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Abstract: The objective of this study was to examine whether the coupling of a land-use change (LUC)
model with a carbon-stock accounting approach and participatory procedures can be beneficial in a
data-limited environment to derive implications for environmental management. Stakeholder-based
LUC scenarios referring to different storylines of agricultural intensification and reforestation were
simulated to explore their impact on above-ground carbon (AGC) for a period of twenty years
(2009–2029). The watershed of Mae Sa Mai, Northern Thailand was used as a case study for this
purpose. Coupled model simulations revealed that AGC stocks could be increased by up to 1.7 Gg
C through expansion of forests or orchard areas. A loss of up to 0.4 Gg C would occur if vegetable
production continue to expand at the expense of orchard and fallow areas. The coupled model
approach was useful due to its moderate data demands, enabling the comparison of land-use
types differing in AGC build-up rates and rotation times. The scenario analysis depicted clear
differences in the occurrence of LUC hotspots, highlighting the importance of assessing the impact
of potential future LUC pathways at the landscape level. The use of LUC scenarios based on local
stakeholder scenarios offer a higher credibility for climate mitigation strategies but also underline the
need to co-design policy frameworks that acknowledge the heterogeneity of stakeholder needs and
environmental management frameworks.

Keywords: Northern Thailand; land-use change; above-ground carbon; model soft-coupling;
stakeholder-based scenarios

1. Introduction

Land cover and land-use change are some of the most important drivers of global environmental
degradation, often negatively affecting ecosystem functionality and local livelihoods [1]. In general,
‘land cover’ describes the observed biophysical attributes of the earth’s land surface, whereas ‘land-
use’ refers to the exploitation of land cover caused by humans [2]. For the purpose of this study,
we use the term ‘land-use change (LUC)’ to refer to both land cover and land-use change. With the
rise of the Anthropocene, land-use changes have been particularly rapid and extensive in tropical
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environments, leading to the expansion of agricultural areas and the change from traditional farming to
intensified cash crop production systems [3,4]. Climate mitigation initiatives, on the other hand, aim to
reduce the loss of terrestrial carbon pools caused by land-use change and propagate environmental
interventions that can sustain long-term carbon sinks [4–6]. Whether a landscape serves as a long-term
carbon sink, depends, among other factors, on an increase in aboveground carbon through tree-based
land-use systems, improved management of soil organic carbon pools, and the protection of forest
reserves. In tropical environments in particular, maximum carbon sequestration can often be achieved
by focusing on aboveground carbon rather than soil organic carbon due to smaller pool sizes and short
mean residence times [7,8].

In many parts of Southeast Asia, national governments are reporting carbon stock changes as
part of their climate change mitigation strategy. In the case of Thailand, recent estimates showed
a decreasing impact of deforestation on the national carbon emission level mainly due to forest
conservation schemes and an increase in industrial tree plantations [9,10]. But at the same time,
expansion and intensification of agricultural production have become important LUC drivers at the
landscape level, which is challenging the national carbon stock gains of the recent past [9,11,12].
This trend is especially prominent in mountainous Northern Thailand due to market-driven incentives
and preferable climatic conditions [7,11]. In such a dynamic and transient environment, it is important
to inform policy makers how future LUC will impact the provisioning of long-term aboveground
carbon sinks, and what conclusions have to be drawn to sustain climate mitigation measures at the
landscape level in the long run [5,12].

Various approaches and tools can be used to analyze LUC and to assess its potential impact on
the provisioning of long-term aboveground carbon sinks. For example, earth observation systems can
be used in combination with geographic information systems (GIS) to analyze time-series information
of land-use change derived from space-borne or aerial remote sensors [13,14]. Dynamic and spatially
explicit simulation models can be drawn for an LUC impact analysis, examining, for example, the
impact of policy scenarios on the long-term evolution of above-ground carbon sinks [15,16]. In this
context, participatory procedures are increasingly used to develop scenario storylines that reflect
stakeholder’s perception of how a particular LUC trajectory may develop in the future [17,18].

Against this background, the objective of this study was to use an integrated assessment approach
that builds on limited data needs to (i) assess current and future land-use change dynamics using
scenario storylines developed by local stakeholders, (ii) evaluate the impact of a scenario-specific
LUC pattern on above-ground carbon at the landscape level of Northern Thailand, and (iii) derive
implications for environmental management. The integrated approach can be used for decision
support and can be easily transferred and used by stakeholders who are concerned with environmental
management at local and regional levels.

The dynamic and spatially-explicit ‘Dynamic Conversion of Land-use and its Effects’
(Dyna-CLUE) model [19] served in this study as the simulation engine to project LUC scenarios
during the prospecting period of 2009 to 2029. By relying on the Dyna-CLUE approach, we followed
the general study aim to use an assessment approach that can be easily adopted in other regions
without further modifications. Scenario-specific storylines were developed combining information
from field surveys, a GIS-based land-use change analysis, participatory focus group discussions and
expert interviews with local stakeholders. The impact of a specific LUC scenario on above-ground
carbon was examined through coupling the simulated scenario-specific LUC maps of Dyna-CLUE
with a carbon-stock accounting procedure [16], with above-ground carbon data from our own field
surveys and published regional studies. A sensitivity analysis was conducted to assess the uncertainty
of simulated AGC ranges caused by the variability of utilized above-ground carbon model input data.

The results and discussion chapter presents the outcomes of coupled scenario modelling
and discusses the usefulness of environmental management mechanisms driven by participatory,
bottom-up approaches.
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2. Materials and Methods

2.1. Study Area

The watershed of Mae Sa Mai was selected as the case study landscape because in tropical
mountainous regions such as Northern Thailand, watersheds are critical spatial entities that provide
important ecosystem services for society (e.g., carbon sinks, primary production, water cycling),
and show distinct microclimate advantages (lower temperature, higher precipitation) for production
of high-value crops such as vegetables. Mae Sa Mai watershed can be further regarded representative
of areas in close proximities to regional market hubs (here: Chiang Mai city). The challenges the
watershed faces have been also described for other mountainous regions of Mainland Southeast
Asia [20] and tropical environments under transition, especially those with a strong dependence on
agricultural production [11,19,21].

Mae Sa Mai watershed (MSMW) is a mountainous headwater catchment belonging to the larger
Mae Sa basin. It is located at N 18◦51′01′ ′ to E 98◦52′20′ ′, about 40 km northwest of the provincial
capital Chiang Mai City (Figure 1). MSMW covers an area of 10.6 km2, and is sub-divided into Mae Sa
Mai and Mae Sa Noi village, and the Queen Sirikit Botanical Garden. Topography is characterized
by short, steep slopes, with small plateaus at elevation levels of 620 to 1440 m a.s.l. Soil types are
predominantly Acrisols, Cambisols and to a smaller extent, Umbrisols [22]. A seasonal tropical climate
prevails with a dry season from December to April and a rainy season from May to October, with an
average annual precipitation of 1400 mm at 820 m a.s.l. [23].
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Figure 1. Location of Mae Sai Mai watershed (MSMW) in Chiang Mai province, Northern Thailand,
indicating topographic and infrastructure features, and locations of above-ground biomass field
measurements, with 1 to 8 referring to litchi orchards, A to E cabbage plots (for explanation see also:
Supplemental Material S2 and S3).

2.2. Scenario Development and Land-Use Change Modelling

An overview of the newly composed assessment framework is shown in Figure 2 with further
descriptions presented in Sections 2.2–2.4.
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2.2.1. Land Use Change Analysis

An LUC analysis was conducted using available digitized and orthorectified secondary land-use
maps referring to 1998 and 2005 [19,24], and our own field surveys in 2008. The originally reported
twelve land-use classes in 1998 were merged into six land-use types (fallow, field crops, orchards,
vegetables, secondary forests, built-up) to facilitate the analysis (Table 1). A wall-to-wall accuracy
assessment that provides a statistical estimator of classified land use information (e.g., Kappa) [25]
could not be conducted in this study because land-use maps for 1998 and 2005 were produced through
a visual interpretation of printed aerial orthophotos in the field [19,24]. A similar approach was used
for land-use patterns in 2008, building on a stratified field survey design, with land-use in 2005 as
basic sampling unit as it resembled the local field owner structure and hence could be also regarded
as a form of watershed land cadaster. For this purpose, MSMW was divided into eight sampling
blocks; land-use patterns of 2005 were compared in the field with the observed patterns in November
2008 per sampling block. LUC was detected by visual comparison, for example, if cut-down fruit
trees or newly established vegetable fields were detected in the field, the 2005 land-use map was
updated accordingly. In addition, farmers of the identified LUC locations in 2008 were interviewed to
crosscheck field observations and to serve as independent validation unit, respectively. Based on these
approaches, an accuracy assessment as described above was not conducted because it was assumed
that the interpretation of land-use types during field campaigns would lead to a realistic representation
of land-use patterns during the observation years. The resulting land-use datasets were converted into
raster format using a pixel size of 625 m2 (25 × 25m) which corresponds to the smallest plot size of
MSMW. All mapping work was done in ArcGIS 10.

Outcomes of the analysis were first used to detect the most recent land-use change patterns, and
second, to identify gains and losses per land-use type trajectory during the assessment period of ten years.

The quantification of LUC between the observation years 1998, 2005 and 2008 was computed
using a cross-tabular comparison to derive a transition matrix that identifies differences in extent of
land-use type, and between two individual time periods. The second analysis step was described
by [26] as ‘land-use intensity analysis’, which determines whether a land-use type i would have gained
systematically from land-use type j and/or j lost systematically to i by:

Qtij =

(
Ctij/(Yt+1 −Yt)

)
∑

j
i Ctij

(1)
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where Qtij is the annual transition from land-use type i to j during time interval Yt+1 and Yt; Ctij is
the number of pixels that transition from land-use type i at time interval Yt to land-use type j at time
interval Yt+1; and t is the index of the initial time step of the interval (Yt, Yt+1). According to [26],
the land-use intensity analysis does not require a minimum/maximum assessment period but needs
at least three time periods for the analysis. It has to be further noted that the approach of [26] does
not focus on analyzing crop yield intensification but focuses solely on spatial patterns of land-use
intensification, expressed in percentage gains and losses, respectively.

Table 1. Description of land-use types used for land-use change analysis in Mae Sa Mai watershed
from 1998 to 2008.

Land Use Type Description

Built-up Settlement areas or buildings, i.e., royal project field station

Fallow Short to intermediate fallow stages (<3 years), predominantly composed of grass and
bushy vegetation

Field crops Maize (Zea mays), paddy and upland rice (Oriza sativa)

Orchards Litchi chinensis, Persimon spp. and Musa spp.

Vegetables Brassica spp. (i.e., common cabbage); leafy vegetables and others, (i.e., lettuce and carrots)

Forests Degraded deciduous and dry evergreen forest types, with small reforestation patches of
Pinus spp.

2.2.2. Dyna-CLUE Modelling

The Dyna-CLUE model was chosen because its model complexity and spatial allocation
algorithm, combined with its moderate data demands, has been proven valid in many tropical
environments [12,27,28].

Calibration and Validation

Outcomes of the land-use change analysis were used as inputs to calibrate a Dyna-CLUE baseline
scenario, using 1998 for calibration, and the reference years 2005 and 2008 for model validation.
The calibrated model setting (for further details see also: Supplement S1) was evaluated for the period
1998–2008 (later referred to as ‘baseline scenario’), comparing the simulated land-use maps for 2005
and 2008 with their reference maps of the same years by using the goodness-of-fit (GOF) approach
of [29]. The GOF approach compares the accuracy of the LUC model to the accuracy of its null model at
multiple resolutions. A null model is defined as a model that assumes complete persistence of land-use
across the simulated time period [29,30]. GOF requires three sets of maps to perform the analysis: (i) a
reference map of the initial simulation year, e.g., land-use map 1998, (ii) a reference map of the final
simulation year, e.g., land-use map 2008, and (iii) the corresponding land-use map as computed by
Dyna-CLUE for 2008. The resulting GOF indicator (GOFt) compares the accuracy of the LUC model to
the accuracy of its null model at multiple resolutions (ranging from 0 to 1, with 1 indicating a perfect
model fit) [27].

Scenario-Specific Land-Use Demands and Simulated LUC Trajectories

Annual land-use demands for each scenario were set in the Dyna-CLUE model following a
specific storyline and the spatial restrictions imposed by forest conservation areas and the Queen
Sirikit botanical garden. Overall, five LUC scenarios were developed, with a summary of each scenario,
and the methods and tools used to develop a specific storyline are presented in Table 2.

Scenario TREND extends the observed LUC patterns (2005–2008) up to 2029 based on the outcomes
of the aforementioned land-use change analysis. A twenty-year scenario period was employed
following the assumption of [10] that this period would be needed in the case of Thailand to halt
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deforestation nationwide. The OFF-FARM and CROP-SHIFT storylines build on participatory focus
group discussions with 32 villagers, using adapted Participatory Appraisal techniques that were
described in detail by [18]. In this case, participant groups were composed by a mixture of local key
persons such as village headmen, farmers who cultivate plots in MSMW, and villagers not involved
in any farming activities. Based on the participatory analysis, OFF-FARM scenario favors a 25%
reduction in farming activities and related land-use demand compared to the observed LUC trends
during 1998–2008. This reduction would be induced by increasing off-farm working opportunities and
the abandonment of farming activities. Similar trends were also discussed by [31] to overcome the
declining profitability of litchi orchards in Northern Thailand. By contrast, the CROP-SHIFT storyline
simulates a continuous shift of vegetable fields to maize-based farming systems which was driven by
local stakeholders’ expectation that regional livestock feed demands will increase in the near future.

According to [32], livestock feed demand started to increase in many countries of South-East Asia
due to changes in consumer preferences towards dairy and meat products. The calibrated land- use
change trajectories of CROP-SHIFT lead to an increased land competition between vegetable and field
crop sites. In the case of CROP-SHIFT, orchard conversion rates were set 10% lower than the calibrated
rates of TREND.

The REFOREST and NEW ORCHARD storylines were deduced from key expert interviews with
officers of the District Department of Agriculture, the Department of Forestry, and the Royal Project
Foundation, a non-governmental organization engaged in regional extension services. REFOREST
follows the Department of Forestry’s vision to convert fallow and vegetable fields to reforestation
sites in MSMW by an annual rate of two hectares. NEW ORCHARD follows an intervention scheme
proposed by the Royal Project Foundation and the Department of Agriculture to introduce a new
fruit tree species (Persimon spp.) as a means of farm product diversification. In the NEW ORCHARD
storyline, the expansion of orchards is at the expense of field crop or vegetable fields. For this case, the
expansion of the new orchard area was set to a similar rate of 2 ha per year to enable the comparison
of above-ground carbon stock build-up rates with the REFOREST storyline.

2.3. Carbon-Stock Accounting Procedure

The impact of a specific LUC scenario on above-ground carbon per grid cell (625 m2) was assessed
with the time-averaged carbon-stock accounting procedure of [16]. In the case of this study, soil
carbon stocks were not considered because especially in tropical environments, maximum carbon
sequestration can be often achieved by focusing more on aboveground carbon than on soil organic
carbon due to smaller pool sizes and short mean residence times [7,8]:

∆AGCTA(t,t+1) = At

[
n

∑
i=1

(
ai,t

(
AGCTA(i,t+1) − AGCTA(i,t)

)
+ (ai,t+1 − ai,t)AGCTA(i,t)

)]
(2)

where ∆AGCTA(t,t+1) is the annual change in time-averaged above-ground carbon stocks at the
landscape scale (Mg ha−1); ai is the land-use-type-specific fraction of total area A (ha); AGCTA(i,t)
is the land-use-type-specific time-averaged above-ground carbon stock density (Mg ha−1) and t is the
time step (years). Time-averaged stock data have the advantage of allowing a comparison of land-use
types with different rotation lengths and carbon sequestration potentials, especially important for
agriculturally dominated land-use systems, such as fruit tree orchards or field crop systems [4,33,34].

Time-averaged above-ground carbon (AGCTA) budgets were computed with the environmental
modelling language PCRaster [35] by soft-coupling the scenario-specific LUC maps of Dyna-CLUE
with the carbon stock accounting procedure of [16]. The input data required to compute a land-use
type-specific and time-averaged above-ground carbon stock were obtained from field measurements
and literature. A summary of AGCTA input data is presented in Table 3. Further information of field
data collection and the underlying assumptions to compute the AGCTA database are described in more
detail in Supplement S2 and S3.
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Table 2. Summary of scenario storylines and imposed land-use change trajectories simulated with Dyna-CLUE. Storylines build on outcomes of LUC analysis,
participatory focus group discussions, and expert interviews.

Scenario Storyline Description a Based on LUC Trajectories b

TREND Continue LUC trends 2006–2008 to 2029. Change detection analysis OR→ FA, VE

OFF-FARM
LUC trajectory ‘Orchard to Vegetables/Fallow’ decreases related land-use
demand by 25% compared to TREND due to increasing off-farm working
opportunities and abandonment of farming activities

Focus group discussion OR→ FA, VE

CROP-SHIFT
Cash-crop shift from vegetables to maize-based cropping systems induced by
regional demands for livestock feeds. Conversion rate of
orchards-to-vegetables/fallow 10% lower then TREND

Focus group discussion OR→ FC, VE

NEW ORCHARD Fruit tree plantations (Persimon spp.) replace fallow, field crops and vegetable
fields by 2 ha per year; other LUC trajectories are no longer active Key informant interviews c FA, FC, VE→ OR

REFOREST Reforestation with local tree species replaces fallow and vegetable fields by 2 ha
per year; other LUC trajectories are no longer active Key informant interviews d FC, FA, VE→ SF

a LUC cannot occur in forest areas due to protected area and conservation zones. b Land-use types: FA—Fallow, FC—Field crop, OR—Orchard; VE—Vegetable, SF—Secondary forests.
c Department of Agriculture, Royal Project Foundation. d Department of Forestry.

Table 3. Summary of land use type-specific input data (in Mg ha−1) employed for carbon-stock accounting; (AGCTA)—time-averaged above-ground-carbon per entire
rotation period (Mg ha−1), AGCMAX—maximum above ground carbon stored in each land use type (Mg ha−1), AGCINC—annual above ground carbon increment
(Mg ha−1), TR—time of land use rotation period (in years); avg—average, min—minimum, max—maximum referring to summarized input data ranges.

Land Use # AGCTA AGCMAX AGCINC TR Reference

avg min max avg min max avg min max avg min max

(Mg ha−1) (Mg ha−1 a−1) (years)

Fallow 1.0 0.6 1.5 3.0 1.8 4.5 1.0 0.6 1.5 3 3 3 [7,36]
Field crops 0.7 0.3 1.4 1.4 0.5 2.7 0.5 0.3 0.9 1 1 1 [7,37]
Orchards 7.7 4.4 11.3 15.3 8.8 22.6 0.7 4.4 11.3 22 10 33 own survey (n = 8)

Vegetables 0.3 0.1 0.4 0.5 0.3 0.8 0.3 0.2 0.4 1 1 1 own survey (n = 5)
Secondary forests 39.4 15.4 56.9 78.8 30.7 113.8 1.6 0.6 2.3 50 39 68 [4,7,36,38–42]

# Built-up areas were excluded from this list due to absence of vegetation features. Zea mays was chosen as a benchmark field crop, with the considered AGC stock referring only to those
stocks remaining on the field after crop harvest. In the case of secondary forests, AGC stocks include biomass strata: trees, deadwood and under-storey vegetation; see also Supplemental
Material S2 and S3 for further information.
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2.4. Sensitivity Analysis

A sensitivity analysis was performed to relate the variability of the carbon-stock accounting input
factors to the uncertainty of the soft-coupled simulation results. The analysis basically relates the level
of AGCTA per land-use type to the variability in the computed AGCTA stock level in 2029. Accordingly,
coupled AGC-LUC simulations were executed separately in PCRaster using the reported average
(AGCTA-AVG), minimum (AGCTA-MIN) and maximum (AGCTA-MAX) range of AGCTA inputs (Table 3),
resulting in a total of 15 AGC-LUC coupling scenarios.

3. Results and Discussion

3.1. Spatial and Temporal Patterns of Land Use Change during 1998–2008

LUC patterns were mainly observed in the agricultural dominated areas of MSMW during the
assessment period 1998–2008 (Figure 3A). For example, orchards increased from 162 ha in 1998 to 285 ha
in 2005, and then fell again to 254 ha in 2008. By contrast, vegetable fields decreased from 33 ha in 1998
to 29 ha in 2005 and then rose to 62 ha in 2008. Field crops and fallow areas decreased continuously
over the assessment period, with an area as low as 9 and 16 ha, respectively, in 2008. Built-up areas
including residential houses, buildings related to the botanical garden, and paved surfaces increased
to 20 ha in 2005 and remained stable thereafter. Secondary forests were the dominant land-use form in
MSMW, covering approximately 70% or 700 ha of the total watershed area in 2008 (Figure 3B).

The land use-change intensity analysis (Equation (1)) detected four dominating LUC trajectories
during 1998–2008 (Figure 4). In the period 1998–2005, one LUC trajectory referred to the increase of
orchard plantations at the expense of fallow (−4.6%), field crops (−5.0%) and vegetable fields (−1.7%).
A second trajectory could be related to the conversion of fallow (−2.2%) into secondary forest areas.
Both trajectories came to a halt in 2006–2008, where two new trajectories were detected with one
leading to the conversion of field crop areas into fallow land (+1.0%), and a second one that led to the
conversion of orchards into vegetable fields (+2.7%).
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Identified land-use change trajectories for the case of Mae Sa Mai watershed were also described
by [43–45] in particular for the case of Mainland Southeast Asia. Land use intensifications mainly
occurred as a series of push and pull factors that were often characterized by a mixture of economic
and policy incentives. For example, the overall decrease in field crop and fallow field during
1998–2005 was driven by a push induced by a government initiative to reduce swiddening management
practices in Northern Thailand [44,45]. During the same period, emerging cash crop opportunities and
market-driven incentives led to the pull that drove the expansion of orchard areas [12]. The period
2006–2008 was characterized by a drop of litchi farm-gate prices that led to an increase of vegetable
production areas spurred by increasing regional consumer demands for fresh vegetables [46]. Another
pull was attributed to the increase in secondary forest areas due to national reforestation initiatives [11].
However, this pull was not directly detectable in the land-use change intensity analysis, as reforestation
and secondary forests were merged into a single land-use class. An additional land-use type
‘reforestation’ would have been more suitable in this case. But as landscape features in tropical
environments often appear in continuous gradients from small-scale subsistence to more homogenous
landscape features, it is often difficult to simplify and classify landscapes by distinguishing discrete
features one from another [47]. This was also seen in the relatively steep increase of built-up areas
observed during 1998–2005, as the increase was mainly attributed to the construction of a new royal
project foundation field station, and not necessarily attributed to the expansion of settlement areas.
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3.2. Dyna-CLUE Modelling

3.2.1. Significance of Baseline Regression Coefficients and Model Validation

The logit models that generated the regression coefficients for the baseline scenario calibration
were able to explain the spatial occurrence of land-use types in MSMW in acceptable ranges as
demonstrated by the satisfactory to good ROC values 0.74 (vegetable) and 0.98 (urban). Not all
factors that were used in the regression computations were significant at p < 0.05 and those that were
significant differed as a function of land-use type and prediction variable (Table S1).

For example, the location factor ‘distance-to-road’ was significant for orchards, which can be
explained by the need to access plantations by pickup trucks. The factors ‘distance-to-streams’ and
‘road networks’ were significant for vegetables which can be explained by the need for irrigation
water during dry seasons and motorized transportation of fresh products to nearby market hubs.
Although expected, there was no significant correlation between soil type and occurrence of field crops
or vegetable fields. This was probably related to the high fertilizer rates applied in MSMW, which do
not necessarily result in fertile soil types.
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The baseline model validation which refers to the simulated land-use maps of TREND scenario
in 2005 and 2008 was compared with their corresponding land-use maps. The result revealed that
simulations were more accurate than the null model at all resolutions (25 to 125 m). This was further
confirmed by goodness-of-fit (GOFt) coefficients that were in the range of 0.80 to 0.91 (Figure 5) in both
assessments periods.

The GOFt computations revealed that the agreement between simulated and observed land-use
patterns during the examined baseline scenario period (1998–2008) was rather high (0.83–0.86)
compared to other regional studies that relied on the Dyna-CLUE as LUC modelling engine [18,28,48].
One reason could be the relative large secondary forest cover (approximately 70%) in MSMW that did
not substantially change in size or location during the assessment period from 1998–2008. But as the
spatial validation procedure of [29] determines the fit between two maps across multiple resolutions,
it becomes evident that the area of secondary forests was therefore predicted well at the initial
resolution of 25 m. Nevertheless, the chosen validation procedure refers to standard LUC model
validation approaches, and further follows the plea of [49] to validate modelling results with historic
land-use data.
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3.2.2. Scenario Analysis

The TREND scenario computations resulted in an almost complete conversion of orchards into
vegetable fields by 2029 and the further clustering of fallow areas in close proximity to village areas
(Figure 6). The stakeholder-driven LUC trends simulated with the OFF-FARM storyline projected
vegetable fields close to roads, orchards remaining in the central valley bottom, and fallow fields
occurring in close distance to the villages. The CROP-SHIFT storyline resulted in the formation of
a field crop cluster in the northern, western or southern part of MSMW, and an orchard cluster in
the central valley bottom. The spatial patterns simulated by NEW ORCHARD showed similar visual
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patterns as OFF-FARM computations, but differed by a projected larger vegetable area in the western
part of MSMW. The LUC trajectories simulated by the REFOREST storyline led to an increase of
secondary forest sites on the expense of agriculturally dominated land-use types. This was especially
prominent in the southern part of MSMW, where the majority of new secondary forests plots were
projected at high elevation and steep sloping locations.

The simulated scenario storylines suggested that future LUC patterns in MSMW will be mainly
driven by external factors such as markets demands and environmental policies. Simulations further
revealed that agriculture and cash crop production systems will remain important land-use components
in 2029, but characterized by two slightly different LUC trajectory directions. Firstly, stakeholder-driven
LUC patterns will lead to a continuation of land-use intensification that is driven by cash crop
production, as also simulated with the CROP-SHIFT storyline. A similar trend was also described
by [50], who could show that a continuous expansion of mono-cultural maize cropping leads to soil
fertility decline and land degradation in the long run. The trend to expand vegetable production
could be attributed to the promise of higher economic returns compared to declining litchi farm gate
prices that started in 2006. Given the ongoing changes in consumer preferences [46], this trend will
substantially influence upland farming patterns in Northern Thailand over the next decades [11].

Land 2017, 6, x FOR PEER REVIEW  13 of 20 

patterns as OFF-FARM computations, but differed by a projected larger vegetable area in the western 
part of MSMW. The LUC trajectories simulated by the REFOREST storyline led to an increase of 
secondary forest sites on the expense of agriculturally dominated land-use types. This was especially 
prominent in the southern part of MSMW, where the majority of new secondary forests plots were 
projected at high elevation and steep sloping locations. 

The simulated scenario storylines suggested that future LUC patterns in MSMW will be mainly 
driven by external factors such as markets demands and environmental policies. Simulations further 
revealed that agriculture and cash crop production systems will remain important land-use 
components in 2029, but characterized by two slightly different LUC trajectory directions. Firstly, 
stakeholder-driven LUC patterns will lead to a continuation of land-use intensification that is driven 
by cash crop production, as also simulated with the CROP-SHIFT storyline. A similar trend was also 
described by [50], who could show that a continuous expansion of mono-cultural maize cropping 
leads to soil fertility decline and land degradation in the long run. The trend to expand vegetable 
production could be attributed to the promise of higher economic returns compared to declining 
litchi farm gate prices that started in 2006. Given the ongoing changes in consumer preferences [46], 
this trend will substantially influence upland farming patterns in Northern Thailand over the next 
decades [11].  

 
Figure 6. Results of the Dyna-CLUE scenario simulations in 2029 based on outcomes of the land-use 
change analysis (TREND), stakeholder assumptions (CROP-SHIFT, OFF-FARM) and institutional 
visions (NEW ORCHARD, REFOREST). 

Figure 6. Results of the Dyna-CLUE scenario simulations in 2029 based on outcomes of the land-use
change analysis (TREND), stakeholder assumptions (CROP-SHIFT, OFF-FARM) and institutional
visions (NEW ORCHARD, REFOREST).



Land 2017, 6, 85 12 of 18

The scenario analysis further revealed that an increase in off-farm working opportunities may
further serve as an endogenous LUC driver, leading in this case to a reduction in land-use intensification
patterns as simulated by the OFF-FARM storyline. Schreinemachers et al. [31] also observed that
seasonal and even permanent migration of rural labor has started to influence the labor-intensive
farm management practices in Northern Thailand, especially for areas in close proximity to urban
centers such as Chiang Mai. Compared to market-demand-driven LUC scenarios described above,
the institutionally-driven scenario storylines NEW ORCHARD and REFOREST focused on long-term
land-use strategies favoring the built-up of above-ground carbon stocks. Although relevant from a
carbon sequestration point of view, these storylines counteract stakeholder demands for fast economic
returns as shown by CROP-SHIFT. This is because fruit trees are not productive in the first years
of cultivation, and current reforestation policies in Thailand do not foresee economic returns unless
financial remuneration or compensation payments will be achieved, for example, through a REDD+
project. But it is still questionable whether a fruit-tree-based land-use system can be economically
viable due to rising labor costs [31]. Hence, it is important to provide other economic incentives for local
orchard farmers, for example, through product certification or post-harvest product enhancements,
to ensure the viability of fruit-tree-based farming systems in MSMW in the long run [11].

3.3. Impacts of Land-Use Change on Above-Ground Carbon Stocks and Implications for
Environmental Management

The coupled LUC-AGC computations resulted in time-averaged AGC stock gains of 12 to 43 Gg,
depending on employed input dataset, at the level of MSMW by 2029 (Figure 7). As a function of
calibrated AGCTA input dataset, up to 1.7 Gg additional AGC could be achieved due to increasing
reforestation and orchard areas.

On the contrary, up 0.4 Gg AGC stocks would be lost if current LUC trends continue until
2029. Unsurprisingly, LUC transitions that resulted in a conversion of perennial (fallow, orchards) to
annual cropping systems depicted the largest reductions in time-averaged above-ground carbon stocks.
Especially for those scenarios that favored a conversion of orchards into vegetable or field crop systems
(TREND, OFF-FARM and CROP-SHIFT), above-ground carbon decreased by 1.2% (OFF-FARM) to
7.6% (TREND) at the watershed-scale.

This corresponds to a decrease of 0.45 to 1.01 Gg of above-ground carbon compared to the base
year 2008 (Figure 8). TREND and CROP-SHIFT scenarios resulted in the overall largest above-ground
carbon losses, independent of employed AGCTA input data level, off-setting the above-ground carbon
gains achieved during 1998 to 2008. In contrast, LUC scenarios which favored a reduction in vegetable
or field crop areas (NEW ORCHARD, REFOREST) lead to increase of above-ground carbon by 0.2
to 4.1% or 0.1 to 1.7 Gg until 2029. Coupled simulations also demonstrated distinctively different
spatial patterns of above-ground carbon sources and sinks at the watershed scale by 2029. For example,
the LUC pattern simulated in TREND leads to above-ground carbon losses of up to 7.7 Mg ha−1 for
those grid cells where orchards were replaced by vegetable fields (Figure 7). By contrast, an increase
in fallow or reforestation areas fostered the build-up of new above-ground carbon stocks, as is to be
expected. This was, for example, prominent in the REFOREST scenario with new above-ground carbon
stocks being computed in the range of 29–39 Mg AGCTA ha−1 on steep slopes and ridge-top locations.
Different patterns were seen in the OFF-FARM simulations, where new above-ground carbon stocks
were simulated to occur in the northern and south-western parts of MSMW instead.

The establishment of new tree plantations or reforestation areas is promoted by government
agencies [10] as one of the most promising methods of building up long-term above-ground carbon
stocks, as demonstrated by NEW ORCHARD or REFOREST scenarios. Nevertheless, there can be large
variations in carbon sequestration potentials depending on tree species planted, management practices
and local environmental conditions [4]. The reported minimum and average above-ground carbon
stock data that were used in the carbon-stock accounting procedure were comparable to other studies
in South-East Asia [3,4]. However, the maximum time-averaged above-ground carbon stock data
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computed with the coupled modelling procedure in 2029 were in parts higher than other estimates for
tropical environments [51,52] as a result of overall wide range of values reported in literature. This
type of uncertainty could be captured fairly well by the sensitivity analysis, further revealing the wide
variation in prospected above-ground carbon stocks for 2029. This also highlights the importance of
building on local above-ground carbon datasets instead of relying on default information from national
or carbon stock assessment guidelines [6]. Ground-based inventories are essential because most
satellite or aerial monitoring techniques, which many national carbon-emission-reporting strategies
rely on, still exhibit limitations in adequately distinguishing between different tree-based land-use
systems such as agroforests or small-scale landscape mosaics [4]. Furthermore, there is still a great
uncertainty in many tropical landscapes regarding how much soil organic carbon (SOC) exists due to a
lack of reference information, particularly for deep soils high in organic material [4]. Greatest losses
of soil organic carbon are expected to occur shortly after forest conversion, but further long-lasting
reductions in SOC may continue due to land use intensification, e.g., abandonment of fallow periods
or mono-cultural cropping systems.
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3.4. Local Stakeholders as Key Partners of Environmental Management

The range in scenario-specific above-ground carbon stock gains and losses highlights the trade-offs
of agricultural production and economic incentives compared to long-term carbon sequestration goals.
This contradicts current national policy concepts that attempt to integrate both concepts into a single
framework [53]. It is further questionable whether focusing on a single land-use management goal
such as long-term AGC sinks will be beneficial in the long-run. In the case of Thailand, current
land-use policies counteract local stakeholder needs, as local LUC trajectories may not follow regional
or national LUC trends upon which many policy decisions rely [36,43]. This conflict of objectives
is the result of contrasting land-use policies that further challenge the implementation of policy
frameworks such as REDD+. It is more important to acknowledge the local socio-ecological diversity
and to rely on a mixture of socio-economical and ecosystem incentives that support the co-design
of carbon sequestration needs and agricultural development pathways. By this means, spatial goal
conflicts that were depicted through the scenario analysis, e.g., reforestation vs. agriculture, could be
avoided. Neef [11] argued that incentive-based policies that are achieved through multi-stakeholder
partnerships are necessary to overcome the current antagonisms of conservation and development
strategies in landscapes such as MSMW.
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Additionally, consideration must be also given to the format in which such findings are
communicated to local stakeholders. For example, LUC and above ground carbon-stock maps
generated by this study offer a visual interpretation of future LUC trajectories that statistical reports
are unable to convey to local stakeholders or policymakers. Although there is little doubt that maps
are powerful visualization tools, there is also the danger that a modelled scenario may be seized upon
as a definite result. Hence, it is crucial to ensure that the ‘map end-users’ are aware of the embedded
methodological limitations and uncertainties, e.g., as described for the land-use maps 1998–2008,
through transparent communication strategies, putting researchers into the role of active mediators
rather than mere observers. This emphasizes the usefulness of the participatory-driven storylines that
demonstrated the land-use conflict potential in the context of MSMW, and many other watersheds in
Southeast Asia or tropical environments. Taking local stakeholders’ viewpoints and assumptions into
consideration is especially relevant for the development of integrated environmental management
strategies at landscape level. This is paramount because it increases the credibility of environmental
policies for local communities, but require stakeholders to be acknowledged as key partners in the
development of sustainable environmental management approaches, rather than being perceived
merely as adopters of top-down national environmental policies.

4. Conclusions

Efforts to reduce the impact of LUC on above-ground carbon pools and to establish sustainable
climate mitigation mechanisms are currently being challenged by the intensification of agricultural
production in many tropical landscapes. The combination of participatory approaches and modelling
tools is particularly useful in data-limited environments such as Northern Thailand for the simulation
of scenarios based on local stakeholder assumptions. The modelling tools that were part of the newly
composed assessment approach build on Dyna-CLUE and PCRaster that were used to couple the
carbon stock accounting procedure with the simulated LUC trajectories. The combination of these tools
was beneficial not only on account of their moderate data requirements, but also because they enabled
the comparison of land-use systems with different above-ground carbon build-up rates and rotation
times. The use of LUC scenarios based on local stakeholder assumptions offers higher credibility
for climate mitigation and environmental management strategies at the landscape level, further
underlining the need to co-design policy frameworks that acknowledge local stakeholder needs.

Supplementary Materials: The following are available online at www.mdpi.com/2073-445X/6/4/85/s1.
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