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Abstract: Recent rapid population growth and increasing urbanisation have led to fast vertical
developments in urban areas. Therefore, in the context of the dynamic property market, factors
related to the third dimension (3D) need to be considered. Current hedonic price modelling (HPM)
studies have little explicit consideration for the third dimension, which may have a significant
influence on modelling property values in complex urban environments. Therefore, our research
aims to narrow the cognitive gap of the missing third dimension by assessing both 2D and 3D HPM
and identifying important 3D factors for spatial analysis and visualisation in the selected study
area, Xi’an, China. The statistical methods we used for 2D HPM are ordinary least squares (OLS)
and geographically weighted regression (GWR). In 2D HPM, they both have very low R2 (0.111 in
OLS and 0.217 in GWR), showing a very limited generalisation potential. However, a significant
improvement is observed when adding 3D factors, namely view quality, sky view factor (SVF),
sunlight and property orientation. The obtained higher R2 (0.414) shows the importance of the third
dimension or—3D factors for HPM. Our findings demonstrate the necessity to include such factors
into HPM and to develop 3D models with a higher level of details (LoD) to serve more purposes
such as fair property taxation.

Keywords: 3D modelling; property value; remote sensing; hedonic price model; China

1. Introduction

In the last decades, rapid population growth and increasing urbanisation rates have led
to fast vertical developments in urban areas on top of the horizontal sprawl in China [1,2].
The construction of high-rise buildings in urban areas is driven by limited land availability
and growing urban population [3,4]. The spatial configuration of urban areas rapidly
changes with their increasing densities and high-rise developments. Consequently, in-
formation on the vertical dimension is getting more important, for example, analysing
changes in terms of view orientation, vision scope and sunlight direction. In the context
of a booming property market, these 3D property characteristics should be considered as
components for property value as well. Though property value refers to the estimated
amount at which a property will be exchanged, in this research, property value refers
to the first-hand transaction price in the market [5,6]. Generally, the property value is
determined by factors from different categories, e.g., physical, locational, and environmen-
tal. Such factors are employed to model property values, e.g., using the hedonic price
model (HPM) [7,8]. At present, geographical information system (GIS) and remote sensing
data are widely used because they provide abundant spatial information, which can be
interpreted to estimate the influences of different factors on property values. However,
their integration and involved factors are mainly 2D-based [9–11], while 3D factors have
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not received much attention. Reasons relate to difficulties of quantifying them, and the
computational complexities, e.g., modelling view changes on different storeys, such as the
sky view factor (SVF) [12–14]. Therefore, in this paper, we attempt to narrow the gap of
the missing third dimension in HPM by assessing both 2D and 3D models and identifying
important 3D factors for spatial analysis and visualisation.

Apparently, 2D methods are incapable of describing 3D characteristics in detail and
do not provide precise differences between properties at different storeys when handling
the complexity of vertical developments in urban areas. In contrast, 3D modelling can
visualise the spatial relationships in the vertical dimension and support realistic simulations.
Thus, it interacts with people better and provides a more in-depth understanding of the
complex urban environment compared to 2D display [10,15,16]. Such 3D models have been
implemented in multiple domains for solving problems such as building reconstruction and
sunlight direction simulation [17,18]. For example, SVF, an important factor measuring sky
visibility, is widely used to study the relationship between urban morphology and urban
heat island (UHI) [19]. It is mainly determined by building height and regional building
density, both factors related to 3D. It measures residents’ living comfort to some extent
in densely-populated urban areas. In terms of sunlight, better sunlight condition means
more daylight hours, less energy consumption and more comfortable living experience [20].
Although there have been many empirical studies related to 3D modelling, only a few
studies have explored and visualised the importance of 3D factors concerning HPM for
property values [21–23]. For example, the building height was proven to impact the
property values in high-rise buildings in Hong Kong: properties on a higher storey level
(above 20th) were more popular than those on a lower storey level (under 10th) [24].
There are studies investigating specific 3D factors in property values. Yamagata et al. [25]
evaluated the values of city views categorised in dummy variables. They found a “very
nice” open view and ocean view impact positively, whereas “poor” and “too much” green
view might reduce the value. Sander and Polasky [26] defined a complex variable matrix,
including dummy variable, percentage of a viewshed, and Euclidean distance, to calculate
viewshed area, view quality, and view richness. However, they lack the spatial analysis
of a real 3D environment. Therefore, the literature gap leaves us with questions about
which 3D factors influence property values and if remote sensing data can be beneficial as
input data for 3D spatial analyses. In general, 3D factors could have a high potential to
increase our understanding of the importance of them in property values and stimulate
new solutions to current-existing problems in a complex urban environment with generous
amounts of high-rise buildings. The gap between the importance of the third dimension
and its absence in the current HPM studies is identified.

In Xi’an, China, the first-hand property values have experienced a significant increase
since 2018 [27]. As a result, the government has established fixed-price and purchase-
restriction policies for market stabilisation. The general procedure is that the real estate
developers declare the property value to the government first, and they are only allowed
to start sales after the approval by the government. In other words, the first-hand values
are determined by the government according to the local market conditions; thus, the
first-hand property market is highly-restricted. In contrast, the second-hand property
market is free and excessively prosperous because more profits can be made as compared
to the first-hand value, which is generally lower than the market rates.

This research is conducted at the neighbourhood scale. We compared two HPM,
one with 2D factors and one with 3D factors, to investigate which one shows a better
performance to estimate property values (to increase the readability, they are abbreviated
to 2D model and 3D model respectively in the following sections). The 3D simulation and
3D modelling workflow can provide valuable insights into future research for HPM of
high-rise urban residential buildings.

The rest of this paper is organised as follows. Section 2 describes the overall method-
ology framework, followed by an overview of the study area and data sources. Then
methods applied in different stages are presented in detail. Section 3 shows the results
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regarding 2D and 3D model results and the model performance assessment. Section 4
provides discussions relating key literature to the main findings in this research, mainly
stressing the importance of involving 3D factors. Conclusions and future recommendations
are outlined in Section 5.

2. Materials and Methods

We applied a mixed qualitative-quantitative methodology (Figure 1). Expert inter-
views, focus group discussions and questionnaires were conducted to understand policies
related to the property market in Xi’an and determine the factors influencing property val-
ues which were categorised into 2D and 3D factors subsequently. Specifically, the answers
from interviews and focus group discussions affected the questions in the quantitative
questionnaires. For example, we took only the factors emphasised in interviews and focus
group discussions in questionnaires, so that we have a limited number of factors but with
high importance. The regressions of the 2D model included ordinary least squares (OLS)
and geographically weighted regression (GWR). Only OLS was applied for the 3D model
due to the relatively small sampling size (60 samples). Model validation was performed
for checking the 3D model robustness. Finally, we assessed the statistical results of 2D and
3D models and analysed the added values of 3D factors.
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The most commonly used of the three key valuation methods for valuing residential
properties is the comparative method [28]. When using the comparative method, the
valuers rely on their knowledge, experience and expertise to identify the comparable
properties, whose characteristics are then compared to the subject property, with those of
the subject property allocated values. Though these allocated values of the characteristics of
the subject property are not stated, the final estimated value of the subject property is given.
The comparative method though a form of hedonic pricing, does not show the ascription of
the characteristics of the property. However, the regression models here attempt to mimic
the valuer’s thought process explicitly. These factors are hence key to the valuation and
HPM process. Here we define several terminologies used in this research. 2D factors are
those influencing the values on planar bases such as accessibility to public facilities and the
surrounding environment. 3D factors are those linked to building height and influencing
the values on the vertical dimension (e.g., sunlight and SVF). The property values are the
first-hand transaction price of the properties, and the unit is yuan/m2. In the regression,
these factors are input as independent explanatory variables and the property value as
the dependent variable. The neighbourhood in Chinese contexts refers to a residential
district (usually enclosed by the walls and gates in urban areas), which consist of several
residential buildings (the number can range from single digits to hundreds) and different
living facilities (e.g., green belts, parking lot, playground) [29]. It should be noted that the
area coverage of each neighbourhood varies significantly.

2.1. Study Area

Xi’an, the capital of Shaanxi Province, is located at Guanzhong Plain (Figure 2a). It
is the educational, political and economic centre of northwest China. It is chosen as the
study area because enormous property market changes have been recently observed [30].
The population reached 10.37 million in 2018 [27]. With an annual population growth of
6.6% between 2016–2018, there have been a large number of constructions of new high-
rise neighbourhoods to shelter the influx of people, which results in a significant change
in the city’s skyline, coupled with a flourishing property market and its accompanying
skyrocketing property values [31].

In general, this research can be divided into two parts, 2D and 3D property value
model. The 2D model takes neighbourhoods with first-hand property values established in
2018 in Xi’an urban areas (excluding country regions) as study objects. The 3D model is
generated at the neighbourhood scale to make data collection feasible because investigating
the influence of 3D factors is both computational costly and time-consuming. Two residen-
tial neighbourhoods, abbreviated as “Y” and “Z”, were selected (Figure 2b). The selection
was motivated by the following facts: (1) both started constructions in 2018 and thus only
contained properties in roughcast conditions, avoiding the influence of decoration levels
on the values. Normally, properties with decorations have higher values compared to the
roughcast ones when they are in similar conditions [32]. Regarding second-hand properties,
it is hard to distinguish the sources of influences: whether it comes from different decoration
levels or from the third dimension; (2) both contained sufficient samples of first-hand property
values while other neighbourhoods lack sufficient data for the minimal conditions of running
statistical regressions [33]; (3) both only had high-rise buildings in their neighbourhoods, so
we could exclude the influence from low-rise buildings, terraces or houses. Furthermore,
the selection was also advised by the respondents (e.g., real estate sales managers and uni-
versity professor) we interviewed at Xi’an. The administrative district both are located in is
a normal district in Xi’an, which is not too remote from the city centre and consists of new
buildings. Regarding the neighbourhoods, they were designed as a standard residential area.
The residents in these neighbourhoods are middle-income class.
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2.2. Data Source

The different data was collected from several sources (Table 1). It included remote
sensing data, vector data of Xi’an, and property value databases. A Sentinel-2 satellite
image taken on the 26th of October, 2018 was used. After preliminary data quality controls,
this image was taken in autumn, which has enough vegetation cover in Xi’an; while other
images taken at similar times had issues such as higher cloud coverage and incomplete
coverage of the study area. A Gaofen-2 satellite image was taken on the 12th of April,
2017 with a 4 m resolution, enough for land cover classification within the scope of this
research. A Google Earth image taken on the 24th of April, 2017 was used for the following
reasons: (1) it had no cloud coverage; (2) the image resolution was optimal for visual
validation, i.e., selecting reference points for accuracy assessment of the land cover classifi-
cation; (3) it was one of the newest images suitable for comparison when the research was
conducted. The floor numbers of the buildings in Xi’an were obtained through applying
open-source crawlers to online navigation platform, such as AutoNavi, established by
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AutoNavi Software Co., Ltd. (https://mobile.amap.com/). The crawler tools are only
for education and research purposes. The property market was under fixed-price and
purchase-restriction policy, which meant the values were controlled by the government,
rather than real estate developers. Therefore, we decided to use first-hand property values
rather than second-hand property values as in other HPM studies for the following reasons:
(1) The first-hand property values were registered and published by the Price Bureau of
Xi’an. They were grouped by the neighbourhood, released at the level per property in a
well-organised form. Thus, they had less noise (as compared to the second-hand records),
high data reliability and accessibility. (2) Based on our observations, as well as suggested
by various property professionals we interviewed, the second-hand property market was
over-heated at that time. It happened because the first-hand property values were controlled
by the government, which caused an inflation of the second-hand property values. This
phenomenon led to a large increase in second-hand property values within a few months.
Hence, it was hard to identify and separate the real influences of 3D factors. (3) Different
decoration levels influence the second-hand property values considerably, which is very
typical in the Chinese context and partially different from Western countries. For example,
properties with similar locational and environmental attributes can be sold with entirely
different values if one is equipped with luxury furniture and another is poorly decorated.
Different decoration styles mean different Fengshui (geomancy), which is highly appreciated
and emphasised in Chinese traditional culture [30,31]. Nevertheless, it is difficult to observe
whether a specific property is accompanied by appreciated or depreciated Fengshui only from
property values. This fact was confirmed by the real estate sales managers we interviewed.
(4) The second-hand records had noises (e.g., only a few samples inside one neighbourhood
or missing physical attributes) and the validity was another critical issue to be concerned.
In summary, we decided not to use noisy second-hand data because we want to see the
impact of 3D factors, and therefore the less noisy first-hand data is more appropriate. There
were 298 samples in the database of the first-hand property value of Xi’an in 2018 (average
per neighbourhood) used for building 2D model. The samples covered the period from the
1st January, 2018 to the 18th September, 2018. Each neighbourhood was represented by the
point at its centre. The coverage included seven urban administrative districts, excluding the
county regions not under the purchase-restriction and fixed-price policy.

Table 1. Data overview.

Data Unit Source and Description Purpose

Sentinel-2 satellite image Tiff
Copernicus Open Access Hub, 10-m
resolution, date 26-10-2018, cloud

coverage 1.5%

Calculating the normalised
difference vegetation index (NDVI).

Gaofen-2 satellite image Tiff
Gaofen-2 Satellite, 4-m resolution,
date 12-04-2017, cloud coverage

0.04%

Land cover classification for the
3D model.

Google Earth Image Tiff Pixel resolution 4800 × 2782, date
24-04-2017 Land cover classification validation.

Floor numbers of the buildings in
Xi’an Vector Baidu Map and Amap (AutoNavi) Construct buildings for

3D analyses.

Point of interest (POI) of Xi’an Point Baidu Map Creating 2D factors.

Footprints of the buildings in
neighbourhoods Y and Z Vector Google Earth 3D visualisation and

spatial analysis.

Database of the average first-hand
property values of Xi’an in 2018 Yuan/m2 China Index Academy The dependent variable

(regressions) of the 2D model.

First-hand property values of the
neighbourhoods Y and Z in 2018 Yuan/m2 The Price Bureau of Xi’an

(http://wjj.xa.gov.cn/)
The dependent variable (regression)

of the 3D model.

https://mobile.amap.com/
http://wjj.xa.gov.cn/
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2.3. Expert Interview, Focus Group Discussion and Questionnaire

We organised expert interviews, focus group discussions and questionnaires to inves-
tigate the policy background of the property market in Xi’an and the preferences of local
residents for high-rise residential buildings. Consent forms were signed by the respon-
dents, and they were well-informed about the research contents orally before participation.
Semi-structured expert interviews allowed us to gain contextual knowledge of the study
area [34]. In total, eight interviews were held and twelve interviewees were involved, with
diverse expertise including sales managers and architecture design directors from real
estate developers, engineers from survey and mapping institutions, a university professor
specialising in land administration, and managers from the urban planning sector. We
asked them to describe the property characteristics valued by buyers and the reasons be-
hind, to explain the current policies related to the first-hand property market, to introduce
the general pricing policy of real estate developers, and to describe if and how the third
dimension was being considered in Xi’an. The interview transcripts were used to select
2D and 3D factors included in the questionnaire for local residents. We conducted two
focus group discussions, with a total of 10 ordinary buyers. The overall aim was to obtain
property-related information from buyers, rather than from expert perspectives.

Questionnaires were used to investigate local residents’ preferences for high-rise
residential buildings. We issued both online and paper-based questionnaires to cover
different groups of inhabitants (e.g., age ranges). The online version was issued via
Wenjuanxing, a Chinese online survey software. The paper-based ones were distributed
in several public spaces without picking up specific target groups. We received a total
number of 142 filled-in questionnaires. The contextual questions contained multiple-choice
and scoring questions to survey their preferences for identified 2D and 3D factors. The
attitudes were measured under a five-point Likert scale, i.e., using the categories, which
has been widely applied in survey research to quantify subjective feelings [35,36]. We
ranked the importance of factors by total marks in descending order. The results were
taken as a reference for factor selection in 2D and 3D models.

The audio recordings of interviews and focus group discussions were transcribed us-
ing ATLAS.ti 8 (from ATLAS.ti Scientific Software Development GmbH, Berlin, Germany),
a computer-assisted software suitable for interpreting transcripts and executing qualitative
analysis. The questionnaires were statistically analysed using the built-in functions in
Wenjuanxing software.

2.4. Factors for 2D and 3D Models

Based on their importance rankings from questionnaires, the 2D and 3D factors to
be used were identified. There were eleven factors in the 2D model (Table 2). Factories
were defined to all manufacturers with mass productions. The density radius was set
to 1 km after optimisation. We used Euclidean distance for all the locational attributes
due to its straightforwardness, which is also a popular measurement in similar housing
studies [37–39]. Drum Tower, a famous historic site located in the city centre, was set up
as the only CBD. Xi’an has been developing sub-CBDs for diverse purposes, yet Drum
Tower remains the most important one. NDVI was used to extract the amount of green
area coverage inside the neighbourhood as a factor measuring one aspect of the living
environment. It has been widely used in studies related to environmental conditions, e.g.,
urban heat island and thermal comfort [40,41]. As mentioned before, the neighbourhood
size in China varies much, to not exceed the neighbourhood boundary, the radius was set
to 50 m after optimisation. The mean NDVI value within a 50 m radius was used as the
input in the 2D model.
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Table 2. Overview of 2D factors.

Factor Definition Unit

Property value The first-handed property value of high-rise neighbourhoods. Yuan/m2

Density of park The density of the parks within 1 km. Number
NDVI The mean vegetation inside the neighbourhood within 50 m. Number

Density of factory The density of the factories within 1 km. Number
Distance to food Euclidean distance to restaurants, fast-food chains, and eateries. Meter

Distance to college Euclidean distance to colleges and universities. Meter
Density of hospital The density of major hospitals within 3 km. Number

Density of supermarket The density of supermarkets within 1 km. Number
Distance to CBD Euclidean distance to the central business district (CBD). Meter

Distance to subway Euclidean distance to subway stations. Meter
Density of bus stop The density of bus stops within 200 m. Number

Distance to road Euclidean distance to primary and secondary roads. Meter

In the 3D model, in total, four factors were selected (Table 3). View quality was defined
as the proportion of the areas of positive view types, which are pleasing to the eye, to
the total. The preferred orientation to be used for sunlight and property orientation was
determined based on the questionnaire responses. The 3D modelling process can be found
in Section 2.6.2.

Table 3. Overview of 3D factors.

Factor Definition Unit

View quality The proportion of the areas of positive view types to the total. Percentage
SVF The proportion of the visible sky from the observer point [42] Percentage

Sunlight The proportion of properties with direct sunlight to the total amount of
properties at south orientation (per building) Percentage

Property orientation The preferred orientation of main rooms equals 1; otherwise, it equals 0. Dummy variable

2.5. Statistical Models for 2D: OLS and GWR

Based on the theories proposed by Rosen [7] and Lancaster [8], the hedonic price
model (HPM) has been widely recognised as a consistent and general theoretical basis in
current literature to estimate property values by deconstructing the property characteristics
into different attributes [37,43]. The fundamental concept is that the property is regarded
as a heterogeneous product, whose value consists of a complex variety of attributes (e.g.,
environmental, physical and locational attributes) [44,45]. The environmental attributes
include the characteristics of the surroundings of the property (e.g., noise and air quality).
The physical attributes consist of various property characteristics itself, such as the floor
area, the size, the shape, and the number of rooms. The locational attributes include
different geographical locations of public goods, the accessibilities and distances to a
specified facility (e.g., bank, park, and hospital). Each attribute contributes to the total
value. In HPM, the property value serves as the dependent variable, and different attributes
of the property serve as independent explanatory variables. Two statistical models were
applied in this research, namely OLS and GWR. OLS is a classic linear technique applied
to build HPM, which requires explicit definitions of non-linearities and interactions [46].
Equation (1) shows as follows:

yi = α0 + ∑ αkxik + εi (1)

where yi represents the property value, α0 represents the intercept value, αk represents the
coefficient of the corresponding variable to be estimated, xik represents the corresponding
variable, and εi is the error term.

However, OLS has been criticised for its multicollinearity issues, omitting variables,
and possibly containing biased results [47,48], so in the current literature body it always



Land 2021, 10, 24 9 of 26

serves as a basic model to be compared with other more advanced models (see papers as
follows [46,49–51]. In contrast, GWR, a locally weighted regression model, is found to be
advantageous over OLS in existing studies [38,52–55], highly appreciated for revealing
the spatial heterogeneity in property values and the factors. It also has a better model
performance and accuracy compared to OLS [56]. Currently, there are abundant housing
studies adopting GWR as the main method. For example, Qu et al. [57] used GWR to
explore the temporal variation of different factors on residential land prices and found that
environment-related factors had positive influences on land prices. Li et al. [58] employed
GWR to investigate the relationships between the number of microblogs and housing prices
so that the local effects could be observed. Conceptually, GWR is a linear model assuming
that the coefficient is a combined function of both the variable and its spatial coordinates.
Different relationships between variables are allowed to exist across spaces. The calibration
concept is based on the fact that the variables closer to the sample location have a greater
influence on the local parameter estimates for that location. In this research, the fixed
Gaussian function was selected as the spatial kernel type, and Akaike information criterion
(AICc) was used to define the final bandwidth. The equations of GWR (Equation (2)) and
Gaussian function (Equation (3)) are as follows:

yi = α0 + ∑ αk(ui, vi)xik + εik (2)

where yi represents the property value at location i, α0 represents the intercept value,
αk represents the coefficient of the kth variable at location i, (ui, vi) represents the x, y
coordinates of property at location i, xik represents the value of the kth variable at location
i, and εik is the error term at location i.

Wik = exp(dik/h)2 (3)

where Wik represents the weight for the kth variable at location i, dik represents the distance
between the observations i and k, and h; represents the bandwidth.

2.6. Modelling 3D Factors
2.6.1. Workflow for 3D Modelling

The workflow mainly consists of five steps aiming to show and analyse influences of
the third dimension to the property values (Figure 3). CityEngine was used for its capability
of 3D spatial analysis and visualisation [10,59]. As neighbourhoods Y and Z were still
under construction when the research was conducted, the buildings were invisible in the
image. Resultantly, the footprints were drawn manually based on the remote sensing image
(taken at the 28th of April, 2018) in Google Earth because it was the newest image which
could be assessed.

Within Step 1, the size and orientation of the building footprints were adjusted in
ArcMap; then, detailed attributes were assigned to them to build direct links when mod-
elling in CityEngine in the later stage. Within Step 2, five land cover classes, namely paved,
water, green, soil and building, were extracted from Gaofen-2 image using support vector
machine (SVM). SVM is a robust machine learning algorithm and shows better accuracies
than standard parametric image classifiers [60]. It only needs a relatively small amount
of training samples and has a solid theoretical basis [61]. Visual interpretation based on
Google Earth image was employed for validation. Two hundred random points were
created and manually labelled. Generally, the target is to reach an 85% overall land cover
classification accuracy [62]. Within Step 3, 3D scenes were built. The building footprints
of the study neighbourhoods and data of the floor numbers of buildings in Xi’an were
extracted by assigning rule files written in computer generated architecture (CGA), a pro-
gramming language of CityEngine dedicated to generating architectural 3D content [10,63].
The storey height of all buildings was assumed to be 3 m, a common storey height of
the residential buildings in China. Information about the floor numbers of buildings in
Xi’an was extracted to reach LoD 1 in CityEngine. LoD 1, based on the literature, means
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simple blocks [64]. The building footprints for the study neighbourhoods were built in LoD
2, allowing the generalisation of the thematic roof features, windows, doors and façades.
LoD 2 was appropriate for visualisation at the neighbourhood scale. Within Step 4, viewshed
and sunlight analysis, two built-in functions in CityEngine, were applied to visualise and
quantify the influences and changes of 3D factors and the values were exported and modelled
in OLS via SPSS subsequently. The 3D models were exported to ArcGIS Online for users’
demonstration. Within Step 5, the 3D model validation. It has not been done in previous
studies [14]. Leave-one-out cross-validation (LOOCV), a special case of leave-k-out cross-
validation was applied. It leaves one sample for the test set at a time, and the other samples
are used for the training set. If there are k samples, the train and test sets are both executed k
times. It is cumbersome but has high sample-efficiency, suitable for small sampling size [65].
We accomplished the validation based on local knowledge since there was no similar model
or technique available for comparison. The error is defined as the proportion of the standard
deviation between the estimated value and the real value to the average property value. It
was used to represent the estimation accuracy of the 3D model.
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2.6.2. 3D Analyses in CityEngine

3D scenes under four view distances (50, 100, 200 and 500 m) were set up to analyse
3D factors comprehensively. The selection criteria of view distances were as follows.
According to Chinese urban planning regulations, the distance between two residential
buildings should be no less than 1.2 times the lower building [66]. The building heights in
neighbourhoods Y and Z were 18 m, 54 m, 90 m, and 99 m. Therefore, the minimum view
distance was approximately 50 m. 100 m was for the buildings with 90 m and 99 m high.
Based on the literature, 500 m was set up to be the maximum for the following two reasons:
(1) it is generally the farthest distance that people can see through [67] and (2) we found
no significant differences of view areas and view types after 500 m, which means a set-up
after 500 m may be meaningless. 200 m was set up as a medium distance.

As we explored 15 buildings with known property values in neighbourhoods Y and
Z and built four scenes under different view distances, there were 60 samples in total for
regression modelling. After optimisation, the 3D scene radius for each neighbourhood
was set up to 1 km, an appropriate distance to capture the surrounding environment
characteristics for visualisation [46], also meeting the requirements for 3D analyses and
limited computation capacity. As property orientation was set as the dummy variable,
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which was not analysed in CityEngine, the parameter settings at below were for view
quality, SVF and sunlight.

1. View quality and SVF

The viewshed analysis visualised and quantified two factors, i.e., view quality and
SVF, under the same parameter settings (Table 4). The observer was assumed to stand in
the middle of the building for the fact that the average property value per building served
as the dependent variable to represent the average value of view quality. The final values
of view quality and SVF were the average value at four different view distances.

Table 4. Parameter setting for viewshed analysis.

Parameter Value Reference Description

The horizontal angle
of view 120◦ The normal vision range of eyesight.

The horizontal angle of view
in a 360◦ panorama from the

observer.

The vertical angle of view 90◦ The normal vision range of eyesight.
The vertical angle of view in a

360◦ panorama from the
observer.

Observer point of X / It changes with the building location. X coordinate of the observer.

Observer point of Y The middle of the building It aims to represent the average value. Y coordinate of the observer.

Observer point of Z / It changes with the building location. Z coordinate of the observer.

Tilt angle 0◦ The observer looks straight ahead. Vertical camera view angle.

Heading angle 135◦ (southeast) or
180◦ (south) The orientation from the main rooms. Horizontal camera view

angle.

View distance 50 m, 100 m, 200 m, 500 m Different view distances contain
different view types and areas.

The distance from the
observer to the point of

interest.

2. Sunlight

It was calculated using the built-in function in CityEngine, Scene Light and Panorama.
To ease calculation, three representative timings were defined based on local knowledge:
8 A.M. when people go to work, 12 A.M. with the most intense sunlight, and 4 P.M. when
the sun is about to set. We took the average value of the three timings to represent sunlight.

3. Results
3.1. 2D Models in OLS and GWR
3.1.1. The Comparison of OLS and GWR

In OLS, R2 and adjusted R2 are 0.111 and 0.077, respectively, which means it explains
only approximately 10% of the property value variation. The low explanatory power of the
model is caused by the strict government control of the first-hand property values; thus, the
actual market demand and the influences from the surrounding geographical environment
were not sufficiently represented. This provides an optimal base to analyse whether 3D
factors can explain the property value variations existing in the first-hand property values.
Five factors are significant at the 0.05 significance level: distance to CBD, distance to
subway, distance to food, the density of factories and NDVI. The Durbin-Watson value is
1.890, close enough to the optimal value 2, which assumes the residuals are uncorrelated.
Tolerances are all greater than 0.2, and variance inflation factors (VIF) range from 1 to
3, below the value of 10, indicating that no serious collinearity issue exists among these
variables, which is suitable for executing GWR. In general, the model goodness-of-fit of
OLS and GWR is not ideal, yet GWR still outperforms OLS, as adjusted R2 improves from
0.077 to 0.128, and R2 improves from 0.111 to 0.217. The residual sum of square (SSR) in
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GWR also significantly reduces from 3,392,667,848 in OLS to 2,655,158,522. Therefore, GWR
is finally chosen to analyse the influences of 2D factors on property values.

3.1.2. GWR

Table 5 shows the descriptive statistics of GWR. Based on previous HPM studies [39,68],
we used the 0.05 significance level as the critical value to determine whether this factor is
statistically significant. β is the coefficient of each variable. Distance to CBD is the most
significant among 11 factors, with a standardised coefficient of −4.880. It has a negative
correlation with property values, meaning the smaller the distance to the CBD, the higher
the property value. The density of bus stops only has a slightly positive standardised
coefficient of 0.231. This may be because of the well-developed bus network in Xi’an.
Distance to food has the most significant positive standardised coefficient of 2.695, which
means the property value lifts as the distance increases. The environmental pollution
caused by restaurants may partially explain it. Since the urban development in Xi’an is
spatially unbalanced, the influences of 2D factors on property values vary significantly.

Table 5. Descriptive statistics of geographically weighted regression (GWR) estimation coefficients.

Variable Name β Mean β Min β Max β Standardised β Standard Deviation

NDVI 4136.834 −137.098 6617.045 2.630 * 1572.973
Density of bus stop 2.037 −26.437 21.607 0.231 8.829

Density of supermarket −11.377 −29.688 4.423 −1.441 7.896
Density of factory −870.293 −1585.278 22.264 −2.171 * 400.941
Density of hospital −2880.989 −5843.088 988.861 −2.221 1297.092

Distance to food 5.455 1.488 9.706 2.695 * 2.024
Distance to college 0.104 −0.435 0.984 0.341 0.305

Distance to road −1.001 −2.072 0.225 −1.653 0.605
Density of park −173.801 −810.403 434.060 −0.680 255.686

Distance to subway −0.701 −1.433 −0.274 −2.304 * 0.304
Distance to CBD −0.230 −0.381 −0.175 −4.880 * 0.047

Local R2 0.124 0.093 0.207 / 0.022
Intercept 11,531.725 8847.235 14,826.088 7.338 1571.418

AICc 5670.436
Adjusted R2 0.128

* Represents significant at 0.05 level. Bandwidth = 11,834.747.

1. Local R2

Local R2 ranges from 0.093 to 0.207, and the mean value is 0.124. As shown in Figure 4a,
it increases from north to south gradually, indicating the model simulation in the south
is better than that in the north. Some samples in the north area are found to have an
abnormally low value. In reality, the urban development pattern of Xi’an shows great
asymmetry. In the past decades, the south part has been more developed compared to the
north. The north and east parts of Xi’an are less developed, where mainly infrastructure
functions are located, such as transport, harbour affairs and industry. In the south-eastern
region, there is a high concentration of educational facilities, shopping malls, world-famous
historical sites such as Big Goose Pagoda, which positively influences property values. The
south-western region, with the highest local R2, is the National High-tech Development
District, having a cluster of high-tech industries and high-quality school districts, major
hospitals and premium residential neighbourhoods.
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Figure 4. The maps of local R2 and five significant factors. (a) local R2; (b) density of factory; (c)
distance to food; (d) distance to subway; (e) distance to CBD; and (f) NDVI.
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2. Factories

Only one property in the north part has a positive coefficient of 22.264, which can be
taken as an outlier. The remaining 297 locations all have negative values, ranging between
−1585.278 and −22.264, with a mean value of −870.293. As the density of factories increases,
property values decrease. 198 out of 298 samples, i.e., 66.44% are located in areas where there
is less than the average of one factory within 1 km2. Twenty-seven samples, i.e., 9.06% are
in areas with more than two factories within 1 km2—the absolute value of the coefficient
increases from northeast to southwest. Property values in the southwest area are more likely
to be influenced by the density of factories than those in the northeast. There are three greatly-
agglomerated regions shown in blue (Figure 4b). However, these highly-dense industrial
zones do not affect property values negatively based on the regression results.

3. Food

All coefficients are positive, from 1.488 to 9.706 and with a mean value of 5.455. It
means that the farther from the food, the higher the property value. In total, 252 out of
298 locations, i.e., 84.56% have a distance less than 200 m, meaning easy food accessibility
in most areas (Figure 4c). The general trend increases from south to north, indicating that
properties in the north are more influenced than those in the south. The positive value
may be because an area with many restaurants has a negative influence on the living
environment concerning noise and public sanitation.

4. Subway

The coefficients range from −1.433 to −0.274, and the mean value is −0.701. The
negative value indicates that the farther from the subway station, the lower the property
value. In total, 63.09% and 26.51% of the property samples are located in the range of
0–1 km and 1–2 km. The majority are with reasonable distances of the subway (Figure 4d).
From south to north, the coefficients gradually increase, indicating that the property values
in the south are more influenced. It may be that the north area is relatively remote from
downtown, and the public transport is not well-developed.

5. CBD

The coefficients range from −0.381 to −0.175, indicating the negative impact of dis-
tance to CBD on property values: the closer, the higher the values (Figure 4e). The mean
value is −0.230. It is the most important among the five significant factors. A total of
224 out of 298, i.e., 75.16% are in the range from −0.25 to −0.15, which is highly centralised.
Thus, residents in Xi’an prefer living near CBD, because of the living convenience and the
symbolisation of high social status. Only the imperial family could live near the Drum
Tower in ancient China. The coefficients increase from southwest to northeast, showing
that property values in the southwest are more influenced by the distance to CBD than
those in the northeast.

6. NDVI

Figure 4f shows that there is not much vegetation within the urban areas, while at the
fringe of the city, the vegetation coverage increases gradually. The brown area is the Chan
River. Only one sample shows a negative coefficient of −137.098, while the remaining
are all positive with a range from 1967.216 to 6617.045. Thus, the higher the vegetation
covers, the higher the property values. The coefficients increase from north to south.
People’s housing preferences and the varying quality of the neighbourhoods may lead
to this difference. It is worth mentioning that the majority of the neighbourhoods in this
research are still under construction. Generally, the real estate developers in China start
sales before the high-rise building construction starts. Thus, NDVI shows the vegetation’s
current situation and its influence on property values, which may be subject to change in
the future.
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3.2. 3D Model and Visualisation
3.2.1. 3D Analysis

The land cover classification shows an overall classification accuracy of 87.5%, meeting
the commonly employed threshold of 85%. Therefore, it is taken as input for building
3D scenes of the two neighbourhoods Y and Z, which are abbreviated to only Y and Z
in the following sections for readability. Both scenes are published in ArcGIS Online
(Y: http://bit.ly/2IEA3Wy; Z: http://bit.ly/2Iyl4NJ.). Figure 5 takes Z as an example,
showing the building distribution and the fact that property values increase as building
heights decrease.
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1. View quality

The land cover classes “green” and “water” are defined as positive view types as
they receive the most votes from the questionnaires. As shown in Figure 6, view quality
between different buildings fluctuates significantly. Generally, as view distance increases,
view quality improves. The possible reason can be more view areas and view types are
included when having an extended view distance. For example, when the view distance is
50 m, only adjacent buildings and the panorama are typically visible, so many buildings
have zero value. However, including more view areas does not mean always improving
the view quality. It is notable that unlike other buildings, Z_01 and Y_10 have a decreasing
trend after 50 m and 100 m, respectively. Although the positive view areas of green and
water improve, view areas of road, building and soil increase more; for others, view quality
improves along with the increase of view distance. The average values of Y and Z are
0.049 and 0.095, respectively; thus, Z has a better view quality than Y.
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2. SVF

It is evident that as view distance improves, SVF decreases because adjacent buildings
block most of the sky (Figure 7). Y has relatively high SVF because all buildings are more
than 30 storeys. The higher the building, the harder it can be blocked by surrounding
environments. The same situation is also observed in Z. Z_1, Z_5, Z_6 and Z_7 with the
building height of 54 m, have an average SVF of 0.463; while Z_2, Z_3 and Z_4, with the
building height of 99 m, have an average SVF of 0.632. The least value (0.250) belongs
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to Z_09 and Z_12, both with a height of 27 m. The average SVF values of Y and Z are
0.486 and 0.472, respectively. In general, Y has better SVF than Z. It can be concluded that
SVF increases with the building height.
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As shown in Figure 8, SVF changes both with building locations and view distances.
SVF of Y_06 is relatively good, all above 0.5 with an open space in the south. SVF of Y_08
is below 0.2 because Y_06 blocks Y_08 in the south. As view distance increases, SVF gets
smaller due to the increase of other view types in the viewshed.
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3. Sunlight

Derived from the questionnaires, 137 out of 141 responses select south as the best
orientation for the main rooms of a property. Therefore, we choose the south orientation
to calculate sunlight. In both neighbourhoods, no high buildings exist in the surrounding
environment within 1 km, so sunlight is only blocked by buildings in the same neigh-
bourhood (Table 6). Most of the buildings cannot receive direct sunlight at 8 A.M. in both
June and December. Only Z_01 and Z_12 have properties which can get direct sunlight.
All buildings receive direct sunlight in June (12 A.M.); however, the results at December
(12 A.M.) vary much due to the block from other buildings. The low values in December
(4 P.M.) of three buildings, Y_08, Y_09 and Y_11, are also because of the block. Notably,
Z_09 and Z_12 have the smallest total values. The possible reason may be that they only
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have nine storeys, 27 m high, and the shadow from other buildings can easily block the
sunlight. The average values of Y and Z are 0.543 and 0.525, respectively. Y has slightly
better sunlight conditions than Z.

Table 6. The results of sunlight analysis.

Name
Sunlight

Total Mean8 June
(A.M.)

12 June
(A.M.)

16 June
(P.M.)

8 Dec
(A.M.)

12 Dec
(A.M.)

16 Dec
(P.M.)

Y_06 0.000 1.000 1.000 0.000 1.000 1.000 4.000 0.667
Y_07 0.000 1.000 1.000 0.000 1.000 1.000 4.000 0.667
Y_08 0.000 1.000 1.000 0.000 0.261 0.506 2.767 0.461
Y_09 0.000 1.000 0.977 0.000 0.443 0.773 3.193 0.532
Y_10 0.000 1.000 1.000 0.000 0.902 0.122 3.024 0.504
Y_11 0.000 1.000 1.000 0.000 0.347 0.209 2.556 0.426
Z_01 0.833 1.000 0.000 0.431 1.000 0.000 3.264 0.544
Z_02 0.000 1.000 1.000 0.000 0.970 1.000 3.970 0.662
Z_03 0.000 1.000 0.000 0.000 0.773 0.962 2.735 0.456
Z_04 0.000 1.000 1.000 0.000 0.909 0.848 3.758 0.626
Z_05 0.000 1.000 1.000 0.000 0.656 0.944 3.601 0.600
Z_06 0.000 1.000 1.000 0.000 1.000 0.778 3.778 0.630
Z_07 0.000 1.000 1.000 0.000 0.563 0.806 3.368 0.561
Z_09 0.000 1.000 0.000 0.000 0.556 0.000 1.556 0.259
Z_12 0.625 1.000 0.000 0.000 0.688 0.000 2.313 0.385

West–east orientation is disliked due to west sun exposure according to the responses
from focus group discussions and questionnaires. A specific simulation is shown in
Figure 9. Y_08, Y_10 and Y_11, three buildings with green colour, are fully exposed
while some properties in Y_07 and Y_09 with red colour are under the shadow of other
buildings. It shows that properties with less west sun exposure have higher values. It is
also remarkable that Y_06, having west sun exposure, still has high property values. Other
factors, such as view quality, may influence this because the south of Y_06 is an open space
without any blocks from buildings.
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4. Property orientation

As mentioned before, nearly all buyers (137/141) in the questionnaire prefer south
orientation, so we put south orientation as the preferred orientation. There are two orienta-
tions involved in Y and Z, south and east–south. Therefore, south orientation equals one
while east-south orientation equals zero.
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3.2.2. Statistical Analysis of the 3D Model

As shown in Table 7, R2 (0.451) and adjusted R2 (0.411) are much higher than those of
2D models. The residual is 125,452,566.4. The Durbin–Watson value is 0.432, indicating
positive autocorrelation in the samples. It is likely to be because the samples are repeatedly
calculated under four different view distances. Tolerances are all greater than 0.2, and VIF
ranges from 1 to 3, far less than 10; thus, no serious collinearity issue exists among factors.

Table 7. Descriptive statistics of the 3D model.

Variable
Name

Standardised
Coefficient t-Ratio p-Value Tolerance VIF

View quality −0.123 −1.046 0.300 0.725 1.379

SVF −0.271 −2.005 0.050 * 0.547 1.828

Property
orientation −0.792 −5.747 0.000 ** 0.526 1.901

Sunlight 0.327 2.000 0.050 * 0.812 2.682

Constant 13,637.143 19.028 / / /

R2 = 0.451, adjusted R2 = 0.411, Durbin–Watson = 0.432, *: significant at the 0.05 significance level; **:
significant at the 0.01 significance level.

SVF and sunlight are both statistically significant at the 0.05 significance level. Prop-
erty orientation is the most significant one among the four factors and significant at the
0.01 significance level. Surprisingly, property orientation has a negative standardised coef-
ficient of −0.792, indicating the values decrease when facing south. It may be because the
buildings with nine storeys facing southeast in Z have relatively higher values. Sunlight
has the second most significant standardised coefficient of 0.327. When there is more
sunlight, the value is higher. The standardised coefficient of SVF is −0.271, implying that
as SVF improves, the value decreases, which is reflected by the simulation results that
buildings with more storeys have a broader vision scope than those with fewer storeys. The
only insignificant factor is view quality, with a significance of 0.300 and the standardised
coefficient of −0.123. The possible reasons are elaborated in Discussions.

3.2.3. Model Validation

Twenty-five samples have an estimated value lower than the real value, while 35 have
a higher one (Figure 10). 36 out of 60 samples have the absolute value of error of less than
1000 yuan/m2. Notably, one sample has a maximum error of −4864 yuan/m2. It is Z_09,
the building with nine storeys, and 27 m high when the view distance is 50 m. It may be
explained by poor SVF and view quality.
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Buildings with higher heights are estimated to have higher values, such as Y_08, Y_10,
Y_11, and Z_04. The top ten with the most positive error are the buildings with 33 storeys,
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and 99 m high for having better performances at view quality, SVF, and sunlight. Z_05, Z_06,
Z_07, with 18 storeys, and 54 m high, have a relatively higher negative error. The average
deviation is 1219.294 yuan/m2, and the average error of estimation accuracy is 9.76%.

3.3. Model Performance Assessment

As shown in Table 8, R2 of the 3D model is the highest (0.451), indicating the 3D model
explains the property value variation better than 2D models at the neighbourhood scale.
SSR also shows a significant decrease to 125,452,566.

Table 8. Comparison of 2D and 3D models.

Name R2 Adjusted R2 SSR

OLS 0.111 0.077 3,392,667,848
GWR 0.217 0.128 2,655,158,522

3D 0.451 0.411 125,452,566

4. Discussions
4.1. Current Restricted Property Market and HPM with 2D Factors

Previous studies have indicated that HPM with 2D factors well explain the property
value variation [26,69], while our paper proves that 2D models do not explain the first-
hand property value variation in Xi’an. Currently, the property values are generated
under the fixed-price and purchase-restriction policies established by the government
aiming for market stabilisation. Therefore, impacts from the surrounding environments
on property values are likely to be implicit. The low explanatory power of R2 in both
models may serve as a reference for policy-makers: before implementing a housing policy,
the possible subsequent implications may be significant: in this case, the influences from
the surrounding geographical environment are almost eliminated, and the actual market
demand cannot be reflected. Such kinds of consequences should be taken into consideration
and well-addressed before establishment. GWR outperforms OLS with a higher R2, which
is consistent with previous findings [53,70]. However, the significance of 2D factors differs
from previous literature. For example, in Wen et al. [54], educational facilities had a positive
influence, while this was not the case in this research. The accessibility of parks did not
show a significant influence on property values in this research, which differs from the
findings of Jim and Chen, where it showed significantly positive impact that the less the
distance, the higher the property values [71]. This research clearly shows the variations
among factors influencing property values across different areas.

We would like to highlight that there are different proxies for the 2D factors, i.e., the
calculation methods of these factors. Taking distance as an example, we applied Euclidean
distance to different locational attributes as the calculation method for the following two
reasons: (1) this calculation is theoretically simple and straightforward; (2) according to the
local contexts, due to the fast city expansion, the current road networks of Xi’an have not
finalised and are subjective to changes in the future. The distance can also be calculated
in network distance (using the primary/secondary roads) [72], or travel time [73,74].
Therefore, we advise that in future studies, the proxies for 2D factors such as the distance
should be selected carefully according to the research purpose and scale. For example,
more behaviourally-relevant studies may adopt travel time for distance calculation.

4.2. Hedonic Price Model (HPM) with 3D Factors

View quality, with positive view types of green and water, does not have a significant
influence on property values, which conflicts with Wen et al. [14], and Panduro and
Veie [75] who found that both river and urban green spaces impacted positively. Jim and
Chen [71] defined a dummy variable for different view types. In contrast, the view area
is directly used in this research, which may impact the results. The insignificance can be
explained by two main aspects: data and the local contexts of Xi’an. Regarding data, first,
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the sampling size (60) is relatively small due to data availability (see Section 2.1 for our
selection criteria), so the variation of view quality is not very large, ranging from 0 to 0.32.
Second, it may be influenced by other 3D factors. For example, view quality varies when
different property orientations (e.g., orienting north other than south) are set up. Regarding
the local context of Xi’an, first, unlike western cities with lower development speed and
higher environmental quality maintenance (such as Aalborg, Denmark [75]), Xi’an is a
fast-developing city with over 10 million population. It is also different from Hangzhou [14]
or Hong Kong, China [71]. Hangzhou is a very famous city with an established reputation
of its water landscape, also in a more advanced city development stage than Xi’an. Hong
Kong has been an international, well-developed and densely built-up city for decades,
where the green spaces (e.g., public parks) are generally fixed, and the water quality is
well-regulated. In contrast, we have a different situation in Xi’an. The city is growing
rapidly. There are green spaces, but they may be very easily and quickly developed. Due
to the fast developments, a person may not value the existence of a green view to an open
space which means vacant land. Vacant land means it will be developed, but we do not
know how it will be developed- whether it will become a building, a factory or a park. In
other words, if a person has a green view on vacant land, which will be soon developed, it
will have an adverse influence on property values. However, investigating the sub-types
of green spaces are out of the scope of our research. Similarly, water (e.g., river, lake) can
be very positive if it is nicely maintained for the surrounding environment, but it can also
have some issues with pollution. Previous studies in Guangzhou, China have proven that
water with polluted quality reduced property values [39,76]. The fast-developing speed
of Xi’an undoubtedly raises the uncertainty of quality maintenance and environmental
protection. In conclusion, the overall influence may lead to an insignificant influence of
view quality on property values. Furthermore, our study is on a small scale with a few
buildings in two high-rise neighbourhoods.

The south orientation has a negative effect on property values, which is inconsistent
with Jim and Chen [12], in which a south-oriented window added 1% premium of the value.
It may result from the fact that only two orientations (south and southeast) exist in Y and
Z, while six were reported in Jim and Chen [12]. SVF is found to impact negatively, which
contradicts the common sense that buildings with higher SVF shall have higher values. In
light of the general pricing policy of real estate developers, values of relatively low-rise
buildings are higher than the high-rise ones, partly for better living privacy because usually
fewer properties and larger property size are characterised in low-rise buildings. For
example, the 9-storey-high building (Z_9, Z_12) has 18 properties, while the 33-storey-high
one (Z_2, Z_3, and Z_4) has 232 properties in total. The property values of Z_9 and Z_12
are significantly higher than those of Z_2, Z_3 and Z_4.

Only 17% of respondents from the questionnaires prefer properties at a low storey
level due to less sunlight exposure, in line with the finding that sunlight impacts positively
on property values. Fleming et al. [77] also found that there was a positive relationship
between sunlight exposure and property value. It is worth pointing out that sunlight is
partially influenced by the property orientation in this research.

The error of estimation accuracy in the 3D model is 9.76%. In other words, the 3D
model can estimate the property value within a fluctuation of approximately 10%. It is
not a very large error, though, no existing studies have ever validated a 3D modelling
method for HPM; thus, we have no comparison to set a specific threshold value yet. The
authors agree that validation remains an issue to be solved [78]. Therefore, other validation
methods should be researched in the future. Additionally, we would like to highlight that
the visualisation of property values (Figure 5) is generalised to per building, as we use
the average property values per building and the research is at the neighbourhood scale.
When the scale can be further refined in the future, the representation is optimal to be in
per property/floor.

The findings disclose that added 3D factors explain the property value variation at
the neighbourhood scale better than 2D models, shown by a higher R2 (0.414) and fewer



Land 2021, 10, 24 23 of 26

residuals. The 3D visualisation in CityEngine also performs well in terms of quantifying
and spatially analysing 3D factors. We believe that making the 3D factor explicit can enrich
the standard literature of HPM at the city scale, and even possible to activate academia’s
attention to how 3D should be perceived in complex urban areas. Because of computational
complexity, we used a smaller study area in this research, where first-hand property values
are available and more appropriate to avoid too many noises brought by the second-hand
property values. Nevertheless, we ultimately aim to apply this method to a city scale.

5. Conclusions and Future Recommendations

This research aimed to identify the role of the third dimension in property value
calculation in a complex urban environment, taking the city Xi’an, China, as the study area.
It was conducted at a neighbourhood scale and took spatial data from various data sources.
The mixed-qualitative–quantitative methodology ensured comprehensiveness by collecting
both subjective opinions and objective modelling. Based on low R2 of 2D models, we can
summarise that when the first-hand property market is restricted by the government,
property values do not reflect the influences from the surrounding environments well.
Based on 3D modelling results, we observed that significant spatial heterogeneity exists in
the vertical dimension, which influences property values considerably. Hence our findings
show the necessity to include 3D factors into HPM and to develop 3D models with a higher
level of details (LoD) to serve more research purposes such as fair property taxation.

A healthy property market is essential for a sustainable economy and a stable society.
In China, rapid urbanisation leads to property market flourishment and increasing property
values, which poses a long-term impact on people’s daily lives [79]. The high-rise residen-
tial building has been the predominant housing type in most urban regions. Therefore, it is
essential to develop a comprehensive, fair and cost-effective method to estimate property
values, which can be a reference to other Asian regions/countries sharing similar dense
urban morphology and housing issues. Current HPM methods mainly adopt 2D-based
data and workflow without considering the spatial heterogeneity in the vertical dimension
and the influences on property values. Thus, our research contributes to the limited body
of studies that investigate 3D in HPM. We observe that the integration of GIS, remote
sensing data and 3D modelling for HPM are feasible and practical. Having the 3D model
representing the buildings and environment realistically provides rich opportunities for
precise analysis of the impact from the third dimension on property values.

Further research aiming to validate the 3D model and expanding the research may
consider the following facts. First, four 3D factors are involved in total. If more factors (e.g.,
shadow, thermal comfort, air quality, noise, ventilation) or a city-scale research are considered,
it would be beneficial to apply automatic rather than manual validation. Second, 60 samples
are suitable for LOOCV, but the expansion needs large sample sizes. The validation method
may change, as well. Third, the digital elevation model is not taken into consideration in the
current 3D analysis. Fourth, 3D workflow optimisation by machine learning is encouraged to
facilitate estimation accuracy and modelling efficiency. It is also worth to mention that big
difference exists in values between buildings with different heights, property sizes and the
total number of properties in one building. Therefore, it may need a tuning parameter to
set a value basis for the buildings with different physical structures to compensate for their
influences in the future. We should also acknowledge the fact that this research is constructed
at the neighbourhood scale, which ignores on which storey property is located due to data
availability. It, to some extent, reduces the added value of true 3D models as it attaches great
importance to issues regarding sunlight and view.
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