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Abstract: Social media continues to grow, permanently capturing our digital footprint in the form
of texts, photographs, and videos, thereby reflecting our daily lives. Therefore, recent studies are
increasingly recognising passively crowdsourced geotagged photographs retrieved from location-based
social media as suitable data for quantitative mapping and assessment of cultural ecosystem service
(CES) flow. In this study, we attempt to improve CES mapping from geotagged photographs by
combining natural language processing, i.e., topic modelling and automated machine learning
classification. Our study focuses on three main groups of CESs that are abundant in outdoor social
media data: landscape watching, active outdoor recreation, and wildlife watching. Moreover,
by means of a comparative viewshed analysis, we compare the geographic information system- and
remote sensing-based landscape organisation metrics related to landscape coherence and colour
harmony. We observed the spatial distribution of CESs in Estonia and confirmed that colour
harmony indices are more strongly associated with landscape watching and outdoor recreation, while
landscape coherence is more associated with wildlife watching. Both CES use and values of landscape
organisation indices are land cover-specific. The suggested methodology can significantly improve
the state-of-the-art with regard to CES mapping from geotagged photographs, and it is therefore
particularly relevant for monitoring landscape sustainability.

Keywords: cultural ecosystem services; automated image recognition; natural language processing;
topic modelling; landscape coherence; colour harmony

1. Introduction

Almost 50 years ago, in the 1970s, Philippe Saint-Marc interpreted the outdoor environment
as a social service supporting a good quality of life and public well-being [1]. Ever since then, this
logic has been elaborated upon with the concept of cultural ecosystem services (CESs) [2,3] and a
geographic perspective connecting the ecosystem (landscape) structure and functions with benefits and
values [4]. Accordingly, the capacity of landscapes to provide CESs among other ecosystem services
is now considered a prerequisite for landscape sustainability in connecting the Earth’s patterns and
processes to individual values and preferences [5–7].

However, CESs have proven difficult to quantify, and consequently they are difficult to manage.
Therefore, many authors have discussed CESs in the context of metrics, including economic assessment
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and quantitative mapping [8–12]. Currently, having a proper understanding, quantitative assessment,
and an incorporation of CES into decision-making processes is considered crucial for achieving
sustainable development goals and other policy targets [13–16]. The most advanced approach to the
classification of the CES is being developed in the Common International Classification of Ecosystem
Services (CICES) [17]. Our work examines, in the Estonian context, the following classes of CESs
according to the CICES:

a) characteristics of living systems that enable aesthetic experiences (experiencing landscape beauty,
passive recreation);

b) characteristics of living systems that enable activities promoting health, recuperation, or enjoyment
through active or immersive interactions (active outdoor recreation); and

c) characteristics of living systems that enable activities promoting health, recuperation, or enjoyment
through passive or observational interactions (e.g., watching organisms: plants, animals and
mushrooms).

The vast majority of CES assessments are based on surveys, interviews, participatory mapping,
workshops, and other kinds of offline engagements with pre-selected individuals, such as local
communities, key stakeholders, or experts [8,18–20]. However, the last two decades have seen a
growing trend towards crowdsourcing applications in this field. In particular, the use of publicly
available location-based social media (LBSM) data—mainly geotagged photographs—stored in online
photo repositories (Flickr and Panoramio), applications (Instagram and Strava), and social networks
(VK.com and Twitter) has proliferated [21]. Passively crowdsourced digital footprint has been
used for (a) the assessment of touristic place visitation rates [22], (b) mapping landscape values
across spatial scales [23,24], (c) mapping landscape aesthetic flow [25], (d) analysing spatial CES
distributions [12,26], etc.

However, the amount of geotagged data in the online repositories of varying and often non-relevant
content poses an issue for content selection and classification. The most common approaches of
content analysis include manual selection [25–27] or photo-user-days mapping within the InVEST
ecosystem service models [22,28,29]. Therefore, image recognition services and machine learning
models have been gaining attention more recently. For instance, machine learning algorithms provided
by Clarifai (Clarifai Inc., New York, NY, USA) and Google Cloud Vision were recently reported to
be very promising for CES recognition and mapping [30,31], and natural language processing was
applied to categorise social media users in relation to outdoor recreation [32].

In our study, the objectives are to (a) identify and map CES use in Estonia by using a combination
of automated content image recognition and topic modelling on photos from selected social media
platforms, and (b) quantify the association between two types of landscape attributes reflecting
subjective landscape organisation, i.e., the landscape coherence and colour harmony of land cover, and
CES flow. Landscape coherence is a landscape attribute, which, according to existing reports, rather
positively influences landscape preferences by generalising order and organisation of recognisable
elements of landscape pattern [33]. It can be mapped with a geographic information system (GIS)-based
indicator in relation to photographing preferences [34]. Colour harmony is also discussed as an
important aesthetic variable of visual landscape [35] and is recently mapped with satellite imagery
and textural metrics [36], but it has received much less attention in literature compared to landscape
coherence. Suggested objective indicators of landscape coherence and colour harmony of land cover
remain understudied in the context of CES use and require testing across various environmental
settings and scales.

The paper is developed around a simple framework of CES use classification and its linkage to
landscape attributes, assessable with remote sensing- and GIS-based indicators. Section 2 justifies the
study area choice and introduces the methods used to extract knowledge on CES use and landscape
attributes from geolocated photographs and GIS data, respectively. Section 3 presents the results of
CES use mapping in relation to the GIS- and remote sensing-based indicators, as well as land cover
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types. Section 4 discusses the results in the wider context of added research value compared to existing
research papers. Section 5 concludes with the main findings and directions of further work.

2. Materials and Methods

2.1. Study Area

According to DataReportal, 98% of Estonians are Internet users to some extent, and 57% are active
users of social media [37]. This high level of Internet penetration, combined with a well-developed
touristic policy and infrastructure, as well as the significant share of the Russian-speaking community in
the total population (VK.com is based in Russia) render Estonia a good study area for social media and
CES-related studies. Moreover, the diverse environmental conditions and numerous protected areas in
Estonia enhance opportunities for analyses from geographic and nature conservation perspectives.

2.2. Mapping of Cultural Ecosystem Service (CES) Represented in Social Media in Estonia

To test the applicability of topic modelling for CES identification and classification, we used
geotagged photo-series analysis [38], retrieving metadata by means of application programming
interface (API) calls (including geographic coordinates, user and photo ID, date of taking, web-links to
photographs) for publicly available images uploaded to Flickr.com and VK.com services from 2015 to
2018. Flickr and VK.com continue to provide access to their non-private geolocated content, while
Panoramio discontinued its service and Instagram has not shared its data with third parties since 2015.
We additionally used the GIS-data for buildings in Estonia [39] to remove the metadata for indoor
photographs. In total, metadata for 21,242 geographically outdoor photographs were retrieved and
combined into a single dataset. We then applied content image recognition to these photographs with
automated Python API requests to Clarifai’s service (Clarifai Inc., New York, NY, USA). We used the
general model with a cut-off greater than 90% for the probability that the tag is correct.

We then tested topic modelling (Latent Dirichlet Allocation (LDA) algorithm) implemented in the
Orange data mining software [40] to classify the tags into a number of topics and deleted the irrelevant
ones (assuming that photographs sharing the same tags represent the same “topic”). As a result, the
pre-processed dataset consisted of 9983 photographs. After some initial testing, we decided on three
topics for the LDA analysis. The LDA algorithm was useful in two aspects: (a) identification of the
non-relevant photographs (for example, we removed the photographs, sharing topics of tags related to
driving and cars, indoor design, architecture, fashion and beauty, military service) and (b) identification
of the relevant topics in the rest of the photographs’ tags.

As the LDA algorithm calculates the probability score, indicating the likelihood of the set of tags
for each photograph belonging to each topic, we assumed that the assigned photographs belong to the
topic with the highest probability score. Owing to the potential overlap with this fuzzy distinction
between the topics of each photograph, we decided to post-process the results manually by interpreting
the context of each photograph in addition to its content. For instance, photographs of pets were
transferred from the topic of wildlife watching to outdoor recreation, and photographs with a minor
presence of people or their recreation-related equipment were moved from landscape watching to
outdoor recreation. We devised an a priori hypothesis about the small number of relevant CESs,
according to the CICES classes (3–5), and the very first test of LDA algorithm resulted in three relevant
CES-related topics. In case we applied LDA with a higher number of intended topics, some minor
subclasses of recreation appeared, but these minor classes of recreational CES are beyond the scope of
this study. We identified the following topics corresponding to the groups of CESs:

a. Landscape watching. This consists of the following tags: nature, outdoors, landscape, tree,
nobody, wood, sky, travel, water, and summer (6154 photographs; 17 manually transferred from
topic 3).
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b. Active outdoor recreation. This consists of the following tags: people, recreation, adult, fun,
man, leisure, outdoors, one, sport, and action (2345 photographs; 770 manually transferred from
topic 1, and 114 from topic 3).

c. Wildlife watching. This consists of the following tags: nature, outdoors, no one, flora, leaf, wild,
wildlife, season, animal, growth (1484 photographs; 124 manually transferred from topic 1, and
2 from topic 2).

We mapped CES use from the photo locations to examine whether people (subconsciously)
consider some selected aesthetic landscape attributes that represent landscape organisation [34,36],
and these attributes can be derived from remote sensing data [41].

2.3. Impact of Landscape Organisation on CES Use

The colour harmony of land cover is a landscape attribute often neglected in landscape studies [41]
but is potentially responsible for visual landscape quality [35] and is assessable using remotely sensed
data. We used Landsat 8 OLI cloudless summertime mosaics for the territory of Estonia with a 5 km
buffer zone pre-processed with the Google Earth Engine. The red (B4), green (B3), and blue (B2) bands,
corresponding to the natural colours band combination, were converted into the hue-saturation-value
(HSV) colour space to quantify colour harmony. We assumed that the hue and chroma (saturation in
HSV space) similarity, which is listed among the universal principles of colour harmony [42], can be
quantified for the hue and saturation raster datasets. Such assessment can be done using the grey level
co-occurrence matrix (GLCM) homogeneity index (GLCMH, Equation (1)) [43], which measures the
similarity of image pixel pairs [44] (Figure 1a,b):

GLCMH =

Ng∑
i=1

Ng∑
j=1

1

1 + (i− j)2 P(i, j) (1)

where P(i,j) is the probability of co-occurrence of pixels i and j, and Ng is the number of distinct grey
levels in the quantised image (64 in this study).
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Figure 1. Spatial distribution of the values of the landscape organisation indices: (a) grey level
co-occurrence matrix (GLCM) homogeneity for hue-saturation-value (HSV) hue component (colour
harmony index); (b) GLCM homogeneity for the HSV saturation component (colour harmony index);
(c) landscape coherence index. Higher values of colour harmony indices indicate water bodies (sea and
lakes). Higher values of landscape coherence index indicate urban areas and, particularly, complex
landscapes of Southern Eastern and Northern Estonia.
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It should be mentioned that colour harmony depends on “how strongly an observer experiences
the colours in the combination as going or belonging together, regardless of whether the observer likes
the combination or not”, (p. 551, [45]). Therefore, it is rather a component of the formal landscape
aesthetics and, in theory, does not necessarily reflect landscape preferences.

We interpret landscape coherence as a degree of order inherent to the landscape pattern that
is composed of diverse and distinct landscape elements and features [46]. Landscape coherence
is one of the classic subjective landscape attributes responsible for the emergence of landscape
values [33]. Increasing the landscape coherence extent generally leads to a moderate increase in
landscape preferences [34]. Therefore, we assess the vertical landscape coherence using the landscape
coherence index (LCI, Figure 1c, Equation (2)) proposed by Karasov et al. [34], which is based on the
concepts of the emergent theory of information, as presented by Lutsenko [47]. We calculate the LCI
within a circular neighbourhood of seven pixels for the CORINE land cover model and the Topographic
Position Index (TPI) landform classification, obtained with the respective SAGA GIS module [48].

LCI =
Ilandscape

Iland cover + Iland f orms
(2)

where LCI is the landscape coherence index; Iland cover and Ilandforms are the Hartley functions for the
land cover/land use (LU/LC) model and the TPI-based landform classification based on the digital
elevation model [43], respectively; and Ilandscape is the Hartley function for the parametric composite
(digital landscape model) of the LU/LC model and TPI-based landforms.

The landscape coherence index benefits from the feature of additivity of the Hartley function
(Equation (3)), which is a particular case of Shannon’s information entropy (Shannon diversity index):

I = nilog2m (3)

where m is the total number of observations (landscape or land cover classes, types of landforms), and
n is the number of observations in neighbourhood i.

The logic of landscape coherence calculation is based on the following assumption: for independent
landforms and land cover, the algebraic sum of the amount of information, according to the Hartley
function for landforms and land cover, will be equal for the amount of information for their parametric
composite or digital landscape model. If the landforms and land cover models, which compose the
digital landscape model, interact and are not independent, the summarised Hartley functions for
these datasets will give a smaller value than the value of the Hartley function for the pixels of a
digital landscape model. The ratio between Hartley functions for the digital landscape model and its
components highlights the extent of systematic features of landscape and can be related to landscape
preferences. Hypothetically, the increase in landscape coherence contributes to the visual landscape
quality and therefore to CES use.

We then performed a viewshed analysis, identifying the visible surface from the set of observation
points, namely the geolocations of the selected photographs from each group of CESs (see Section 2.2)
and for the same number of randomly selected locations, which serve as pseudo-absence data (Figure 2).
We used the PixScape software [49] on the European Digital Elevation Model (EU-DEM), version 1.1 [50]
with the maximum visible distance and observer height set to 5 km and 1.6 m, respectively. The median
LCI, hue homogeneity, and saturation homogeneity were calculated for each viewshed and compared
between the actual (presence) and random (pseudo-absence) geolocations using Wilcoxon’s rank-sum
test with continuity correction (see Appendix A for details), implemented in the Exploratory software
(Exploratory Inc. (Delaware US) Sacramento, CA, USA).
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Figure 2. Research workflow of the cultural ecosystem services (CES) mapping in relation to the
calculated landscape organisation indices.

3. Results

3.1. Mapping of CES Represented in Social Media in Estonia

Figure 3 presents the results of the CES mapping obtained with the application of topic modelling
(geographical coordinates of the photographs from the combined Flickr and VK.com dataset, classified
into three categories of CES groups). The clear linear patterns of the photographs highlight the main
flows of people alongside the main roads and coastlines of Estonia. The exploratory buffer analysis for
OpenStreetMap road data indicates that transport accessibility is extremely important for CES use.
To be precise, 6148 out of 6153 landscape-watching photographs, 2311 out of 2345 outdoor recreation
photographs, and 1483 out of 1484 wildlife-watching photographs have been taken no farther than
500 m from the roads and trails of all types. Although indoor photographs have been removed from the
analysis (see Section 2.2), many photographs were taken in the main cities (Tallinn, Tartu, Narva, etc.),
especially in their suburban zones. Additionally, the protected areas are conspicuous as approximately
59% of the total number of selected photographs were taken within these regions. A full list of the
protected areas is presented in the Table S1 (Supplementary Materials).

An exploratory analysis of land cover (CORINE land cover 2018, Figure 4) shows that most of
the photographs were taken in coniferous forests, agricultural areas, mixed forests, and transitional
woodland-shrub areas. All the CES groups under consideration are well represented in these land
cover classes. On the contrary, water bodies and courses, sea, peat bogs, inland marshes, and natural
grasslands are frequented more for landscape watching than for the other groups of CES. Outdoor
recreation is present in complex cultivation patterns and green urban areas. Wildlife watching
frequently occurs in broad-leaved forests and pastures. In this way, more “natural” land cover classes
are much better represented in the study datasets of passively crowdsourced photographs. However,
land, which is principally occupied by agriculture, is among the leaders in enabling CES use.
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Figure 3. Geotagged photographs representing actual use of three groups of CES in Estonia
(2016–2018): landscape watching (passive recreation), outdoor recreation activities, and wildlife
watching. The web-map, designed in Carto, is available via the following link: https://oleksandrkarasov.
carto.com/builder/1e69e28a-9705-45a9-8276-471a330da2ff/embed.Land 2020, 9, x FOR PEER REVIEW 8 of 19 

 

Figure 4. CES use in Estonia encompasses (with a few exceptions) predominantly natural and semi-

natural land cover (CORINE land cover 2018). Land cover classes are ranked in order of decreasing 

number of landscape watching photographs. 

3.2. Impact of Landscape Organisation on CES Use 

As is clear from Figure 5, we see that the median hue and saturation similarity values are 

remarkably higher for the actual rather non-vegetated (median value of the normalized difference 

vegetation index (NDVI) lower than 0.1) viewsheds corresponding to landscape watching and 

outdoor recreation than for the pseudo-absence viewsheds. The indicators used exhibit similar 

behaviours for the landscape watching and outdoor recreation viewsheds, whilst colour harmony 

does not seem to influence wildlife watching.  

Figure 4. CES use in Estonia encompasses (with a few exceptions) predominantly natural and
semi-natural land cover (CORINE land cover 2018). Land cover classes are ranked in order of
decreasing number of landscape watching photographs.
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3.2. Impact of Landscape Organisation on CES Use

As is clear from Figure 5, we see that the median hue and saturation similarity values are
remarkably higher for the actual rather non-vegetated (median value of the normalized difference
vegetation index (NDVI) lower than 0.1) viewsheds corresponding to landscape watching and outdoor
recreation than for the pseudo-absence viewsheds. The indicators used exhibit similar behaviours for
the landscape watching and outdoor recreation viewsheds, whilst colour harmony does not seem to
influence wildlife watching.
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Figure 5. Comparison of medians of landscape coherence and harmony-based visual quality indices
for each group of CESs within viewshed areas for actual geotagged photographs (“real”) and randomly
simulated locations (“random”): (a) landscape watching; (b) outdoor recreation; (c) wildlife watching.
Boxplots are designed separately for median normalized difference vegetation (NDVI) index values for
each viewshed being higher 0.1 and lower 0.1 to present the index performance for rather vegetated
and non-vegetated area (mainly water bodies and streams). Colour harmony indices are higher for
actual CES viewsheds in the case of non-vegetated areas, while landscape coherence index is higher for
photographs of vegetated areas. The GLCM homogeneity index for the saturation of pixel pairs does
not indicate wildlife watching in any case.
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According to the Wilcoxon rank sum test with continuity correction, all the distribution differences
except for colour harmony indices for wildlife watching are statistically highly significant, suggesting
that most CES-related photographs were taken with consideration for land cover of higher colour
harmony and landscape coherence (Figure 6). It is highly likely that colour harmony values affect
landscape watching and outdoor recreation, while landscape coherence seems to have a clear
positive influence on wildlife watching and a weaker positive influence on landscape watching
and outdoor recreation.
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Figure 6. Density plots representing the results of the Wilcoxon rank sum test with continuity correction,
applied to the medians of landscape coherence and harmony-based visual quality indices for each group
of CESs within viewshed areas for actual geotagged photographs (“real”) and randomly simulated
locations (“random”): (a) landscape watching; (b) outdoor recreation; (c) wildlife watching. Significance
levels: *** p-value less than 0.001; ** p-value less than 0.01; ns—not significant. Alternative hypothesis:
two-sided. Confidence level: 0.95.

A visual exploration of land cover with regard to LCI and colour harmony indices reveals a
complementary character of the considered landscape organisation indices (Figure 7). Landscape
coherence is the highest for culturally modified land covers—urban fabric, urban green areas, and
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agricultural areas—and lower for natural areas, the minimum being observed for peat bogs and water
bodies. Colour harmony, in contrast, is the highest for water forest and peat bogs. Therefore, colour
harmony and landscape coherence extents are highly dependable on the land cover type: higher
cultural modification of landscape results in the increasing orderliness and complexity, while colour
harmony increases for homogeneous and predominantly natural (while often managed) land cover.
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4. Discussion

4.1. Mapping of CES Represented in Social Media in Estonia

Our results contribute to addressing the challenge of CES mapping by studying the relationships
among the three categories of outdoor geotagged photographs and remote sensing-based landscape
characteristics [24]. The distribution pattern of the CES-related photographs is in line with previous
findings [23] as we confirm transport accessibility and naturalness to be the main factors influencing the
probability of taking outdoor photographs [51]. Photographs from different CES groups often overlap
spatially, indicating landscape multifunctionality. Landscape multifunctionality is important for the
overall distribution of landscape values; hence, our approach can contribute to evidence-based trade-off

analyses and the detection of hotspots of cultural landscape functions through CES patterns [52,53].
There is also a synergy between our nationwide CES mappings and the ESMERALDA project [54].
Our cross-disciplinary approach, integrating bio-physical and socio-cultural methods, allows for CES
mapping and assessment across various spatial and temporal scales and is applicable to both urban
and non-urban environments.

Much of the CES use seems concentrated within nature protection areas, revealing the efficiency
and efficacy of the nature conservation policy in Estonia as well as the potential for further expansion
of protected areas, which can contribute to an increase in nature-based tourism [55]. Thereby, we
confirm the LBSM data as a valuable source of data for nature conservation as well as for CES
mapping [21,56,57].
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Our results continue the methodological approach that has been initiated in previous research [30–32].
The LDA topic modelling algorithm significantly facilitated the process of LBSM data assigned with
the content-related tags as a result of automated image recognition with Clarifai. Therefore, we confirm
that the LDA method of topic modelling is highly relevant and valuable for a rapid assessment
of cultural ecosystem services use over large areas [31]. When all the photographs representing
non-relevant topics have been removed, we applied the LDA algorithm to the relevant tags only, and
some testing showed that three topics of tags sufficiently represent their diversity and meet our needs.
The automated character of topic modelling often results in a meaningless classification, so the exact
number of relevant topics (3) was found by trial and error (while a priori we assumed that there are
just a few major CES categories). Further analysis would result in accounting for minor CES categories,
such as picnicking, cycling, or playing tennis outdoors, but such detailed classification was beyond the
scope of our study.

Obviously, the proposed methodological combination is not a complete substitute for traditional
visual content analysis; instead, it should be used as an initial procedure for CES use assessment
and followed with a quick visual verification. For example, we transferred to the outdoor recreation
category those photographs that were automatically selected for landscape watching if they contained
minor presence of people or their equipment; since presence of pets was automatically interpreted as
wildlife (the general machine learning model provided by Clarifai does not account specifically for
this distinction), we also manually moved these photographs to the category for outdoor recreation.
Photographs with minor presence of wild animals classified as related to landscape watching were
also manually transferred to the wildlife watching category.

4.2. Impact of Landscape Organisation on CES Use

In line with previous studies, landscape coherence was found to have a positive but rather weak
association with CES use in our countrywide study [34]. Vertical landscape coherence increases
for places of significant cultural modification (more legible urban and agricultural areas). Thereby,
we confirm LCI performance as indicative of the orderliness of the landscape pattern, but unexpectedly
it has a rather small impact on CES use. Wildlife watching occurs in places with higher LCI. This is
potentially because people are more likely to take photographs of animals, plants, and mushrooms
near their homes (such as green urban areas) in some understandable settings rather than in a more
natural environment. Other authors have additionally explored the hotspots of wildlife watching
near cities [29]. As some photographed areas have higher LCI, compared with the values for random
locations, signs of anthropic modification (parks, suburban areas, agricultural fields, and other elements
of cultural landscape) can be additionally important for CES use, complementing pure naturalness [58].

Colour harmony indicators (HSV hue and saturation similarities, indicated with GLCM
homogeneity) showed a larger difference between the photographed viewsheds and random
background viewsheds, suggesting that people tend to take photographs with a preference for
land covers of greater colour harmony. However, as there is an association between land cover classes
(CORINE land cover 2018) and colour harmony, the bias may be caused by the effect of the land cover
itself; for instance, sea, water bodies, forests, and peat bogs additionally have powerful intrinsic and
other values. Therefore, our results should be treated with caution, and colour harmony mappings
should contribute to the general understanding of landscape rather than perform as the standalone
indicators of landscape preferences.

4.3. Other Sources of Bias

It is most likely that elderly persons and children are the least represented age strata in LBSM.
However, Flickr and VK.com were launched in 2004 and 2006, respectively, and have become very
popular among diverse user groups, while general Internet penetration in Estonia is growing also [59].
We can expect that in the coming years, LBSM social media will become more orientated towards elderly
people owing to the regular ageing of active Internet-users. Unfortunately, the LBSM data—unlike
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surveys—provide little or no information on the individuals’ sex and gender, age, education level,
family status, ethnic origin, etc. Nevertheless, the LBSM data are free from some survey-specific issues,
such as recollection and mind biases, which occur owing to intrusive surveying [52,60]. Therefore,
in our opinion, social media data provide added value to CES studies.

5. Conclusions

Our results are based on photographs uploaded to the social media sites, Flickr and VK.com,
which can be used to represent the actual use of some CESs (landscape watching, outdoor recreation,
and wildlife watching), and are linked to spatial landscape indices in Estonia. Their spatial analysis
enables a better understanding of the geographic organisation of the environment and its potential for
providing CES and supporting nature appreciation in an urbanised society [61]. Evidence from our
study suggests that social media users prefer taking photographs of landscapes and outdoor activities
in areas with greater colour harmony, whilst landscape coherence is linked strongly only to wildlife
watching and, to a lesser extent, other CESs.

Topic modelling significantly reduced the time needed for the content analysis of the photographs,
and our CES mapping depends on the quality of this automated image content analysis. Therefore,
future research could be targeted towards comparing different machine learning algorithms and
including the temporal component. The suggested methodological combination of machine learning
and natural language processing algorithms advances the existing common methods of CES assessment
based on passively crowdsourced photographs, and it is sufficiently robust to be applied across the
regional, continental, and global scales. In turn, the test of GIS-based landscape organisation metrics in
relation to CES use shows that they can also facilitate the prospects of rapid and reliable landscape
visual quality assessment up to the global scale, which does not depend on local subjective landscape
evaluations and complements regional landscape character assessment. Drawbacks of the approach
are related to the representativeness of the social media data as a source of knowledge about CES
use and also to limitations of the GIS and remote sensing applicability for physio-gnomic landscape
research. Notwithstanding, we have demonstrated that the combined usage of LBSM data, automated
image recognition, natural language processing, satellite imagery, and GIS data is highly relevant for
evidence-based ecosystem management and nature protection.
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Results of the applied statistical analysis (Wilcoxon rank sum test with continuity correction) for
median values of landscape organisation metrics within the viewsheds based on CES-related and
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randomly generated geolocations. The landscape coherence index was rescaled (0; 1) to meet the scale
of colour harmony estimations in Results.

Table A1. Summary statistics.

Indicator U Statistic p Value Difference Conf High Conf Low

Landscape watching
GLCM homogeneity hue 14,795,531.5 9.88 × 10−98 −0.061 −0.055 −0.068

GLCM homogeneity saturation 14,594,742.5 2.91 × 10−107 0.017 −0.015 −0.018
Landscape coherence index 16,273,215.5 2.01 × 10−41 −0.033 −0.029 −0.039

Outdoor recreation
GLCM homogeneity hue 2,356,245 2.21 × 10−17 −0.032 −0.024 −0.040

GLCM homogeneity saturation 2,293,880 8.59 × 10−23 −0.011 −0.008 −0.013
Landscape coherence index 2,280,950.5 5.18 × 10−24 −0.035 −0.029 −0.042

Wildlife watching
GLCM homogeneity hue 1,140,081 0.095 0.007 0.015 −0.001

GLCM homogeneity saturation 1,168,362 0.004 0.004 0.006 0.001
Landscape coherence index 898,071.5 3.34 × 10−18 −0.037 −0.029 −0.046

Table A2. Detailed statistics.

Indicator Type
Number

of
Rows

Mean Confidence
Low

Confidence
High

Standard
Error of
Mean

Standard
Deviation Minimum Maximum

Landscape watching
GLCM

homogeneity hue random 6153 0.20 0.20 0.20 0.00 0.12 0.01 1.00

GLCM
homogeneity hue real 6153 0.31 0.30 0.31 0.00 0.23 0.00 0.93

GLCM
homogeneity

saturation
random 6153 0.13 0.13 0.13 0.00 0.08 0.01 1.00

GLCM
homogeneity

saturation
real 6153 0.24 0.24 0.24 0.00 0.21 0.00 0.93

Landscape
coherence index random 6153 0.42 0.41 0.42 0.00 0.16 0.00 0.87

Landscape
coherence index real 6153 0.47 0.47 0.48 0.00 0.14 0.00 1.00

Outdoor recreation
GLCM

homogeneity hue random 2345 0.21 0.21 0.21 0.00 0.13 0.00 1,00

GLCM
homogeneity hue real 2345 0.31 0.30 0.32 0.01 0.25 0.00 0.96

GLCM
homogeneity

saturation
random 2345 0.09 0.09 0.10 0.00 0.09 0.00 1.00

GLCM
homogeneity

saturation
real 2345 0.20 0.19 0.20 0.00 0.22 0.01 0.90

Landscape
coherence index random 2345 0.44 0.43 0.44 0.00 0.15 0.00 0.87

Landscape
coherence index real 2345 0.49 0.49 0.49 0.00 0.12 0.00 1.00

Wildlife watching
GLCM

homogeneity hue random 1484 0.20 0.20 0.21 0.00 0.14 0.00 1.00

GLCM
homogeneity hue real 1484 0.23 0.22 0.24 0.00 0.19 0.01 0.96

GLCM
homogeneity

saturation
random 1484 0.13 0.12 0.13 0.00 0.11 0.01 0.94

GLCM
homogeneity

saturation
real 1484 0.16 0.15 0.16 0.00 0.17 0.00 1.00

Landscape
coherence index random 1484 0.44 0.43 0.45 0.00 0.16 0.00 0.80

Landscape
coherence index real 1484 0.48 0.48 0.49 0.00 0.15 0.00 1.00
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