
https://orcid.org/0000-0003-1437-0996
https://doi.org/10.3390/knowledge2020017
https://www.mdpi.com/journal/knowledge
https://www.mdpi.com/article/10.3390/knowledge2020017?type=check_update&version=1

Knowledge 2022, 2 287

important point is link prediction. It is one of the most popular algorithms for predicting
connections between two nodes. The relationship can be based on similarity or probability,
but the similarity-based approach is more prevalent in research because it is difficult to find
suitable node features [4].

The goal was to build knowledge for the given use case about graph machine learning
algorithms under GDPR compliance and compare two different approaches by applying
link prediction to graph and table data within three artifacts. Beekeeper evaluated the
results by comparing the forecasts with ground truth (users who provided consent to
analyze their data). So far, the research presents a quantitative and qualitative comparison
of graph structure mining approaches and a case study on know-how development in big
data management.

1.1. Use Case

Beekeeper AG is the partner company for this research, providing the use case. The
company offers a mobile application for corporate target groups to establish a high-quality
communication solution for companies whose employees have limited access to computers
and laptops, such as hotel workers, construction workers, customer service personnel,
etc. The application acts as a social networking platform that enables online collaboration
and communities within the customer’s organization. Frontline employees have fewer
opportunities to consume information online than someone working in front of a computer.
The various streams and groups of employees on the Beekeeper platform ensure that
information is disseminated throughout the organization. Yet, according to Beekeeper [5],
frontline employees spent three hours searching online for information they needed to
do their jobs. It does not only reduce an employee’s productive time, but it can also lead
to a decline in service quality. Thus, knowing how information spreads offline among
employees improves the understanding of the flow of information within the organization
and identifies potentially isolated members of the organization who are not integrated into
corporate communications. Due to GDRP rules, text data cannot be accessed, making text
analytics for suggesting content to peer users impossible. However, anonymized metadata
of user interactions can be used for analysis. Therefore, graph mining techniques are used
for this purpose. Beekeeper would like to evaluate whether machine learning models for
link prediction can provide accurate results for extracting and predicting user relationships
using metadata. The extracted user connections might support the future optimization of
recommendation algorithms to show users content that is likely relevant and/or interesting
to them.

1.2. Research Goals, Questions, and Objectives

The main goal of this research was to investigate whether modelling data in graph
databases and applying graph mining can provide accurate results for extracting and
predicting user relationships in enterprise social networks under the constraints of the
GDPR. In addition, the results of this research and the applied methods were used to
help Beekeeper develop know-how on the implementation of graph databases and graph
machine learning algorithms in the production environment to build the competency
to offer them as a product feature to their customers in the future. Another research
objective was to experiment by applying different supervised and unsupervised machine
learning algorithms to the dataset provided by Beekeeper. Moreover, the research aimed at
comparing two selected methods for predicting user relationships and providing insight
into the advantages and disadvantages of their GDPR-compliant application. The models
were evaluated based on the following aspects:

1. Results of model accuracy
2. Training time
3. Model features
4. Advantages and disadvantages of the models
5. Disadvantages of the individual models

Knowledge 2022, 2 288

6. Model performance on small datasets

The research results contribute to a scientific understanding of the online and offline
flow of information within an enterprise’s social network and provide empirical insights
into how employees are connected and may be connected in the future. Based on the described
objectives, a research question with three sub-questions was defined:

RQ1. To what extent can machine learning algorithms on graphs predict a relationship
between users?

RQ1.1. How accurately can results be obtained for link prediction with in-database
Neo4j algorithms?

RQ1.2. How accurately can open-source libraries such as scikit-learn predict outcomes
for user relationships?

RQ1.3. What are the commonalities, differences, advantages, and disadvantages of the
two technologies?

To answer these research questions, the following artifacts were planned:

• Artifact 1: Building Knowledge Graph-Based on User Interaction
• Artifact 2: Link Prediction with Neo4J Graph Machine Learning Algorithms
• Artifact 3: Link Prediction for User Relationships with scikit-learn

Artifact 1 served as a data preparation phase and allowed us to explore the feasibility
of translating the information around user activity into a graph representation. Once the
data were placed in a graph representation, artifacts 2 and 3 were permitted to apply our
suggested link prediction algorithms.

1.3. Limitations

First and foremost, the research does not entirely focus on delivering the model
parameters for the highest possible accuracy but on providing a know-how development
for the applications of machine learning algorithms under GDPR constraints by using
Beekeeper data.

Beekeeper user activity dataset considered for the period between 2019–2020, which
contains 204 different user events related to user interaction in the platform such as likes
of the content, reading comments, chat activity, login activity, etc. As per the confidential
agreement, neither the name of the customer nor any data-related personal information
can be mentioned in this work. As mentioned above, it was not possible to access and
process non-anonymized user data. Therefore, any hypothesis and conclusions regarding
the textual content of user interactions are excluded from this work. Social networks change
dynamically [6] over time. It is beyond the scope of this work to analyze the extent to which
the frequency of interactions varies over time. However, the goal was to gain procedural
know-how about uncovering and predicting new and existing relationships among users
without analyzing data content solely based on the given graph data structure. The research
on relationships in this article was limited to the user–user context; the study of user–item
relationships, such as users and posts, was not part of this research.

2. State of the Art

The following section presents the state-of-the-art technologies, algorithms, and prin-
ciples related to this research.

2.1. Social Networks

As discussed in the introduction, social networks are not a new phenomenon; evolving
computer technologies enabled a different form than painting on the wall. Boyd and Ellison
defined social networks as follows:

We define social network sites as web-based services that allow individuals to (1) con-
struct a public or semi-public profile within a bounded system, (2) articulate a list of other
users with whom they share a connection, and (3) view and traverse their list of connections
and those made by others within the system [1] (p. 211).

Knowledge 2022, 2 289

Depending on the platform’s functions, users can publish information, such as com-
ment, share or chat with others. Although social networks aim to be accessible to a wide
range of users, members still tend to divide themselves into separate groups based on
factors such as age, location, etc. Social networks do not exist just in private life. Compa-
nies have recognized the need for an organized form of information storage that shapes
work culture [7]. Slack, Confluence, or SharePoint are now an integral part of knowledge
sharing and communication in companies. According to Meske et al., such systems can be
considered enterprise social networks (ESN). ESNs enable internal communication between
employees and different departments for work-related or non-work-related purposes. An
ESN has similar characteristics and features to a traditional social network but focuses
more on knowledge sharing, documentation, and fostering innovation [8]. On the other
hand, Drahošová and Balco have listed aspects of compliance risk, stating that information
leakage or unintentional disclosure of sensitive data can pose a financial and reputational
risk to companies.

A key difference in the purpose of an ESN is that it is not designed to attract new
users, as it is not open to every user with Internet access but only to company employees.
A typical user of an ESN is looking for documents, contact information [2], or perhaps
the expertise of another colleague to get their work done. For example, enabling online
training that is mandatory but does not have to be completed in-person saves time for the
employee and provides more flexibility in administrative tasks. It is especially beneficial
for frontline employees who may not be flexible in their work. Although the purpose of
an ESN is work-related, it is usually supported by companies to allow non-work-related
groups on their platform based on various interests, hobbies, etc., as part of their company
culture. Posting and sharing non-work-related information positively impacts employee
engagement [9]. “Social networks face two problems that lead to difficulties in analyzing
the structure: Incompleteness and Dynamics” [3]. Since social interactions are not static, the
actual structure of the network may be different when the network is observed at another
time lag. Therefore, it is impossible to draw conclusions about the entire network, only
about the observed point in time. The following section discusses how users can form
communities and relationships with each other.

2.2. Community Detection

Community detection is essential for understanding network structure. Although the
concept of a community is not strictly defined [10], it can be applied in various domains.
In the real world, ground truth is often not available [11], making the results of different
community detection algorithms not directly comparable. Communities can be overlapping
or non-overlapping. Overlap allows a person to be a member of multiple communities at
the same time, for example, a person can be a member of swimming, tennis, and book clubs
simultaneously, whereas non-overlap, i.e., disjoint, means the nodes have no other relation-
ships in the network. In recent years, the detection of overlapping communities has become
an important research topic to accurately model complex systems. It is computationally
intensive because finding the optimal clique size in the whole network [12] requires many
mathematical calculations. In addition, the captured community structure also depends on
the algorithm [13]. Thus, applying different algorithms may result in different community
structures due to the underlying mathematics. Furthermore, it may even be possible that no
optimal solution can be found. It is essential to introduce the modularity measure in terms
of community detection, which is defined by Newman [14] as follows: “The modularity
is, up to a multiplicative constant, the number of edges falling within groups minus the
expected number in an equivalent network with edges placed at random.” In other words,
the modularity measure in networks indicates how good a network clustering is. Yang et al.
noted that it remains challenging to evaluate the accuracy of proposed algorithms because
communities in many real-world networks are small and therefore, likely to be biased and
not objectively defined. Moreover, they pointed out that communities play an essential role
in spreading epidemics or innovations. Social ties and their dynamics within the network

Knowledge 2022, 2 290

shape the flow of information [15]. Therefore, it is vital to consider the connection between
nodes and communities and the dynamics of interactions [13] in the network, validating it
from time to time.

2.3. Link Prediction

Link prediction is another crucial research area in network research. Zareie and
Sakellariou [16] define link prediction as follows: “Link prediction is the estimation of the
likelihood of link formation between each pair of nodes for which a link does not exist.”
Zareie and Sakellariou distinguished different approaches to calculating the missing links.
One is the similarity-based method, which considers the structural similarities within the
network for the pair of nodes. The other is the probabilistic method, which requires node
and link characteristics to calculate the probability of the existing link. It was also pointed
out that the similarity-based method is more prevalent in research as it is difficult to find
accurate node features. Predicting connections in social networks is often challenging
when data are sparse, i.e., there are usually more “no” connections in a network than
connections between nodes. It leads to an imbalance within a dataset. Downsampling is an
excellent approach to balancing the classes so non-links and links are equally represented
but can lead to a loss of patterns. Based on its success in collaborative filtering, Menon and
Elkan [17] proposed the matrix factorization technique for predicting links by combining
latent features of nodes and edges.

2.4. Graph Databases

Graph databases store data in a graph structure that consists of nodes and relationships,
and both can have properties. They are considered NoSQL databases, and the information
is stored in an entity-relationship model. It is the main difference between it and a relational
database, as the data are not stored in tables. In the industry, graph databases are often
used for fraud detection, recommendation systems, or social network modeling, to name
a few examples. Neo4j has become one of the most popular and market-leading graph
databases. Graph mining algorithms help to discover patterns in a graph. Various distance
and similarity measures are used to extract the features and structure of the nodes and
relationships. Distance is used to calculate how far apart the nodes are, and the similarity
measures are used to compare how much they are similar. Liben-Nowell and Kleinberg [6]
(p. 1001) overview the different distance measures and how they are calculated.

When considering how nodes are connected in a network, there are two common
approaches. One is called a “random network,” in which one node is connected to another
with equal probability. The distribution of the degrees of a node follows the Poisson
distribution, which means most nodes have the same number of connections. The other is a
so-called scale-free network where node distribution follows the power law [18], meaning
most nodes have fewer connections, and very few nodes have a high number of links to
other nodes. Broido and Clauset [19] stated that social networks are weakly scale-free,
meaning the power-law distribution is generally absent in social networks. Therefore, it
is crucial to extract the degree of distribution and connectivity of the network in order to
define the network’s fundamental properties. Neo4j divides graph mining algorithms into
four main categories: Centrality, Community detection, Similarity, and Pathfinding.

The mentioned algorithms are defined by Neo4j as follows: Centrality algorithms are
used to determine the importance of distinct nodes in a network. Community detection
algorithms are used to evaluate how groups of nodes are clustered or partitioned and their
tendency to strengthen or break apart. Similarity algorithms compute the similarity of pairs
of nodes using different vector-based metrics. Pathfinding algorithms find the shortest
path between two or more nodes or evaluate the availability and quality of paths [20].
Furthermore, centrality, community detection, and similarity algorithms are considered
unsupervised since no ground truth is available.

Knowledge 2022, 2 291

2.5. Machine Learning on Graphs

Machine learning algorithms on graphs have attracted a lot of attention in both re-
search and industry. Graph databases are becoming increasingly popular in customer
relationship management, product recommendation, and fraud detection. During the COVID-
19 pandemic, graphical neural networks became known for modeling epidemic spread [21].
There are three standard machine learning algorithms: unsupervised, supervised, and
semi-supervised. They can all be applied to graphs depending on the use case. Neo4j of-
fers in-database machine learning algorithms, but other vendors are on the market. The
following algorithms are considered node embedding algorithms, which compute a low-
dimensional vector representation of the nodes that can be used as features for further
machine learning algorithms.

GraphSAGE. The algorithm was presented as an inductive method that generates
node embeddings by sampling and aggregating features from the local neighborhood
of the node instead of whole graph classification and can be trained in both supervised
and unsupervised ways [22]. The method applies a new approach as existing methods
follow transduction, which requires all nodes to be present in the graph during train-
ing. Hamilton et al. [23] discussed how most methods for graph convolutional network
architectures are not suitable for scaling large graphs and classifying entire graphs.

Node2vec. The algorithm is a semi-supervised method that learns feature represen-
tations for nodes. The algorithm was proposed by Grover and Leskovec [24] and uses
random walks to extract node features in a low-dimensional space. It is used to compute
node pair similarities or link predictions.

Fast Random Projection (Fast RP). The algorithm is a node embedding algorithm based
on the Johnson–Lindenstrauss lemma, that preserves the high-dimensional distances of
points in a low-dimensional Euclidean space [25].

Another common type of machine learning algorithm is supervised learning. A ma-
chine learning problem can be considered supervised if labels are available to train the data
set and predict the outcome. The basic idea of supervised machine learning models is to use
a trained model with input variables xi to predict the outcome for ŷ, the output variable.

Link prediction. One of the main purposes of link prediction algorithms is to predict
relationships between nodes, that have two main purposes: one is to extract existing
relationships that are not present in the graph but are likely to be present in real life. The
other purpose is to predict future relationships, such as which item will be purchased next.
Neo4j’s in-database link prediction algorithm fits a logistic regression to make predictions
and is currently only applicable to heterogeneous graphs where the nodes represent the
same entity types. The feature vectors can be obtained by node embedding techniques. The
relationship types are usually binary-labeled with 0 and 1; 0 means there is no relationship,
and 1 means there is a relationship between two nodes.

Node classification. The algorithms predict a categorical class or probability to which
class a given node likely belongs. In other words, the algorithm predicts the label of the
node and assigns the one with the highest probability. Neo4j’s node classification uses
logistic regression to calculate the probability of belonging to a particular class.

Another popular topic related to machine learning algorithms on graphs is graph
classification. The problem is approached by recognizing that the nodes are graph instances,
resulting in a hierarchical graph [26]. StellarGraph provides two algorithms: for supervised
problems Graph Convolutional Network and for unsupervised problems DeepGraph
Convolutional Neural Network [27].

3. Materials and Methods

In this section, the methodology and applied technologies of the research are presented.
The main methodology of this work is to solve the business problem stated in the use case
by applying a design-oriented approach [28] to know-how development.

Knowledge 2022, 2 292

Machine learning projects can be designed in several ways, depending on the use
case and complexity of the project. In this research we used the following framework [29]
(p. 33):

1. Look at the big picture.
2. Get the data.
3. Discover and visualize the data to gain insights.
4. Prepare the data for machine learning algorithms.
5. Select a model and train it.
6. Fine tune your model.
7. Present your solution.
8. Launch, monitor, and maintain your system.

In our research, an 80:20 split was used for training and testing the model, and the
model was validated with, for example, a cross-validation method.

The above-mentioned steps are also valid as an underlying concept for machine
learning projects on graph data.

3.1. Data Preparation

Beekeeper provided the data in a CSV file format. It was then extracted using API
endpoints and methods from an existing cloud tenant of a customer on the Beekeeper
platform. As per the agreement with Beekeeper, the client cannot be named, only that
they are in the transportation industry. The data were pre-cleaned by Beekeeper. Table 1
contains the list of variables in the dataset. The dataset included ~70 million rows with a
size of 13 GB of data for a period from 1 January 2019 to 28 February 2020.

Table 1. Variable Names and Types of Original Dataset.

Variable Name Description Data Type

_inserted_at The time of insert into the
database Datetime

id Anonymized ID of the
interaction String

occurred_at The time of user interaction
happened Datetime

user_id Anonymized ID of the user String

is_bot True or False whether the interaction was performed by
a bot Boolean

client Client of user device String
client_version Client version of user device String

path API endpoint of interaction String
normalized_path Normalized API endpoint String

method
response_status HTTP Response Status Code String

turnaround_time Turnaround time String

The CSV file containing the data was loaded and converted using Python. The vari-
ables in Table 2 were selected to be loaded from the original dataset. Due to performance
issues and hardware limitations, the number of rows in the original dataset was reduced to
10 million.

Table 2. Selected Variables Based on Data Model.

Variable Name Description Data Type

occured_at The time the user interaction
happened Datetime

user_id Anonymized ID of the user Integer
client Client of user device Integer
path API endpoint of interaction String

normalized_path Normalized API endpoint String

Knowledge 2022, 2 293

3.2. Data Transformation

The goal of the transformation steps was to perform descriptive analysis and model
the user–item interactions in the Neo4j database. The transformation started with the
decomposition of the API endpoints. The resource paths contained the type of interaction
element (for example, post, comment, etc.) and its ID. The paths were split into separate
columns, with each path element forming a single column. Some of the paths contained
multiple-element IDs, of which only the first was considered, as there was no indication of
how the remaining IDs were used.

In the further transformation steps, the following elements were used: ‘Streams’,
‘Posts’, ‘Groups’, ‘Conversations’, ‘Users’, ‘Comments.’ Since these API endpoints were
relevant to the planned artifacts, the rest of the provided API endpoints were not considered
further in this research. The hashed users were converted using the label encoder module
of scikit-learn to simplify handling user IDs in an integer format. Based on Beekeeper’s
API documentation, the method values were combined with the last element of the API
path. The step resulted in a descriptive form of the interactions between the user and the
elements in the platform. The next transformation was to convert the exchanges into a
format that would allow them to have a binary value. This was necessary for two reasons:
first, to make it easier to load the interactions into Neo4j, and second, to easily calculate
the cumulative sum values for the different items, for example, the number of likes on a
post. A separate transformation was required to extract users’ chat interactions; hence, we
filtered the decomposed API path by chat interactions with its participating users. Since the
dataset contained multiple chat IDs in some rows in one record for one user, only the first
chat ID was extracted for simplicity. The data frame was stored separately, containing the
two user IDs chatting with each other and the chat ID in one row. This data frame was not
loaded into Neo4j, but it was used for clustering, degree distribution, and artifact design.

3.3. Data Model in Neo4j

The data frame was loaded with the binary values of the interactions into Neo4j as a
CSV file, using various scripts to obtain the predefined data model, which is demonstrated
in Figure 1. The properties and data types of the data model are listed in Table 3. The values
in the CSV column represent the column names of the CSV file from which the data are
loaded into Neo4j. Due to slow performance in Neo4j during the load process, 750.000 rows
were used to establish the data model. The properties and data types were set with the
Cypher scripts.

Table 3. Data Model Node Details.

Node Type Property CSV Column Data Type

Post post_id posts Integer
User user_id user_id Integer

Group group_id groups Integer
Comment comment_id comments Integer

Stream stream_id streams Integer

The rows of CSV data with KNOWS relationships were loaded into the graph database,
where the nodes and relationships were assigned as per the columns. The count property
is a dummy value that has the purpose of loading the relationship based on the binary
variables in the CSV file.

Weights can be calculated for the relationships between users. However, in this
research, relationship weights are not considered because the interest of the work is to
extract and predict static relationships. Nevertheless, the data model is designed in such
a way that it enables querying of the relationship weights in case of future interest. The
graph database includes 5446 nodes and 250,569 relationships in total after the load.

Knowledge 2022, 2 294
Knowledge 2022, 2, FOR PEER REVIEW 9

Figure 1. Data Model in Neo4j.

Table 3. Data Model Node Details.

Node Type Property CSV Column Data Type
Post post_id posts Integer
User user_id user_id Integer

Group group_id groups Integer
Comment comment_id comments Integer

Stream stream_id streams Integer

The rows of CSV data with KNOWS relationships were loaded into the graph data-
base, where the nodes and relationships were assigned as per the columns. The count
property is a dummy value that has the purpose of loading the relationship based on the
binary variables in the CSV file.

Weights can be calculated for the relationships between users. However, in this re-
search, relationship weights are not considered because the interest of the work is to ex-
tract and predict static relationships. Nevertheless, the data model is designed in such a
way that it enables querying of the relationship weights in case of future interest. The
graph database includes 5446 nodes and 250,569 relationships in total after the load.

3.4. Exploratory Analysis
After the data transformation, an exploratory analysis was performed on the data.

Two main techniques were used: descriptive analysis to learn about the main patterns and
extract statistical features from the data. The study also includes the visualization of time

Figure 1. Data Model in Neo4j.

3.4. Exploratory Analysis

After the data transformation, an exploratory analysis was performed on the data.
Two main techniques were used: descriptive analysis to learn about the main patterns
and extract statistical features from the data. The study also includes the visualization
of time series and applying dimensionality reduction techniques with unsupervised ma-
chine learning. Since networks change dynamically, the results were only meant for the
given sample. The data sample includes 1st January 2019; due to New Year’s wishes,
increased user activity is probably present. Thus, this period seems to be suitable to capture
several relationships.

The unsupervised part was performed using Neo4j’s GraphSAGE in-database graph
neural network algorithm and the TensorBoard Embedding Projector tool. Table 4 shows
an overview of the number of unique values and the frequency of each variable, e.g., that
there were 4008 different users in the selected snapshot of the data and who was the most
active user. Figure 2 demonstrates that the most frequent user interaction is retrieving
posts, as the distribution of the user interactions and the GET_posts is the most common
type in the sample. This interaction type means that a user is loading a post. Posts are part
of a stream and are visible to all members of the given stream. The users tend to behave
passively [30], i.e., they consume information rather than actively responding, sharing, or
liking content. Posting likes, comments, etc., is considered active behavior, and the primary
active behavior on the network is liking content, which is the POST_like.

Table 4. Statistical Overview of the Dataset Sample (First 15 million records).

User_Id Client Client_Version Path Normalized Path Method

unique 4008 5 45 138835 150 6
top - app-ios 4.23.6b49 /status /{streamid}/posts GET
freq 104637 8664127 8551708 1607679 2770088 12943606

Knowledge 2022, 2 295

Knowledge 2022, 2, FOR PEER REVIEW 10

series and applying dimensionality reduction techniques with unsupervised machine
learning. Since networks change dynamically, the results were only meant for the given
sample. The data sample includes 1st January 2019; due to New Year’s wishes, increased
user activity is probably present. Thus, this period seems to be suitable to capture several
relationships.

The unsupervised part was performed using Neo4j’s GraphSAGE in-database graph
neural network algorithm and the TensorBoard Embedding Projector tool. Table 4 shows
an overview of the number of unique values and the frequency of each variable, e.g., that
there were 4008 different users in the selected snapshot of the data and who was the most
active user. Figure 2 demonstrates that the most frequent user interaction is retrieving
posts, as the distribution of the user interactions and the GET_posts is the most common
type in the sample. This interaction type means that a user is loading a post. Posts are part
of a stream and are visible to all members of the given stream. The users tend to behave
passively [30], i.e., they consume information rather than actively responding, sharing, or
liking content. Posting likes, comments, etc., is considered active behavior, and the pri-
mary active behavior on the network is liking content, which is the POST_like.

Table 4. Statistical Overview of the Dataset Sample (First 15 million records).

 User_Id Client Client_Version Path Normalized Path Method
unique 4008 5 45 138835 150 6

top - app-ios 4.23.6b49 /status /{streamid}/posts GET
freq 104637 8664127 8551708 1607679 2770088 12943606

Furthermore, Figure 2 indicates that users show relatively passive behavior in their
platform usage. The x-axis represents the user interaction, and the y-axis the frequency of
the interaction. Interactions starting with CUMSUM and OPTIONS_read, OP-
TIONS_likes, and OPTIONS_like are not relevant for this research and were further ig-
nored.

Figure 2. Frequencies of User Interactions.

Figure 2. Frequencies of User Interactions.

Furthermore, Figure 2 indicates that users show relatively passive behavior in their
platform usage. The x-axis represents the user interaction, and the y-axis the frequency of
the interaction. Interactions starting with CUMSUM and OPTIONS_read, OPTIONS_likes,
and OPTIONS_like are not relevant for this research and were further ignored.

3.5. Artifact Design

The artifacts were envisioned based on the research question. The research aims to
compare the designed artifacts with which methodology is suitable for applying machine
learning algorithms. Artifact 1 aims to extract the current structure of relationships. Artifact
2 demonstrates how in-database link prediction algorithms can be used for graphs. Artifact
3 illustrates the application of machine learning for link predictions as tabular structured
data, not graphs. It is important to note that the provided dataset neither has many original
features nor does it have categorical variables relevant to the planned artifacts. It means,
for tabular data, it must be considered that the prediction for nodes is made in pairs per
row, so the model needs pairwise computed features. The Neo4j algorithm considers the
graph structure of the data. Thus, individual node features can be used for the model.

3.5.1. Artifact 1: Building Knowledge Graph-Based on User Interaction

This artifact aims to extract the current relationships of users—who knows whom—within
Neo4j. The who knows whom type of relationship is not explicitly present on the Beekeeper
platform, and second, there is no baseline data to confirm the relationships. It only results
in an assumption based on the premise that when two or more users have a conversation,
there is a need for information exchange, either personal or professional. Beekeeper could
verify whether the two users are in the same department or organizational unit in the
company, which helped to determine whether it is likely that they know each other or not.
Due to the limitations of the GDPR, this research does not attempt to label the relationship
as professional or private between the users. Therefore, only the chat interactions were
used, as there is less evidence in other interactions. It cannot be clearly defined whether
users liked or commented on the content because they knew the user or were more likely
to respond to the content itself. There are interactions in the dataset which did not involve
a second user. Those interactions were excluded from the artifact as they could have been

Knowledge 2022, 2 296

caused by the network dynamics not capturing the other user. If the other user did not
respond to or never read the message, it is considered irrelevant to Artifact 1.

During the design and prototyping, the user node represents the user, the conversation
represents the chat, and the three interactions represent what the user exactly did. The first
interaction with the chat item is always GET_messages. This interaction always occurs
regardless of whether the user replies or reads the message.

The total number of users in the database was 2819 during the experiment. A query
was designed (Figure 3) that resulted in a new relationship, KNOWS, which was written
into the database. The extraction of the GET_Messages type of interaction was sufficient to
design this artifact since it was the most frequent interaction. These interactions capture
that the user is interacting with messages. However, the user is not necessarily reacting to
a chat message in the form of a reply. Self-loop relationships are to be excluded from the
model since the start and end nodes of the relationship are the same user. These had to be
deleted since users are unlikely to ever go into a conversation with themselves. Figure 4
shows the process steps for Artifact 1.

Knowledge 2022, 2, FOR PEER REVIEW 11

3.5. Artifact Design
The artifacts were envisioned based on the research question. The research aims to

compare the designed artifacts with which methodology is suitable for applying machine
learning algorithms. Artifact 1 aims to extract the current structure of relationships. Arti-
fact 2 demonstrates how in-database link prediction algorithms can be used for graphs.
Artifact 3 illustrates the application of machine learning for link predictions as tabular
structured data, not graphs. It is important to note that the provided dataset neither has
many original features nor does it have categorical variables relevant to the planned arti-
facts. It means, for tabular data, it must be considered that the prediction for nodes is made
in pairs per row, so the model needs pairwise computed features. The Neo4j algorithm
considers the graph structure of the data. Thus, individual node features can be used for
the model.

3.5.1. Artifact 1: Building Knowledge Graph-Based on User Interaction
This artifact aims to extract the current relationships of users—who knows whom—

within Neo4j. The who knows whom type of relationship is not explicitly present on the Bee-
keeper platform, and second, there is no baseline data to confirm the relationships. It only
results in an assumption based on the premise that when two or more users have a conversa-
tion, there is a need for information exchange, either personal or professional. Beekeeper could
verify whether the two users are in the same department or organizational unit in the com-
pany, which helped to determine whether it is likely that they know each other or not. Due to
the limitations of the GDPR, this research does not attempt to label the relationship as profes-
sional or private between the users. Therefore, only the chat interactions were used, as there
is less evidence in other interactions. It cannot be clearly defined whether users liked or com-
mented on the content because they knew the user or were more likely to respond to the con-
tent itself. There are interactions in the dataset which did not involve a second user. Those
interactions were excluded from the artifact as they could have been caused by the network
dynamics not capturing the other user. If the other user did not respond to or never read the
message, it is considered irrelevant to Artifact 1.

During the design and prototyping, the user node represents the user, the conversa-
tion represents the chat, and the three interactions represent what the user exactly did.
The first interaction with the chat item is always GET_messages. This interaction always
occurs regardless of whether the user replies or reads the message.

The total number of users in the database was 2819 during the experiment. A query
was designed (Figure 3) that resulted in a new relationship, KNOWS, which was written
into the database. The extraction of the GET_Messages type of interaction was sufficient
to design this artifact since it was the most frequent interaction. These interactions capture
that the user is interacting with messages. However, the user is not necessarily reacting to
a chat message in the form of a reply. Self-loop relationships are to be excluded from the
model since the start and end nodes of the relationship are the same user. These had to be
deleted since users are unlikely to ever go into a conversation with themselves. Figure 4
shows the process steps for Artifact 1.

Figure 3. Cypher Query “who knows who”.

// Artifact_1_User_Knows_User_Query

MATCH (u1:User)<-[:GET_MESSAGES]-(Conversation)-

[:GET_MESSAGES]->(u2:User)

WITH u1, u2, Conversation

WHERE NOT u1.ser_id = u2.user_id

MATCH (u1)-[k:KNOWS]-(u2)

RETURN u1, u2, count(k) as weight;

Figure 3. Cypher Query “who knows who”.

Knowledge 2022, 2, FOR PEER REVIEW 12

Figure 4. Process Diagram for Artifact 1.

3.5.2. Artifact 2: Link Prediction with Neo4J Graph Machine Learning Algorithms
Artifact 2 represents a predictive model for link prediction using Neo4j’s in-database

algorithms. The designed artifact is used to predict user relationships by applying trans-
ductive learning and fitting logistic regression to predict probabilities for the user rela-
tionship. For prototyping, we used Neo4j’s Graph Data Science Library version 1.7 algo-
rithms. Artifact 2 preserves the graph structure of the data. Training and testing of the
models were executed internally in the database, i.e., every transaction happens in the
database, and no external algorithms or programming languages were used. The design
of the artifact can be divided into eight main steps.

Step 1 is optional. As there might be changes in the data in a production environment,
it needs to be ensured that there are no self-loops in the graph. Therefore, deleting the
relations KNOWS is essential.

Step 2 is to create an undirected graph with the relationship KNOWS and the label
User—the query results in a graph model, which is stored in memory.

Steps 3 and 4 create a training graph and a test graph from the graph model. The
graph model is split into a training graph and a test graph. The algorithm labels the rela-
tionships, whether they are an existing or not-existing connections between the nodes.
The given parameters of the splitting algorithm ensure no overlap between the set of train-
ing and testing relationships. Since the ratio of relationships is highly imbalanced due to
social networks, the negativeSamplingRatio parameter for class imbalance is 1.0 by de-
fault but can also be calculated manually.

The Neo4j documentation summarizes the purpose of relationship splitting as deter-
mining the label as positive or negative for each training or test sample. Identify the pair
of nodes for which the relationship features are calculated.

Step 5. Engineering a feature using degree centrality. The algorithm uses Freeman’s
formula [31] (p. 231) to calculate the centrality of a graph. A single node in an undirected
graph is the number of neighbors [31] (p. 220) with which there is a connection. The fol-
lowing equation is used to calculate the degree of nodes, where 𝑝 is a single node and 𝑎(𝑝, 𝑝) = 1 if and only if 𝑝 and 𝑝 are connected by a line, 0 otherwise. 𝐶ሺ𝑝 ሻ = ∑ 𝑎ሺ𝑝ୀଵ , 𝑝) (1)

The equation means the higher the number, the more connections a node has. A value
of 0 means, the node is isolated from the network. There are other centrality measures,
such as PageRank, eigenvector centrality, or betweenness centrality.

Step 6: Triangle count. The triangle count algorithm [32] is a community detection
algorithm determining the number of connected triangles per node in an undirected
graph by using the following equation to calculate the triangle count:

Figure 4. Process Diagram for Artifact 1.

3.5.2. Artifact 2: Link Prediction with Neo4J Graph Machine Learning Algorithms

Artifact 2 represents a predictive model for link prediction using Neo4j’s in-database
algorithms. The designed artifact is used to predict user relationships by applying transduc-
tive learning and fitting logistic regression to predict probabilities for the user relationship.
For prototyping, we used Neo4j’s Graph Data Science Library version 1.7 algorithms. Arti-
fact 2 preserves the graph structure of the data. Training and testing of the models were
executed internally in the database, i.e., every transaction happens in the database, and no
external algorithms or programming languages were used. The design of the artifact can
be divided into eight main steps.

Step 1 is optional. As there might be changes in the data in a production environment,
it needs to be ensured that there are no self-loops in the graph. Therefore, deleting the
relations KNOWS is essential.

Knowledge 2022, 2 297

Step 2 is to create an undirected graph with the relationship KNOWS and the label
User—the query results in a graph model, which is stored in memory.

Steps 3 and 4 create a training graph and a test graph from the graph model. The graph
model is split into a training graph and a test graph. The algorithm labels the relationships,
whether they are an existing or not-existing connections between the nodes. The given
parameters of the splitting algorithm ensure no overlap between the set of training and
testing relationships. Since the ratio of relationships is highly imbalanced due to social
networks, the negativeSamplingRatio parameter for class imbalance is 1.0 by default but
can also be calculated manually.

The Neo4j documentation summarizes the purpose of relationship splitting as deter-
mining the label as positive or negative for each training or test sample. Identify the pair of
nodes for which the relationship features are calculated.

Step 5. Engineering a feature using degree centrality. The algorithm uses Freeman’s
formula [31] (p. 231) to calculate the centrality of a graph. A single node in an undirected
graph is the number of neighbors [31] (p. 220) with which there is a connection. The fol-
lowing equation is used to calculate the degree of nodes, where pk is a single node and
a(pi, pk) = 1 if and only if pi and pk are connected by a line, 0 otherwise.

CD(pk) =
n

∑
i=1

a(pi, pk) (1)

The equation means the higher the number, the more connections a node has. A value
of 0 means, the node is isolated from the network. There are other centrality measures,
such as PageRank, eigenvector centrality, or betweenness centrality.

Step 6: Triangle count. The triangle count algorithm [32] is a community detection
algorithm determining the number of connected triangles per node in an undirected graph
by using the following equation to calculate the triangle count:

T(u) =
1
2 ∑

v∈Su

zuv

zuv + m
(|S(u)|+ |S(v)|) (2)

The equation results in an integer representing the connection of three nodes, where
each node is connected to another. One node can belong to several triangles.

Step 7: Computing Louvain. The Louvain algorithm optimizes the modularity of
communities, proposed by a research team at the University of Louvain [33]. The algorithm
extracts the hierarchical community structure, meaning one node or even several commu-
nities can be a part of several communities, allowing overlaps. The algorithm is considered
unsupervised. However, since companies are organized into hierarchical structures, this
research dataset contains no information on such structures. The Louvain algorithm might
help reveal information about the company’s organizational structure, which can be used
to predict relationships.

Step 8 is to apply a node embedding algorithm, which extracts the nodes with their
features as vectors. Node embedding algorithms perform two significant actions: first,
the network is constructed as a similarity matrix, and second, a dimension reduction
technique is applied [34]. The extracted vectors will be used as numerical features to train
the link prediction algorithms. Neo4j offers three types of algorithms for node embedding:
GraphSAGE [23], Fast Random Projection [34], and Node2vec [24]. Chen et al. found
evidence that their proposed Fast Random Projection (Fast RP) algorithm is 4000× faster in
computational times than other state-of-the-art algorithms, such as Node2vec or DeepWalk.
Here, Fast RP will be used as a node embedding algorithm since it is the only algorithm in
production quality offered by Neo4j.

The algorithm optimizes the similarity matrix and utilizes a very sparse random
projection. The extended version of the algorithm allows two additional parameters: fea-
tureProperties and propertyDimension. The feature properties are the previously computed
features such as triangle count and communityId. Table 5 demonstrates the applied pa-

Knowledge 2022, 2 298

rameter values. The feature properties were adjusted; the rest of the parameters remained
unchanged and were used as defaults in the documentation.

Table 5. Parameters Used for the Fast RP Algorithm.

Parameter Name Parameter Value

propertyDimension 45
embeddingDimension 250

featureProperties [“communityId”, “triangles”, ‘degree’],
relationshipTypes [“KNOWS_REMAINING”]
iterationWeights [0, 0, 1.0, 1.0]

normalizationStrength 0.05
mutateProperty ‘fastRP_Embedding_Extended’

In step 9, the link prediction algorithm is applied using the node embeddings from
step 8. We adjusted the negativeClassWeight parameter to 1 to balance the classes for
a 1:1 ratio; validationFold stands for stratified k-fold cross-validation. The concurrency
value is the number of threads used to run the algorithm. The penalty is used for logistic
regression, indicating how strongly the model should be penalized for misclassifications;
0 is no penalty, and 1 is a very strong penalty. The remaining parameters were used as
specified in the product documentation [35]. Table 6 summarizes the parameters that were
used with the link prediction algorithm.

Table 6. Link Prediction Model Parameters.

Parameter Name Parameter Value

trainRelationshipType ‘KNOWS_TRAINGRAPH’
testRelationshipType ‘KNOWS_TESTGRAPH’,

modelName ‘FastRP-embedding
featureProperties [fastRP_Embedding_Extended],
validationFolds 5

negativeClassWeight 1.0
randomSeed 2
concurrency 1

params
[{penalty: 0.5, maxEpochs: 1000},
{penalty: 1.0, maxEpochs: 1000},
penalty: 0.0, maxEpochs: 1000}]

The link prediction algorithm fits a logistic function and sigmoid function with values
between 0 and 1. Logistic regression predicts the probability of the label for a given input
variable. The threshold is 0.45 for a provided label, i.e., if the probability is less than 0.45,
the label is predicted to be 0. Otherwise, it is expected to be 1.

Figure 5 demonstrates the process steps described for prototype Artifact 2. The pre-
dicted positive relationships are written back into the database. These can be visualized
with Neo4j Bloom or downloaded in a JSON or CSV format. The topN parameter defines
the top 30 relationships, and the threshold determines the probability score above which
the relationships are returned, in this case, 0.45. However, both topN and the threshold
are arbitrary.

Knowledge 2022, 2 299

Knowledge 2022, 2, FOR PEER REVIEW 14

Table 6. Link Prediction Model Parameters.

Parameter Name Parameter Value
trainRelationshipType ‘KNOWS_TRAINGRAPH’
testRelationshipType ‘KNOWS_TESTGRAPH’,

modelName ‘FastRP-embedding
featureProperties [fastRP_Embedding_Extended],
validationFolds 5

negativeClassWeight 1.0
randomSeed 2
concurrency 1

params
[{penalty: 0.5, maxEpochs: 1000},
{penalty: 1.0, maxEpochs: 1000},
penalty: 0.0, maxEpochs: 1000}]

The link prediction algorithm fits a logistic function and sigmoid function with val-
ues between 0 and 1. Logistic regression predicts the probability of the label for a given
input variable. The threshold is 0.45 for a provided label, i.e., if the probability is less than
0.45, the label is predicted to be 0. Otherwise, it is expected to be 1.

Figure 5 demonstrates the process steps described for prototype Artifact 2. The predicted
positive relationships are written back into the database. These can be visualized with Neo4j
Bloom or downloaded in a JSON or CSV format. The topN parameter defines the top 30 rela-
tionships, and the threshold determines the probability score above which the relationships
are returned, in this case, 0.45. However, both topN and the threshold are arbitrary.

Figure 5. Process Diagram for Artifact 2.

3.5.3. Artifact 3: Link Prediction for User Relationships with Scikit-Learn
The purpose of Artifact 3 is to create a predictive model for link prediction using

scikit-learn. This artifact demonstrates a model architecture for machine learning without
using Neo4j.

By taking a different approach in the design, this artifact treats the data as tabular
and makes the predictions pairwise for the nodes. Therefore, the model requires different
features than Artifact 2. They need to be engineered for the node pairs. Python is used as
the main programming language for prototyping, feature engineering, NetworkX, and
predictive modeling with the scikit-learn libraries. The first 15.000.000 rows were loaded
for the training model, and the test set was created from the 15.000.001–30.000.000 rows.

Step 1 is a recap of the transformation steps. The data were transformed to split the
API path into columns and label-encoded the user IDs as variables for easier handling.
The dataset was filtered only for the variable conversations where only one user was in
the chat. The users were paired based on conversation ID, and since only the relationship
link and not the weighting was of interest, only the first interaction of the conversation

Figure 5. Process Diagram for Artifact 2.

3.5.3. Artifact 3: Link Prediction for User Relationships with Scikit-Learn

The purpose of Artifact 3 is to create a predictive model for link prediction using
scikit-learn. This artifact demonstrates a model architecture for machine learning without
using Neo4j.

By taking a different approach in the design, this artifact treats the data as tabular
and makes the predictions pairwise for the nodes. Therefore, the model requires different
features than Artifact 2. They need to be engineered for the node pairs. Python is used
as the main programming language for prototyping, feature engineering, NetworkX, and
predictive modeling with the scikit-learn libraries. The first 15,000,000 rows were loaded
for the training model, and the test set was created from the 15,000,001–30,000,000 rows.

Step 1 is a recap of the transformation steps. The data were transformed to split the
API path into columns and label-encoded the user IDs as variables for easier handling. The
dataset was filtered only for the variable conversations where only one user was in the chat.
The users were paired based on conversation ID, and since only the relationship link and
not the weighting was of interest, only the first interaction of the conversation was retained.
The resulting data frame contains the two user IDs and the conversation ID. The column
weights are not further considered.

Step 2 uses NetworkX and matrices to prepare the dataset for predictive modeling.
NetworkX is used to create an undirected graph from the resulted data frame of step 1.
This graph is converted next into an adjacency matrix to be able to extract negative and
positive relationships.

The binary values of the adjacency matrix will be the labels of the dataset for the
predictive modeling. The matrix is converted into a data frame with each user pair’s
extracted 0 or 1 label. The self-connections, for example, 1 to 1 and duplicated relationships,
were excluded from the data frame as it does not matter whether 1 knows 2 or 2 knows 1;
the relationship is required to be captured only once. Because self-relationship provides no
valuable information for the model, these values were also excluded.

Step 3 is engineering features, as only features for pairwise scores are considered for
the model since the data are treated as tabular data. The features are engineered with the
algorithms of the NetworkX library, under the link prediction algorithms [36]. We selected
the following algorithms for feature engineering:

Preferential attachment. Preferential attachment is a probabilistic algorithm that calcu-
lates the probability that a new node will connect to another node based on the number of
its connections [37].

The algorithm uses the following formula, where ki is the degree of the i-th node:

∏(ki) =
ki

∑j k j
(3)

Knowledge 2022, 2 300

Resource allocation index. The resource allocation index is a similarity-based measure-
ment algorithm indicating the proximity of two pairs of nodes [38] by using the following
equation, where x and y are not directly connected, where Γ(x) is the set of neighbors of
node x, and k(z) the degree of the common neighbor nodes:

sxy = ∑
z∈Γ(x)∩Γ(y)

1
k(z)

(4)

If the result of the equation is close to 0, it means the nodes are not close to each other.
Jaccard coefficient. The Jaccard coefficient is a similarity measure defined by Paul

Jaccard. It compares the number of shared neighbors with the total number of neighbors of
the two nodes indicated by A and B in the equation:

J(A, B) =
|A ∩ B|
|A ∪ B| (5)

The result can have a value between 0 and 1; the closer the number is to 1, the more
similar the nodes are.

Adamic–Adar index. The Adamic–Adar algorithm is a similarity-based measure calcu-
lating the proximity of nodes by logarithmizing the degrees of common nodes of x and
y [39]. The formula of the resource allocation index is very similar to that of Adamic and
Adar [38]. Zhou et al. pointed out that the difference between the two indices is insufficient
in the case of a small degree, but when the degree in the network is large, the resource
allocation index performs better.

sxy = ∑
z∈Γ(x)∩Γ(y)

1
log k(z)

(6)

The listed algorithms are all available in the NetworkX library. The four features are
computed for each node pair; the results of the algorithms are stored in a data frame. The
last step is to merge all the data frames into one, resulting in the user pairs, four feature
columns, and a label column with 0 and 1.

In step 4, the data are downsampled based on the matrix from step 2. The node
pairs with 0 labels are randomly resampled to the same number as the positive samples.
Downsampling was necessary because the data set was unbalanced due to the high number
of non-connections between nodes. Applying downsampling may result in pattern loss,
but otherwise, the model would conclude that there are mainly no relationships between
users and would fail to learn to predict the positive ones.

Step 5 is the construction of the predictive machine learning model with scikit-learn.
Only Random Forest Classifier is discussed because it performed better than the other
algorithms. Random Forest [40] is an ensemble learning method used for binary classifi-
cation in this context, and belongs to the family of decision tree algorithms. The working
mechanism of random forest is that individual models are trained with bootstrap sampling
for prediction, forming an ensemble of trees. In the end, the main class determines the
winning label for the model by voting. Random forests have gained popularity within
the machine learning community because they are robust, perform well on large datasets,
and handle many variables. The negative point is that they are sensitive to unbalanced
classes, as the tuning of hyperparameters will likely lead to overfitting the model. Figure 6
demonstrates the process steps of Artifact 3.

Knowledge 2022, 2 301

Knowledge 2022, 2, FOR PEER REVIEW 16

last step is to merge all the data frames into one, resulting in the user pairs, four feature
columns, and a label column with 0 and 1.

In step 4, the data are downsampled based on the matrix from step 2. The node pairs
with 0 labels are randomly resampled to the same number as the positive samples.
Downsampling was necessary because the data set was unbalanced due to the high num-
ber of non-connections between nodes. Applying downsampling may result in pattern
loss, but otherwise, the model would conclude that there are mainly no relationships be-
tween users and would fail to learn to predict the positive ones.

Step 5 is the construction of the predictive machine learning model with scikit-learn.
Only Random Forest Classifier is discussed because it performed better than the other
algorithms. Random Forest [40] is an ensemble learning method used for binary classifi-
cation in this context, and belongs to the family of decision tree algorithms. The working
mechanism of random forest is that individual models are trained with bootstrap sam-
pling for prediction, forming an ensemble of trees. In the end, the main class determines
the winning label for the model by voting. Random forests have gained popularity within
the machine learning community because they are robust, perform well on large datasets,
and handle many variables. The negative point is that they are sensitive to unbalanced
classes, as the tuning of hyperparameters will likely lead to overfitting the model. Figure
6 demonstrates the process steps of Artifact 3.

Figure 6. Process Diagram for Artifact 3.

Figure 6. Process Diagram for Artifact 3.

4. Results
4.1. Resulting Artifacts
4.1.1. Artifact 1: Who Knows Who Knowledge Graph

Based on the chat interactions, the first resulting artifact is a labeled property graph
created by Neo4j that shows who knows whom in the network. The visual layer of the
artifact is represented with Neo4j Bloom in Figure 7. The resulting query can be saved in
a JSON and CSV file format, meaning the users and their relationships. Filtering of the
individual users or different coloring of the nodes is possible. Non-existing connections are
not displayed in the tabular representation, only the positive ones.

Knowledge 2022, 2, FOR PEER REVIEW 17

4. Results
4.1. Resulting Artifacts
4.1.1. Artifact 1: Who knows who Knowledge Graph

Based on the chat interactions, the first resulting artifact is a labeled property graph
created by Neo4j that shows who knows whom in the network. The visual layer of the
artifact is represented with Neo4j Bloom in Figure 7. The resulting query can be saved in
a JSON and CSV file format, meaning the users and their relationships. Filtering of the
individual users or different coloring of the nodes is possible. Non-existing connections are
not displayed in the tabular representation, only the positive ones.

4.1.2. Artifact 2: Link Prediction using Neo4j in-Database Algorithms
The second resulting artifact is a predictive machine learning model using Neo4j in-

database algorithms. The visual representation of the results was done using Neo4j
Bloom, which displays the predicted relationships (see Figure 7). The database contains
2819 user nodes, which were used to build the model. Artifact 2 is a probabilistic model
providing the 30 highest predicted probabilities. They are above the defined threshold of
0.45. In other words, the red lines in Figure 7 represent predicted relationships where the
probability value is above 0.45, indicating that users know each other, and these are written
as different relationships in the graph. With Neo4j Bloom, the KNOWS_PREDICTED rela-
tionship is visualized on the layer of artifact 1 to better understand where the predicted
relationships are located within the network. The prediction probability is the same for
both users, i.e., with an undirected graph, the direction is not considered. Hence, the prob-
ability value is the same regardless of whether user A knows user B or vice versa. There-
fore, there are two arrows for one relationship in the visualization in Neo4j Bloom. The
resulted visualization can be exported in different formats, for example, CSV, JSON, or
PNG.

Figure 7. Labeled Property Graph Visualized with Neo4j Bloom (left) and Predicted Relationships
with Link Prediction (right). Screenshot from Neo4j Bloom of the USER-KNOWS-USER query.

4.1.3. Artifact 3: Link Prediction with Scikit-Learn
The third resulting artifact is a predictive machine learning model with scikit-learn

using its Random Forest Classifier algorithm. The model is called the Train Model. The
model was trained on a downsampled dataset with 3605 positive and 3605 negative sam-
ples, using a mixed split ratio of 80:20 for the training and validation set. A grid search was
applied to look for the best model parameter that reached the highest accuracy. These pa-
rameters were used with the test dataset to evaluate the model’s performances with accu-
racy, precision, and recall metrics. These metrics are built-in. The prediction result is a vec-
tor with values between 0 and 1, representing the predicted classes for the user pairs.

Figure 7. Labeled Property Graph Visualized with Neo4j Bloom (left) and Predicted Relationships
with Link Prediction (right). Screenshot from Neo4j Bloom of the USER-KNOWS-USER query.

4.1.2. Artifact 2: Link Prediction Using Neo4j In-Database Algorithms

The second resulting artifact is a predictive machine learning model using Neo4j in-
database algorithms. The visual representation of the results was done using Neo4j Bloom,
which displays the predicted relationships (see Figure 7). The database contains 2819 user
nodes, which were used to build the model. Artifact 2 is a probabilistic model providing
the 30 highest predicted probabilities. They are above the defined threshold of 0.45. In other
words, the red lines in Figure 7 represent predicted relationships where the probability
value is above 0.45, indicating that users know each other, and these are written as different

Knowledge 2022, 2 302

relationships in the graph. With Neo4j Bloom, the KNOWS_PREDICTED relationship is
visualized on the layer of artifact 1 to better understand where the predicted relationships
are located within the network. The prediction probability is the same for both users, i.e.,
with an undirected graph, the direction is not considered. Hence, the probability value is
the same regardless of whether user A knows user B or vice versa. Therefore, there are two
arrows for one relationship in the visualization in Neo4j Bloom. The resulted visualization
can be exported in different formats, for example, CSV, JSON, or PNG.

4.1.3. Artifact 3: Link Prediction with Scikit-Learn

The third resulting artifact is a predictive machine learning model with scikit-learn
using its Random Forest Classifier algorithm. The model is called the Train Model. The
model was trained on a downsampled dataset with 3605 positive and 3605 negative samples,
using a mixed split ratio of 80:20 for the training and validation set. A grid search was
applied to look for the best model parameter that reached the highest accuracy. These
parameters were used with the test dataset to evaluate the model’s performances with
accuracy, precision, and recall metrics. These metrics are built-in. The prediction result
is a vector with values between 0 and 1, representing the predicted classes for the user
pairs. Optionally, the model can return probability scores instead of binary categories. The
main reasons the random forest algorithm over the neural network was preferred were its
architecture and tuning of the parameters. Finding the best performing model for a neural
network requires much more parameter knowledge than random forests. Therefore, neural
networks may perform better in academia. Still, for production implementation, random
forest is likely the better choice because the results are easier to understand and explain to
a broad audience how they work.

4.2. Evaluation of Artifacts

Several evaluation metrics were used for the machine learning models, with metrics
for precision, recall, accuracy, and area under the curve (AUC). Beekeeper was asked to
provide feedback on the relationships sampled from Artifact 1, and the prediction results
for Artifact 2 and Artifact 3.

Evaluating the artifacts with ground truth data in the customer tenant allows a better
understanding of model quality and improvement of data labels. The evaluation was
done based on the labeling of Beekeeper on the predicted user relationship types. The
relationships from Neo4j were downloaded in CSV format. This CSV file was formatted to
extract the user IDs and weights from the string values in three columns. Since the user IDs
are hashed in the original format, the user IDs used in Neo4J were “mapped back” to the
original hashed IDs.

The validation sample included 3373 users, including the user pairs, depending on the
artifact, the probability score, and predicted classes. Beekeeper assigned to these user pairs
the job position division, business unit, user status, and relationship type. The column
status of the users means whether a user is still an active user or has been suspended.
The relationship type is in the validation column, indicating the users’ relationship: cross-
departmental communication, colleagues’ interaction, manager interaction, security report,
or unknown. We received the validation file from Beekeeper on 2 December 2021.

The precision-recall area under the curve (AUCPR) displays the precision and recall va-
riety at different thresholds, and the goal is to have the area under the PR curve maximized,
which represents a good classifier model.

Precision (P) is defined as the number of true positives (TP) over the number of true
positives plus the number of false positives (FP):

P =
TP

TP + FP
(7)

Knowledge 2022, 2 303

Recall (R) is defined as the number of true positives (TP) over the number of true
positives plus the number of false negatives (Fn):

R =
TP

TP + Fn
(8)

The so-called baseline average precision mean score (AP) has a value of 0.5, and
the perfect classifier 1. Under 0.5, the classifier is not considered performant. The AP is
calculated with the following equation:

AP = Σn(Rn − Rn−1)Pn (9)

Accuracy is a good measure when classes are balanced, but a social network usually
has fewer existing connections than non-existing connections, so AUCPR is a more ap-
propriate metric for evaluation. Neo4j can only return AUCPR as an evaluation metric,
so Artifact 3 was also evaluated using the precision-recall curve to compare the results.
Since the data were balanced, accuracy as a metric is applicable. However, balancing the
data required a trade-off for pattern loss, which must be considered when interpreting
the results.

4.2.1. Evaluation of Artifact 1

The sample included 300 users for Artifact 1, which was sent to Beekeeper to validate
the user relationships, whether the users knew each other or not.

The resulted model is time-dependent, and the captured network structure could be
different in a different time frame, such as during the vacation or vacation season.

The validation by Beekeeper confirmed that out of 300 relationships, 278 exist. Twenty-
two relationships could not be found in the system. Almost one-third of the validated
relationships were classified as incident reporting. Interesting is the unknown relationship
status because these users had chat interaction. However, there is no evidence that they
would know each other in the system. Looking at whether the users were suspended, only
2 relationships out of 22 are unknown because of the suspended status.

4.2.2. Evaluation of Artifact 2

We first evaluated with the AUCPR metric using cross-validation defined in the
validationFolds stem parameter, so no separate validation dataset has been used for the
model. Furthermore, the data contained only one week of time lag. Therefore, creating an
additional validation set besides the test and training split would not have been meaningful.
Hence, 120 user relationships were sent to Beekeeper for validation.

Table 7 represents the results of the Link Prediction algorithm extracted from the Neo4j
Desktop. TrainGraphScore here means the AUCPR score. The results for prediction might
be saved either as CSV or in JSON format. The algorithm returns the winning model with
the penalty and epoch values, along with the highest train and test scores. The epoch
stands for how many times the data has been trained, and the penalty is the value for the
L2 regularization.

Table 7. Train and Test Results of Link Prediction Model with Neo4j Fast RP Algorithm.

Model Name Parameter Value
Winning Model TrainGraphScore TestGraphScore

Max Epochs Penalty

myModel 1000 0.5 0.352 0.344

The predicted results can be streamed with the stream mode of the link prediction
algorithm, allowing the extraction of node pairs and predicted connections. Then, the

Knowledge 2022, 2 304

streamed user pairs were provided again to Beekeeper for further validation, to determine
whether more evidence could be found that these connections exist in the client’s system.

The test graph scores 0.344, indicating that the model performs moderately poorly
overall, but it is considered acceptable due to the absence of the original features.

Beekeeper’s validation of predicted relationships confirms that all the relationships
are accurate and exist in the system. Thus, although the predictive models have an average
low AUCPR score, they are performing well from a business domain perspective, as all the
relationships exist, and there are no unknown labels. However, the data sent to Beekeeper
for validation contained 60 duplicated user pairs, which means only 60 out of 120 users
could be considered.

The model predicted relationships with colleagues’ interaction labels with the highest
number of user pairs: 56. Followed by security reports with 48 user pairs, and manager
interaction with the lowest number of user pairs, with 16.

4.2.3. Evaluation of Artifact 3

Artifact 3 was evaluated with the visual observation of the precision-recall curve of
the Train Model and its confusion matrix, using 5-fold cross-validation for the grid search.
After the data transformation, the test dataset included 7556 samples, with 3778 negative
and 3778 positive relationships. Using a test dataset ensures that, in the case of model
tuning based on the results with the validation data, the tuned model can be evaluated with
unseen data. The test dataset was created using the original dataset’s 15–30 million rows.

The correlation matrix (see Table 8) of the downsampled features shows no strong
linear correlation between the variables. We computed it on the data frame of the Train
Model before splitting the data into test and train sets. The strongest positive correlation
between the resource allocation index and the Adamic–Adar index is reasonable due to the
similarity of the underlying mathematics of the algorithms. The Jaccard similarity score has
the lowest correlation coefficient with the other features. There is no negative correlation
present in the model’s feature set.

Table 8. Feature Correlation Matrix of Artifact 3 of Training and Validation Data.

Feature Name Adamic_Score Jaccard_Score Resource_All_ScorePref_Att_Score

adamic_score 1.000000 0.369536 0.934130 0.661546
jaccard_score 0.369536 1.000000 0.138377 0.011785

resource_all_score 0.934130 0.138377 1.000000 0.741458
pref_att_score 0.661546 0.011785 0.741458 1.000000

Random forests and other decision tree-based algorithms are not affected by multi-
collinearity [41] (p. 268). Therefore, the features can be used in the current setup without
further testing multicollinearity.

Figure 8 shows that the model classifies a lot of false positives, although the classes
have been balanced. Looking at the precision-recall curves of both datasets, we see the
precision values decrease with an increasing recall rate, and after a specific value, they
seem to be more balanced, taking the value of 0.5.

Figure 9 represents the PR curve of the Train Model for prediction on the validation
dataset with the random forest classifier. The plot shows that the classifier is performing
at its baseline. The model’s performance with the test dataset uses the random forest
classifier. The average precision score (AP) is 0.51, which can be considered moderate for
both models. The visual representation of the PR curves shows evidence that the classifier
is not performing better than random guessing and is performing well only at a low recall
rate, meaning the returned results are precise; however, the number of these values is only
a few.

Knowledge 2022, 2 305

Knowledge 2022, 2, FOR PEER REVIEW 20

based on the results with the validation data, the tuned model can be evaluated with un-
seen data. The test dataset was created using the original dataset’s 15–30 million rows.

The correlation matrix (see Table 8) of the downsampled features shows no strong
linear correlation between the variables. We computed it on the data frame of the Train
Model before splitting the data into test and train sets. The strongest positive correlation
between the resource allocation index and the Adamic–Adar index is reasonable due to
the similarity of the underlying mathematics of the algorithms. The Jaccard similarity score
has the lowest correlation coefficient with the other features. There is no negative correla-
tion present in the model’s feature set.

Random forests and other decision tree-based algorithms are not affected by multi-
collinearity [41] (p. 268). Therefore, the features can be used in the current setup without
further testing multicollinearity.

Figure 8 shows that the model classifies a lot of false positives, although the classes
have been balanced. Looking at the precision-recall curves of both datasets, we see the
precision values decrease with an increasing recall rate, and after a specific value, they
seem to be more balanced, taking the value of 0.5.

Table 8. Feature Correlation Matrix of Artifact 3 of Training and Validation Data.

Figure 8 shows that the model classifies a lot of false positives, although the classes

have been balanced. Looking at the precision-recall curves of both datasets, we see the
precision values decrease with an increasing recall rate, and after a specific value, they
seem to be more balanced, taking the value of 0.5.

Figure 8. Confusion Matrix of Train Model with Validation Dataset (left) and Test Dataset (right),
based on subsampling of chat interactions.

Figure 9 represents the PR curve of the Train Model for prediction on the validation
dataset with the random forest classifier. The plot shows that the classifier is performing
at its baseline. The model’s performance with the test dataset uses the random forest clas-
sifier. The average precision score (AP) is 0.51, which can be considered moderate for both
models. The visual representation of the PR curves shows evidence that the classifier is not
performing better than random guessing and is performing well only at a low recall rate,
meaning the returned results are precise; however, the number of these values is only a
few.

Feature Name Adamic_Score Jaccard_Score Resource_All_Score Pref_Att_Score
adamic_score 1.000000 0.369536 0.934130 0.661546
jaccard_score 0.369536 1.000000 0.138377 0.011785

resource_all_score 0.934130 0.138377 1.000000 0.741458
pref_att_score 0.661546 0.011785 0.741458 1.000000

Figure 8. Confusion Matrix of Train Model with Validation Dataset (left) and Test Dataset (right),
based on subsampling of chat interactions.

Knowledge 2022, 2, FOR PEER REVIEW 21

Figure 9. Precision-Recall Curve of Train Model on Validation Dataset (left) and Test Dataset (right).

Max_Depth determines the depth of the tree, and N_Estimators are the maximum
number of trees to grow. Table 9 displays the model results with the maximum accu-
racy and AUC, returning their hyperparameters and the highest probability score
found with grid search. The difference between AUC and accuracy is that the AUC
considers the probability scores of the predictions, while accuracy considers the cor-
rectness of the predicted classes. Accuracy is, in this case, applicable because the classes
were balanced out. However, the precision-recall metrics are more appropriate for imple-
menting the algorithm in a production environment due to the class imbalance in real-life
data.

Table 9. Artifact 3 Random Forest Classifier Train Model Results.

Parameter Name Validation Dataset Test Dataset
 Max_Depth N_Estimator Max_Depth N_Estimator

Grid best parameter (max. accuracy) 10 50 5 10
Grid best parameter (max. AUC) 10 100 5 50

Score Name
Grid best score (accuracy) 0.516 0.516

Grid best score (AUC) 0.511 0.512
Sample size 7210 7556

Although the hyperparameters are different, the best scores, the mean best scores of
the cross-validation, are similar for both datasets.

Table 10 demonstrates the results of the model metrics with the validation and test
datasets of the Train Model. The high recall rate means that our model is predicting the
true positive classes well, but the low precision rate indicates the high number of false
positives, which we have seen in the confusion matrices.

Table 10. Evaluation Metrics of Train Model (based on balanced data).

Parameter Name Validation Dataset Test Dataset
Accuracy 0.516 0.490
Precision 0.510 0.494

Recall 0.876 0.858

Table 11 displays the key comparative numerical aspects of Artifact 2 and Artifact 3.
The validation results by Beekeeper will be in the Discussion chapter of this work. The
average precision (AP Score) in scikit-learn is the same metric as the AUCPR score yielded
by the algorithm of Neo4j. Therefore, based on these metrics, the average precision of the
two artifacts is comparable.

Figure 9. Precision-Recall Curve of Train Model on Validation Dataset (left) and Test Dataset (right).

Max_Depth determines the depth of the tree, and N_Estimators are the maximum
number of trees to grow. Table 9 displays the model results with the maximum accuracy and
AUC, returning their hyperparameters and the highest probability score found with grid
search. The difference between AUC and accuracy is that the AUC considers the probability
scores of the predictions, while accuracy considers the correctness of the predicted classes.
Accuracy is, in this case, applicable because the classes were balanced out. However,
the precision-recall metrics are more appropriate for implementing the algorithm in a
production environment due to the class imbalance in real-life data.

Table 9. Artifact 3 Random Forest Classifier Train Model Results.

Parameter Name Validation Dataset Test Dataset
Max_Depth N_Estimator Max_Depth N_Estimator

Grid best parameter (max. accuracy) 10 50 5 10
Grid best parameter (max. AUC) 10 100 5 50

Score Name
Grid best score (accuracy) 0.516 0.516

Grid best score (AUC) 0.511 0.512
Sample size 7210 7556

Although the hyperparameters are different, the best scores, the mean best scores of
the cross-validation, are similar for both datasets.

Table 10 demonstrates the results of the model metrics with the validation and test
datasets of the Train Model. The high recall rate means that our model is predicting the true
positive classes well, but the low precision rate indicates the high number of false positives,
which we have seen in the confusion matrices.

Knowledge 2022, 2 306

Table 10. Evaluation Metrics of Train Model (based on balanced data).

Parameter Name Validation Dataset Test Dataset

Accuracy 0.516 0.490
Precision 0.510 0.494

Recall 0.876 0.858

Table 11 displays the key comparative numerical aspects of Artifact 2 and Artifact 3.
The validation results by Beekeeper will be in the Discussion chapter of this work. The
average precision (AP Score) in scikit-learn is the same metric as the AUCPR score yielded
by the algorithm of Neo4j. Therefore, based on these metrics, the average precision of the
two artifacts is comparable.

Table 11. Comparison of Artifact 2 and 3 of the trained models.

Model Name AUC
(Average Precision) Training Time Model Features Model Performance on

Small Datasets

Artifact 2
with Fast RP

(Trained Graph)

0.352 (Table 8)
[n.a.] 758 ms 3–features

per node N/A

Artifact 3 with Random
Forest Classifier

(Validation Data)

0.511 (Table 10)
[0.50] (Figure 9) 13 084 ms 4–features pairwise Higher AP

5. Discussion
5.1. Insights from the Artifact Evaluation

Analyzing the feature quality revealed that using node embeddings for predictive
models is likely more suitable, as engineered numerical features have been primarily zeros.
Artifacts 1 and 2 have demonstrated their advantages for visualizing using a graph database,
and Artifact 3 has presented an alternative solution without using a graph database. The
two approaches to link prediction were compared, one as a graph and the other as tabular
data, showing the similarities and differences between the advantages and disadvantages
of the models.

We compared the performance of Artifact 2 (link prediction using Neo4j Graph Data
Science Library, GDSL) with Artifact 3 (link prediction using scikit-learn). Neo4j only
allowed AUC as a measure, which can be considered an average precision where the
average is over different classification thresholds. In terms of AUC, Artifact 3 is better.
However, the precision of Artifact 3 is still random (50%) in the balanced dataset because
the baseline probability is 50%. This means that the prediction is not useable in practice.
Additionally, we observed that Artifact 3 is much slower in computation time. We noticed
that Artifact 3 uses relationship features between nodes instead of individual node features.
It compares the set of standard user interactions (chats). However, it is clear that better, more
selective features need to be found, either structurally or by looking at the actual content.

5.2. Lessons Learned in the Study Case (Beekeeper)

The work presented in this research has a relevant impact on Beekeeper’s business
direction and the potential development of future features around user behavior.

GDPR data has consistently added value to the Beekeeper business model since the
company guarantees total privacy to its users. However, it also represents a limitation to
improving user experience through simple recommendations or analyzing user behavior
for the purpose of understanding the final users better because the company cannot openly
analyze the user data without their consent.

This study shows the first milestones to understanding users’ behavior at Beekeeper
under a GDPR context. It shows the need to find a balance between privacy and user data
consent to reach higher levels of precision. Moreover, this opens the door to developing
potential strategies to convince customers to provide consent to improve Beekeeper services.

Knowledge 2022, 2 307

Beekeeper keeps closer contact with its customers through a customer success depart-
ment, which empowers users to provide constant feedback and identify valuable use cases
that may qualify to be implemented as a new feature in Beekeeper.

Once a potential use case or feature qualifies for development, there is a need to dis-
cover a prototype or proof of concept. This happens typically in the industry in two phases:

1. Outsourcing the prototype to industry partners and consultants such as Price Water-
house Coopers, Accenture, etc.

2. Internal research and development or prototyping through an academic partner.

In practice, outsourcing the prototype leads to more costs since integration partners
add a tag price on the advisory services and implementation and push the negotiation to
have a percentage of the revenue generated by the newly implemented feature. This is a
natural effect in industry collaborations or partnerships to justify the costs of allocating
resources on both sides. However, the latter mostly happens when the client does not know
how a new technology works.

In practice, Beekeeper has noticed the benefits of exploring potential proofs of con-
cepts in advance with academic partners, leading to internal know-how. This enables the
company to collect more feedback from end-users. In other words, it enables Beekeeper to
fine-tune potential new features several times in a cost-effective way.

Once the feature gains maturity and is ready to be implemented, it may be outsourced
to industry partners or consultants. Nevertheless, the requirements are more precise, which
saves costs in prototyping and human capital expertise in the long run.

Developing know-how in advance allows startups or companies such as Beekeeper
with limited human expertise resources to have a better negotiation position with partner
integrators or consultants since the limitations, risks, and disadvantages are mostly known
in advance. Therefore, it leads to a more effective solution and collaboration.

5.3. Summary and Outlook

The article compared two different approaches to predicting user relationships in
an enterprise social network without knowing the content, only by evaluating the graph
structure. The main objective of this research was to find evidence of whether machine
learning can be applied to GDPR-compliant data with accurate results. The study provided
descriptive insights using statistical analysis and used experiments to show potential ways
for predictive modeling of user relationships.

Our further recommendation is to try different features and run the models on other
customers’ data or time frames. Combining StellarGraph with Keras delivered promising
results when combined with Neo4j node embeddings. Therefore, experimenting with
graph neural networks was suggested for future research.

This study offered many lessons in the application of graph mining and added to
know-how development, but the predictive results were below expectations. More research
is needed in feature engineering and selection for link prediction based on structural graph
features that anonymize and hide content. Behavioral modelling, liking, and commenting
activities could be considered as future research topics. Commonly linked nodes for other
types of interactions (posts, likes, comments) as features should also be studied.

Author Contributions: R.K.: Experiments, analysis, and prototype implementation as part of her
master’s thesis, M.K.: Research design, interpretation, guidance, manuscript structure, conclusions,
outlook, and further research, J.A.M.: Data analysis, experiments’ interpretation, Beekeeper business
perspective, data anonymization, data extraction, and data validator with the Beekeeper customer to
enable Artifact 2 and 3 evaluations. All authors have read and agreed to the published version of
the manuscript.

Funding: Beekeeper provided financing to give GDPR-compliant data for this research study and
extra hours of data engineering to extract the needed information from the core Beekeeper cloud
solution through a series of anonymization steps.

Knowledge 2022, 2 308

Data Availability Statement: The primary RAW dataset and files to reproduce the study can be
found at https://zenodo.org/record/6309436#.Yh0a_hPMIeZ.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boyd, D.M.; Ellison, N.B. Social Network Sites: Definition, History, and Scholarship. J. Comput.-Mediat. Commun. 2007, 13,

210–230. [CrossRef]
2. Heim, S.; Yang, S. Content Attractiveness in Enterprise Social Networks. In Proceedings of the 2nd European Conference on

Social Media (ecsm 2015), Porto, Portugal, 9–10 July 2015; pp. 199–206. Available online: https://www.webofscience.com/wos/
woscc/full-record/WOS:000404225700025 (accessed on 11 October 2021).

3. Wang, P.; Xu, B.; Wu, Y.; Zhou, X. Link Prediction in Social Networks: The State-of-the-Art. arXiv 2014, arXiv:physics/1411.5118.
Available online: http://arxiv.org/abs/1411.5118 (accessed on 29 March 2021). [CrossRef]

4. Rajaraman, A.; Ullman, J.D.; Leskovec, J. (Eds.) Mining Social-Network Graphs. In Mining of Massive Datasets, 2nd ed.; Cambridge
University Press: Cambridge, UK, 2014; pp. 325–383. [CrossRef]

5. Beekeeper—The Secure Employee App. Beekeeper. Available online: https://www.beekeeper.io/en/home-copy/ (accessed on 1
June 2021).

6. Liben-Nowell, D.; Kleinberg, J. The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 2007, 58, 1019–1031.
[CrossRef]

7. Meske, C.; Wilms, K.; Stieglitz, S. Enterprise Social Networks as Digital Infrastructures-Understanding the Utilitarian Value of
Social Media at the Workplace. Inf. Syst. Manag. 2019, 36, 350–367. [CrossRef]

8. Drahošová, M.; Balco, P. The Benefits and Risks of Enterprise Social Networks. In Proceedings of the 2016 International
Conference on Intelligent Networking and Collaborative Systems (INCoS), Ostrava, Czech Republic, 7–9 September 2016; pp.
15–19. [CrossRef]

9. Luo, N.; Guo, X.; Lu, B.; Chen, G. Can non-work-related social media use benefit the company? A study on corporate blogging
and affective organizational commitment. Comput. Hum. Behav. 2018, 81, 84–92. [CrossRef]

10. Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [CrossRef]
11. Yang, Z.; Algesheimer, R.; Tessone, C.J. A Comparative Analysis of Community Detection Algorithms on Artificial Networks. Sci.

Rep. 2016, 6, 1–18. [CrossRef]
12. Ding, Z.; Zhang, X.; Sun, D.; Luo, B. Overlapping Community Detection based on Network Decomposition. Sci. Rep. 2016, 6,

24115. [CrossRef]
13. Rosvall, M.; Delvenne, J.-C.; Schaub, M.T.; Lambiotte, R. Different approaches to community detection. arXiv 2019,

arXiv:Physics/1712.06468. [CrossRef]
14. Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [CrossRef]
15. Harush, U.; Barzel, B. Dynamic patterns of information flow in complex networks. Nat. Commun. 2017, 8, 2181. [CrossRef]
16. Zareie, A.; Sakellariou, R. Similarity-based link prediction in social networks using latent relationships between the users. Sci.

Rep. 2020, 10, 20137. [CrossRef]
17. Menon, A.K.; Elkan, C. Link Prediction via Matrix Factorization. In Machine Learning and Knowledge Discovery in Databases;

Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6912, pp.
437–452. [CrossRef]

18. Barabási, A.-L.; Pósfai, M. Network Science; Cambridge University Press: Cambridge, UK, 2016; Available online: http://barabasi.
com/networksciencebook/ (accessed on 5 November 2021).

19. Broido, A.D.; Clauset, A. Scale-free networks are rare. Nat. Commun. 2017, 10, 1017. [CrossRef]
20. Algorithms—Neo4j Graph Data Science. Neo4j Graph Database Platform. Available online: https://neo4j.com/docs/graph-

data-science/1.7/algorithms/ (accessed on 15 October 2021).
21. Panagopoulos, G.; Nikolentzos, G.; Vazirgiannis, M. Transfer Graph Neural Networks for Pandemic Forecasting. arXiv 2021,

arXiv:2009.08388. Available online: http://arxiv.org/abs/2009.08388 (accessed on 15 October 2021).
22. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. arXiv 2020, arXiv:1706.02216. Available

online: http://arxiv.org/abs/1706.02216 (accessed on 13 December 2020).
23. Hamilton, W.L.; Ying, R.; Leskovec, J. Representation Learning on Graphs: Methods and Applications. arXiv 2017,

arXiv:1709.05584.
24. Grover, A.; Leskovec, J. node2vec: Scalable Feature Learning for Networks. arXiv 2016, arXiv:1607.00653. Available online:

http://arxiv.org/abs/1607.00653 (accessed on 15 April 2021).
25. Fast Random Projection—Neo4j Graph Data Science. Neo4j Graph Database Platform. Available online: https://neo4j.com/

docs/graph-data-science/1.7/algorithms/fastrp/ (accessed on 15 October 2021).
26. Li, M.; Wang, X.; Gao, K.; Zhang, S. A Survey on Information Diffusion in Online Social Networks: Models and Methods.

Information 2017, 8, 118. [CrossRef]
27. Graph Classification—StellarGraph 1.2.1 Documentation. Available online: https://stellargraph.readthedocs.io/en/stable/

demos/graph-classification/ (accessed on 15 October 2021).

https://zenodo.org/record/6309436#.Yh0a_hPMIeZ
http://doi.org/10.1111/j.1083-6101.2007.00393.x
https://www.webofscience.com/wos/woscc/full-record/WOS:000404225700025
https://www.webofscience.com/wos/woscc/full-record/WOS:000404225700025
http://arxiv.org/abs/1411.5118
http://doi.org/10.1007/s11432-014-5237-y
http://doi.org/10.1017/CBO9781139924801.011
https://www.beekeeper.io/en/home-copy/
http://doi.org/10.1002/asi.20591
http://doi.org/10.1080/10580530.2019.1652448
http://doi.org/10.1109/INCoS.2016.76
http://doi.org/10.1016/j.chb.2017.12.004
http://doi.org/10.1016/j.physrep.2009.11.002
http://doi.org/10.1038/srep30750
http://doi.org/10.1038/srep24115
http://doi.org/10.1002/9781119483298.ch4
http://doi.org/10.1073/pnas.0601602103
http://doi.org/10.1038/s41467-017-01916-3
http://doi.org/10.1038/s41598-020-76799-4
http://doi.org/10.1007/978-3-642-23783-6_28
http://barabasi.com/networksciencebook/
http://barabasi.com/networksciencebook/
http://doi.org/10.1038/s41467-019-08746-5
https://neo4j.com/docs/graph-data-science/1.7/algorithms/
https://neo4j.com/docs/graph-data-science/1.7/algorithms/
http://arxiv.org/abs/2009.08388
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1607.00653
https://neo4j.com/docs/graph-data-science/1.7/algorithms/fastrp/
https://neo4j.com/docs/graph-data-science/1.7/algorithms/fastrp/
http://doi.org/10.3390/info8040118
https://stellargraph.readthedocs.io/en/stable/demos/graph-classification/
https://stellargraph.readthedocs.io/en/stable/demos/graph-classification/

Knowledge 2022, 2 309

28. Österle, H.; Becker, J.; Frank, U.; Hess, T.; Karagiannis, D.; Krcmar, H.; Loos, P.; Mertens, P.; Oberweis, A.; Sinz, E.J. Memorandum
Zur Gestaltungsorientierten Wirtschaftsinformatik. Available online: http://www.alexandria.unisg.ch/Publikationen/71074
(accessed on 5 May 2021). (In German) [CrossRef]

29. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ed.; O’Reilly Media, Inc.: Newton, MA, USA,
2019. Available online: https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ (accessed on 5
December 2021).

30. Escobar-Viera, C.G.; Shensa, A.; Bowman, N.D.; Sidani, J.E.; Knight, J.; James, A.E.; Primack, B.A. Passive and Active Social
Media Use and Depressive Symptoms Among United States Adults. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 437–443. [CrossRef]

31. Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [CrossRef]
32. Becchetti, L.; Boldi, P.; Castillo, C.; Gionis, A. Efficient semi-streaming algorithms for local triangle counting in massive graphs. In

Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27
August 2008; Association for Computing Machinery: New York, NY, USA; pp. 16–24. [CrossRef]

33. Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008,
2008, P10008. [CrossRef]

34. Chen, H.; Sultan, S.F.; Tian, Y.; Chen, M.; Skiena, S. Fast and Accurate Network Embeddings via Very Sparse Random Projection.
arXiv 2019, arXiv:1908.11512. Available online: http://arxiv.org/abs/1908.11512 (accessed on 21 October 2021).

35. Link Prediction—Neo4j Graph Data Science. Available online: https://neo4j.com/docs/graph-data-science/1.7/algorithms/ml-
models/linkprediction/ (accessed on 5 November 2021).

36. Link Prediction—NetworkX 2.6.2 Documentation. Available online: https://networkx.org/documentation/stable/reference/
algorithms/link_prediction.html (accessed on 16 November 2021).

37. Barabasi, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [CrossRef]
38. Zhou, T.; Lu, L.; Zhang, Y.-C. Predicting Missing Links via Local Information. Eur. Phys. J. B 2009, 71, 623–630. [CrossRef]
39. Adamic, L.A.; Adar, E. Friends and neighbors on the Web. Soc. Netw. 2003, 25, 211–230. [CrossRef]
40. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
41. Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [CrossRef]

http://www.alexandria.unisg.ch/Publikationen/71074
http://doi.org/10.1007/BF03372838
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
http://doi.org/10.1089/cyber.2017.0668
http://doi.org/10.1016/0378-8733(78)90021-7
http://doi.org/10.1145/1401890.1401898
http://doi.org/10.1088/1742-5468/2008/10/P10008
http://arxiv.org/abs/1908.11512
https://neo4j.com/docs/graph-data-science/1.7/algorithms/ml-models/linkprediction/
https://neo4j.com/docs/graph-data-science/1.7/algorithms/ml-models/linkprediction/
https://networkx.org/documentation/stable/reference/algorithms/link_prediction.html
https://networkx.org/documentation/stable/reference/algorithms/link_prediction.html
http://doi.org/10.1126/science.286.5439.509
http://doi.org/10.1140/epjb/e2009-00335-8
http://doi.org/10.1016/S0378-8733(03)00009-1
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/s10462-011-9272-4

	Introduction
	Use Case
	Research Goals, Questions, and Objectives
	Limitations

	State of the Art
	Social Networks
	Community Detection
	Link Prediction
	Graph Databases
	Machine Learning on Graphs

	Materials and Methods
	Data Preparation
	Data Transformation
	Data Model in Neo4j
	Exploratory Analysis
	Artifact Design
	Artifact 1: Building Knowledge Graph-Based on User Interaction
	Artifact 2: Link Prediction with Neo4J Graph Machine Learning Algorithms
	Artifact 3: Link Prediction for User Relationships with Scikit-Learn

	Results
	Resulting Artifacts
	Artifact 1: Who Knows Who Knowledge Graph
	Artifact 2: Link Prediction Using Neo4j in-Database Algorithms
	Artifact 3: Link Prediction with Scikit-Learn

	Evaluation of Artifacts
	Evaluation of Artifact 1
	Evaluation of Artifact 2
	Evaluation of Artifact 3

	Discussion
	Insights from the Artifact Evaluation
	Lessons Learned in the Study Case (Beekeeper)
	Summary and Outlook

	References

