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Abstract: Large areas of deforested and degraded land, particularly degraded peatlands, need
a viable long-term solution for restoration, ideally one that ensures energy security without
compromising food security or biodiversity conversation. To address a knowledge gap on the
most adaptive bioenergy crop(s) for degraded lands, this research project assessed the survival and
growth performance of potential bioenergy crops to restore burned and degraded peatlands. Our
methodology compared the bioenergy species with the potential to survive in extreme environments,
i.e., gamal [Gliricidia sepium (Jacq.) Walp.], kaliandra (Calliandra calothyrsus Meissner), kemiri sunan
[Reutealis trisperma (Blanco) Airy Shaw], and nyamplung (Calophyllum inophyllum L.). Observed
parameters are plant survival rates, tree height, and circular stem growth. The experiment was
conducted between March 2016 to February 2017 in a two-hectare demonstration plot on burned
and degraded peatland in Buntoi village, Pulang Pisau, Central Kalimantan province. Using a split
plot design, two treatments were given to each species, i.e., monoculture plantation and agroforestry
(intercropped with Ananas comosus (L.) Merr.); with each treatment, the species were replicated on
two separate plots. Results indicate that nyamplung is the most adoptable species followed by kemiri
sunan, however both species performed very well under agroforestry treatment when compared
with monoculture. Further study is needed to assess the productivity and associate biofuel yield.

Keywords: land restoration; nyamplung; kemiri sunan; agroforestry; policy

1. Introduction

Indonesian energy demand has significantly increased, primarily due to population growth,
urbanization, and economic development [1]. At the same time, sources of fossil fuel have depleted and
they are unable to fulfill the increasing energy demands of the future [2]. Whilst responding to interests
in renewable energy and degraded land restoration, bioenergy can provide a potential alternative
to meet growing energy demands. The Indonesian government has mandated for increases in
renewable energy production, including bioenergy from plant sources (e.g., Calophyllum inophyllum L.,
Elaeis guineensis Jack.), with the aim of it meeting 23% of total energy use by 2025 [3]. However,
such expansion of plantations for energy production could trigger competition with other land uses,

Land 2018, 7, 115; doi:10.3390/land7040115 www.mdpi.com/journal/land

http://www.mdpi.com/journal/land
http://www.mdpi.com
https://orcid.org/0000-0002-5107-3117
http://www.mdpi.com/2073-445X/7/4/115?type=check_update&version=1
http://dx.doi.org/10.3390/land7040115
http://www.mdpi.com/journal/land


Land 2018, 7, 115 2 of 14

such as food production and biodiversity conservation1. To avoid such competition, and to diversify
bioenergy production, degraded and underutilized land has been identified as a potential target area
for bioenergy production [4–7].

Central Kalimantan province has one of the largest amounts of degraded land in Indonesia,
estimated at approximately 7.2 million hectares (ha) [8]. Forest conversion to other types of land
use, e.g., agriculture and open mining, is one of the key driving factors land degradation [9–11].
The frequent occurrence of forest fires, particularly in recent years, has driven an escalation in degraded
land, including peatland [11,12]. The occurrence of fire has also affected agricultural land that is
managed by local farmers and declined its productivity. Most of the burned land, including peatland,
has been abandoned due to its declining fertility [13]. The Central Kalimantan province is also
facing energy deficits, with large number of households (42%) in the province having no access to
electricity [14]. Consumption of traditional biomass for cooking purposes is also relatively high [15].
To increase community access to energy, the central government, through the Ministry of Energy
and Mineral Resources (ESDM) in collaboration with district and provincial governments, initiated
a bioenergy program, called Bioenergi Lestari. The program aims to establish bioenergy plantations
on approximately 62,500 ha of degraded and abandoned lands in two districts, i.e., Pulang Pisau and
Katingan, with the expectation of increasing bioenergy production [16]. However, the progress so far
is slow due to very few studies providing useful information on bioenergy crops that are suitable for
growing on degraded lands, particularly in Central Kalimantan. To fill this scientific knowledge gap,
this research project aimed to identify the most promising bioenergy crop(s) for degraded lands.

2. Materials and Methods

This study was conducted in Buntoi village (located between 102◦48′59.4′′ S and 114◦10′47.3′′ E)
in the district of Pulang Pisau, Central Kalimantan, Indonesia (Figure 1). Buntoi, with a total land area
of 16,261.595 ha, is dominated by forest and agricultural land (Figure 2). The soil domination is mainly
peat and alluvial. Buntoi has a tropical and humid climate with a temperature ranging from 26.5 to
27.5 ◦C. It has two distinct seasons, dry (April–October) and rainy (November–March). The village
was selected as one of the locations for bioenergy crop plantation initiated by the Ministry of Energy
and Mineral Resources (ESDM) and the local government, under the Bioenergi Lestari project.

The total population of Buntoi is 2729; this population is mainly dependent on rubber plantation
and other subsistence agriculture [17]. In late 2015, Buntoi village was affected by forest and peatland
fires that destroyed large areas of farmers’ productive land, including approximately 461 ha of rubber
plantation. The burned land has since been abandoned, and the farmers are now looking for alternative
land uses to meet their livelihood needs.

1 As an example, oil palm has been the main source of bioenergy in Indonesia, however, expansion of oil palm production has
raised concerns about compromising food production and destroying forests and consequent biodiversity [18–20].
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Figure 2. Land uses in Buntoi village [16].

The experiment was carried out between March 2016 and February 2017 on two hectares of
degraded peatland. Having a total of 16 sub plots, a split plot design was applied to test the
performance of four biofuel crop species with two different treatments, i.e., under monoculture
and agroforestry conditions; with agroforestry conditions involving intercropping with pineapple.
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Each species under each treatment was replicated twice on two separate plots, i.e., A and B2 (Figure 3).
As the total experimental plot area was two hectares, this limited the number of possible replications
to two.
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Figure 3. Split plot design for the treatment of four biofuel species in Buntoi research site in Pulang
Pisau, Central Kalimantan.

Four species, i.e., gamal [Gliricidia sepium (Jacq.) Walp.], kaliandra (Calliandra calothyrsus Meissner),
kemiri sunan [Reutealis trisperma (Blanco) Airy Shaw], and nyamplung (Calophyllum inophyllum L.),
were selected to test their adaptive capability in extreme environmental conditions, i.e., degraded
peatlands3. Gamal and kaliandra are well known for biomass production, and kemiri sunan and
nyamplung are promising for oil seed production. Previous studies suggested that nyamplung is
adaptive to waterlogged areas [21–23], kaliandra is tolerant to acidic soil (PH 4–5) [24,25], and kemiri
sunan is adaptive to marginal land [26]. Gamal is also tolerant to acidic soil [27,28] (Table 1).

2 For a similar split plot design method, please see [29–31].
3 Gamal and kaliandra are native species to Central America, while kemiri sunan is known native to the Philippines,

and nyamplung to Indonesia [32]. These species require mean annual temperatures 18 to 33 ◦C with rainfall ranging
60 to 5000 mm, to grow (see Table A1 in Appendix A). The tested species were naturally distributed, and cultivated
in Indonesia [32,33]. However, for these tested species, we did not find any literature that can explain commercial scale
cultivation in the peatlands. Gamal and kaliandra are utilized to produce energy from its woody biomass [33,34]. Meanwhile,
nyamplung and kemiri sunan are utilized for its seeds to be converted to biofuel [35,36].
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Table 1. Review of adaptability of selected bioenergy crops to different type of soils.

No Species Type of Biomass Adaptation Capability Reference

1 Kaliandra wood Acidic soil (pH 4.9–5.3) and drought [24,25]
2 Nyamplung seed Saline soil and waterlogged areas [21–23]
3 Malapari [Pongamia pinnata (L.) Pierre] seed Saline soil and waterlogged areas [37,38]
4 Kemiri sunan seed Marginal land, slope areas (15–40%) [26,39,40]
5 Gamal wood Acidic soil (pH < 5.5) [27,28]

Observed parameters in our study included plant height (in cm) and circular stem growth (in mm),
measured from 10 cm above the ground. Survival rate was also observed by counting the total number
of survived saplings in each plot. Data was recorded every month using above parameters.

As the research site is a fire prone area, for the safety of the experimental plot, we used a six-meter
firebreak from natural vegetation, and four-meter firebreaks from rubber trees and the road. We also
used a six-meter break between different treatments (Figure 3). In terms of plant spacing, species
were spaced as follows: kaliandra and gamal (2 m × 1 m), kemiri sunan and nyamplung (8 m × 8 m),
and pineapple (Ananas comosus) (1 m × 1 m). Fertilizer, i.e., NPK using slow release method, was used
in all of the plots.

The peatland depth profile and pH value were also measured from four sample locations of our
study plots by measuring their distance from the river, i.e., two samples 50 m from river and two
samples 200 m from the river.

Besides descriptive statistics, a nonparametric test, i.e., kruskal-wallis and post-hoc test results of
a wilcoxon rank sum test in R software (version 3.4.4), were used to analyze the data.

3. Results and Discussion

Peatland depth and pH in the study plot ranged from 56 cm to 87 cm and 2.88 to 3.19, respectively
(Table 2); which, showing that with the medium acidity level peatland depth is relatively higher when
in proximity to the river.

Table 2. Peatland depth profile and pH value of the study plots in Buntoi research site in Pulang Pisau,
Central Kalimantan.

Sample No Distance from the River (in m) pH Value Peatland Depth (in cm)

1 50 2.88 85.00
2 50 2.95 87.00
3 200 2.81 77.00
4 200 3.19 56.00

The survival rate of the bioenergy crops is shown in Figure 4. Results indicate that nyamplung
and kemiri sunan are adaptable to degraded peatland, with respective survival rates of 88% and 48%.
However, kaliandra and gamal did not survive in our experimental plot. Therefore, nyamplung and
kemiri sunan are useful for planting in burned and degraded peatlands.
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Figure 4. Survival rate of the four selected bioenergy species in Buntoi research site in Pulang Pisau,
Central Kalimantan.

Figures 5 and 6 show the growth rate on degraded peatland of nyamplung and kemiri sunan,
the two adaptable trialed species. For nyamplung, the growth rate is steady in all conditions, except
agroforestry (plot B) conditions where the growth rate from month 5 to 6 is comparatively high,
and after that becomes steady again. For kemiri sunan, under all conditions, the growth rate remains
steady, except monoculture (plot B) where growth rate during the first and last month is comparatively
high. Higher growth rates in a specific month for both species, as mentioned above, might be due to
external inputs, i.e., fertilizer application and weather conditions, e.g., rainfall or sunlight. The figures
also indicate that with intercropping, both species see better growth than under monoculture. However,
further investigation is needed to examine the external factors that affected growth. Our data also
illustrated that the circular stem growth of nyamplung and kemiri sunan steadily increased both under
intercropping and monoculture systems (Figures 7 and 8).
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Figure 5. Height growth of nyamplung in monoculture vs. agroforestry plots in Buntoi research site in
Central Kalimantan.
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Figure 6. Height growth of kemiri sunan in monoculture vs. agroforestry plots in Buntoi reseaech site
in Central Kalimantan.
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Figure 7. Circular stem growth of nyamplung in monoculture vs. agroforestry plots in Buntoi reseaech
site in Central Kalimantan.
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Figure 8. Circular stem growth of kemiri sunan in monoculture vs. agroforestry plots in Buntoi
reseaech site in Central Kalimantan.

Our wilcoxon rank sum test further shows that nyamplung performs better for both tree height
and circular stem growth as compared to kemiri sunan (Figures 9 and 10). Looking at the two different
treatments (i.e., agroforestry and monoculture), both species performed better for tree height growth
under agroforestry (Figure 11), however, only nyamplung performed well for circular stem growth
under agroforestry (Figure 12).
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Figure 9. Results of Wilcoxon rank sum test on tree height for nyamplung and kemiri sunan
(BAK—agroforestry kemiri sunan plot B; BAN—agroforestry nyamplung plot B; BMK—monoculture
kemiri sunan plot B; BMN—monoculture nyamplung plot B; FAK—agroforestry kemiri sunan
plot A; FAN—agroforestry nyamplung plot A; and, FMK—monoculture kemiri sunan plot A;
FMN—monoculture nyamplung plot A). The letters a, b, c, and d on the figure show different
performance levels of height.
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Figure 12. Results of Wilcoxon rank sum test on tree diameter under two different treatments,
i.e., agroforestry and monoculture, for nyamplung and kemiri sunan (AN—agroforestry nyamplung;
KA—agroforestry kemiri sunan; KM—monoculture kemiri sunan; and, MN—monoculture
nyamplung). The letters a and b on the figure show different performance levels of diameter.

Our research shows that out of four tested species, nyamplung is the most adoptable species,
followed by kemiri sunan, when grown on burned and degraded peatland in Central Kalimantan.
However, both species performed very well under agroforestry treatment when compared to
monoculture. This is a win-win solution, as growing biofuel using an agroforestry system can be a
better land use strategy, considering its potential to enhance farm production and income, protect
biodiversity, and support sustainable development [37,41–45]. If the target is also to motivate local
farmers to use their degraded land for biofuel production, it is important to consider that tree growing
by farmers is often associated with multiple objectives influenced by livelihood necessities and local
cultures [46–49]. Current literature emphasizes that farmers’ capacity to adopt tree planting is also
dependent on production technology, adequate physical infrastructure, and developed markets for tree
products [47,49,50]. Improved understanding of these circumstances is crucial for policy improvements
to succeed in making tree planting feasible, acceptable, and ultimately profitable for local people and
related stockholders [51].

Planting millions of square miles of biofuel could store between 1.2 and 6.3 billion tons of
carbon/year; enough to make a very large dent in global greenhouse gas emissions [52], while also
providing sufficient energy stock [53]. However, there is a risk that doing so could lead to forest
clearance, compete with agricultural production and put additional pressure on biodiversity [52]. As a
solution, producing biofuel on degraded land can avoid compromising agricultural production and
the related negative environmental consequences.

4. Conclusions

This study demonstrated that among four trial species, nyamplung is the most adaptive (88%)
bioenergy species for growth on degraded peatland in Central Kalimantan, followed by kemiri sunan
(48%). Growth performance indicators showed that nyamplung grew better in agroforestry sub-plots
when compared to monoculture sub-plots both in terms of height and circular stem growth; likewise,
kemiri sunan performed better in terms of height growth in agroforestry sub-plots.
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This awareness of nyamplung and kemiri sunan’s survivability in degraded peatland, as well as
their improved performance using agroforestry, can promote the benefits of agroforestry and enhance
farmers’ livelihoods, as well as supporting sustainable development. However, further study on the
productivity and associate biofuel yields of both species is needed. Further studies are also needed for
these four selected, and different trial species on different peat and degraded land areas, including
more accurate extended measurement variables, e.g., soil nutrients, peat water table, and peat depth,
with more controlled environment. That may help to get additional data, such as in our study it
was not clear why there are significant differences between the same species and the same treatment
(e.g., Figure 9). Selecting tree species with multiple benefits in terms of livelihoods, local culture
familiarity, and strong market value, might be beneficial to improve farmers’ motivation to utilize
degraded land for biofuel production.
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Appendix A

Table A1. Environmental requirements for four tested bioenergy species.

Species
Mean Annual Temperature (◦C) Mean Annual Rainfall (mm)

Source
Min Max Min Max

Gamal 20 27 600 3500 53
Kaliandra 22 28 700 4000 54

Kemiri sunan 18 30 700 2500 55
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