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Abstract: Growing external pressures from human activities and climate change can exacerbate
desertification, compromising the livelihoods of more than 25% of the world’s population. The
dryland mosaic is defined by land covers that do not behave similarly, and the identification of
their recurring or irregular changes over time is crucial, especially in areas susceptible to become
desertified. To this aim, the methodological approach of this research is based on the integration of
non-linear data analysis techniques, such as recurrence plots (RPs) and recurrence quantification
analysis (RQA), applied to the Enhanced Vegetation Index (EVI), which is a functional ecological
proxy of above ground net primary production. The research exploits the recurring change detected
in vegetation cover over time to gauge the predictable (resilient) behavior of the EVI as well as its
chaoticity in a semi-arid Mediterranean region (Apulia, Italy). Interestingly, the results have shown
the spatial rendering of recurrence variables, confirming the well-known hot spots of soil degradation
and desertification taking place in the region, which are characterized by greater EVI chaoticity,
but they have also identified new potential candidate sites. As a result, the susceptibility to land
degradation, as measured by the EVI-RQA approach, can help in measuring land desertification
with evident operational benefits for landscape planning. The novelty of the research lies in the
spatially explicit identification of resilient and less resilient areas to desertification that can support
the definition of more targeted interventions and conservation priorities for better planning and
sustainable management of Mediterranean drylands.

Keywords: resilience; desertification; EVI; stability; predictability; recurrence quantification analysis

1. Introduction

Complex adaptive systems [1] such as socio-ecological landscapes (SELs) [2,3] show
generally nonstationary and complex behavior and are usually assumed to respond
smoothly to gradual change in climate, habitat fragmentation or exploitation. Such a
condition can be sporadically interrupted by abrupt shifts towards a radically different
regime [4]. Resilient SELs can adapt the behavior of the system (adaptability) to changes in
external drivers and internal processes and remain in the current domain of stability or
basin of attraction [2].

Research and practice in SELs are increasingly converging on a series of a few general
lessons as they apply to sustainable development in drylands [5]: (1) the need to adopt
an integrated approach, (2) a greater awareness of slowly changing conditions, (3) the
recognition of non-linear processes since dryland systems are not in equilibrium, and
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therefore often show multiple ecological and social states, and (4) cross-scale interactions
must be expected. In our approach, we have tried to address these lessons and to synergize
them in the analytical techniques adopted.

Land degradation has been defined by the Millennium Ecosystem Assessment (MEA)
as “a persistent net loss of capacity to yield provisioning, regulating, and supporting
ecosystem services” [6]. The MEA refers to desertification as the same degradation process
in drylands (i.e., semi-arid, arid and dry sub-humid zones). In this context, landscape
services [7] directly or indirectly sustain the quality of human life and are provided by
physical structures and processes called “supporting services” [6,8], among which the
above-ground net primary production (ANPP) is a key-controlling factor determining most
of the landscape service provisioning capacities [6]. Such essential supporting services
influence the entire ecosystem functioning, governing most of provisioning and regulating
services (e.g., food, water cycling and regulation, nutrient cycling) and even some cultural
services, which tend to shift in concert with it [8–10]. Thus, a reduction in ANPP at a
site is often viewed as land degradation [5] that, if exacerbated, can lead to a state of
irreversible desertification [11]. As such, efforts to reduce the risk of undesirable state
transitions such as land degradation and desertification should include an assessment of
gradual or irregular changes or transitions in ANPP, rather than merely trying to control
disturbances [4].

Vegetation cover is the primary determinant of SEL mosaics and is quite responsive
to land cover transformations at all scales, as all climate changes and anthropogenic
influences have a spatial outcome. Therefore, current integrated approaches to monitoring
and assessing land degradation and desertification (LDD) often rely on two technological
aspects: (1) the remote sensing of vegetation cover and (2) the analysis of satellite data
(vegetation indices) through specific tools, such as geographic information systems (GIS)
and time series analysis techniques [12].

However, while most of the integrated approaches to assess LDD focus mainly on the
selection of one or few vegetation indices and try to link the generated spatial information
with a variety of environmental and socio-economic data in a single framework, less
emphasis is placed on the adequacy and effectiveness of time series analysis techniques to
extract useful information from the analysis of time series behavior [12,13].

Since natural or human-dominated processes can have a distinct recurrent behavior,
e.g., periodicities (as seasonal or Milankovich cycles), but also irregular cycles like ENSO
(the El Niño-Southern Oscillation), the study of recurrence is becoming essential as it is
a fundamental property of deterministic dynamical systems to be studied, and it is also
typical of non-linear or chaotic systems [14]. It allows the measurement of resilience in
terms of stability/predictability, which can be defined as the probability of a system’s
multiple states to persist and recur [15].

In this perspective, the purpose of this research is to demonstrate the effectiveness of
the recurrence quantification analysis (RQA) [14] to provide for the region of interest (a)
the estimate of the recurring resilience-related variables from the behavior of the Enhanced
Vegetation Index (EVI) time series over the entire 14-year period, (b) the spatialization
of the recurrence variables on the regional scale to identify hot spots with different sta-
bility/predictability as well as chaoticity of space-time functional dynamics because of
climate change and/or water scarcity or human activities, and (c) the validation of this
mapping with the confirmation of the well-known land degradation and desertification
hot spots in the region as well as the identification of new sites as potential candidates to
become desertified. To this aim, the available functional dynamics of vegetation covers in
a Mediterranean semi-arid region have been analyzed in terms of possible recurrent and,
therefore, predictable behaviors through: (a) time series of the Enhanced Vegetation Index
(EVI), which is an ecological functional proxy of ANPP [16,17] and its changes can reflect
the effects of changes associated with climate, land conversion, and farming practices as
well as drought and fire, and (b) the use of non-linear data analysis techniques such as
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recurrence plots (RPs) and recurrence quantification analysis (RQA) [14] applied to the
average EVI time series extracted from satellite multitemporal images.

It is interesting to note that these techniques, unlike those normally used, do not
involve any manipulation of the original data and are fully independent from binding
hypotheses and signal transformations. They are also applicable to relatively short time se-
ries and provide resilience-related recurrence variables that refer to stability/predictability
and, conversely, chaoticity (the condition of being chaotic) [14]. We argue that the greater
the stability/predictability of time series belonging to a land cover class, as shown by
the recurrence of states within preferred bounds (adaptability), the higher the likelihood
that such a class will be resilient to contagious and non-contagious stress, often showing,
but not necessarily, a regular recurrent behavior [18]. Conversely, all the unfavorable
biophysical factors that promote desertification in Mediterranean drylands, such as erratic
precipitation (mainly during the winter), high summer temperatures with frequent drought
events, poor and erodible soils, extensive deforestation with frequent wildfires and land
abandonment [19], are expected to reverberate on the chaotic EVI temporal behavior, as
highlighted by RP-RQA.

2. Materials and Methods
2.1. Study Area

Dryland landscapes are, in general, characterized by water scarcity and high cli-
mate variability, with strong weather extremes. In the Mediterranean basin, drylands
are characterized by a strong multifunctionality since they coevolved with humans for
millennia [20,21]. These landscapes are characterized by a progressive land degradation
with the consequent loss of crucial services such as food production, soil quality regulation,
water regulation, climate regulation, identity value, and people’s sense of belonging to
semi-arid landscapes and their associated recreational services [22,23].

The study area (Figure 1) represents a typical Mediterranean semi-arid region [24],
where more than 82% of the area is constituted by agroecosystems, critically dependent on
water availability [25], where extensive forest clearances have occurred since the middle
Holocene [26,27], slowly leading to desertification [28,29].
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A robust and consistent picture of climate change over the Mediterranean has emerged,
consisting of both a pronounced decrease in precipitation, especially in the summer season,
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and a temperature increase, with its maximum in the summer leading to an increased
frequency of high-temperature events [30,31]. The main landscape changes responsible
for land desertification are given by the merging of arable lands [32], a contraction of
vineyards, and the expansion of olive groves, plantations, and urban areas, with large
increases in energy use, water consumption, and fertilizer applications, leading to extensive
biodiversity loss (Figure 1) [33]. As a result, the main vulnerability of the region relates to
its persistent water scarcity and its water budget deficit (about 350 mm/year), requiring
regular water imports from nearby regions and forcing the exploitation of aquifers [34,35].

The introduction of new farm machinery and strains of cereals and trees, along
with the overexploitation of water resources for irrigated agriculture and the extensive
application of fertilizers, represent the main socio-economic drivers of soil erosion and LDD
in Mediterranean Europe [35] as well as in Apulia [29]. The net irrigation requirements are
expected to increase in the next century, with a maximum of 65% for intensive olive groves
due to the excessive pumping of groundwater [25]. This will increase water stress by the
intensity, extent, timing, and duration of water availability [36] as well salinity intrusion in
groundwater, one of the main drivers for the salinization of coastal soils.

The northern and central parts of the region are dominated by arable lands, whereas
the central and southern parts of the region are dominated by extensive century-old as
well as intensive olive groves, and other rural areas (Figure 1). The few natural habitats are
unevenly distributed as forested areas concentrated in the Gargano peninsula, as well as
a few remnants of evergreen forests interspersed with olive groves. In addition, natural
drylands are present with shrub and/or herbaceous vegetation and permanent pastures
(Figure 1), including semi-arid grasslands, garigues, steppes and pastures, all collected
here under the name of Grasslands, present in Daunia and Murgia Apennines.

2.2. Materials: Real World Time Series of Vegetation Indices

The normalized difference vegetation index (NDVI) has been widely used over the
last few decades in the satellite-based modeling of ANPP for terrestrial vegetation [37–39].
However, several limitations have been observed when applying the NDVI index in
dry land area research [23,40]; therefore, in this research, the enhanced vegetation index
(EVI) [40] was preferred as it has been used in the satellite-based modeling of ANPP [41], is
found more linearly correlated with the green leaf area index (LAI) in crop fields [42], is less
prone to greenness saturation and has higher robustness to atmospheric conditions and
soil background relative to NDVI [13,40,43]. Moreover, perennial and annual vegetation
types that green up in deserts at rates and times characteristic for their distinct species can
be easily captured by EVI data [44].

Integrated approaches based on time series of vegetation indices have mostly used
linear techniques focusing on different aspects of temporal complexity. Recently, the “nor-
malized spectral entropy”, a non-linear analysis, has been developed to describe the degree
of regularity (orderliness) and to characterize heterogeneity within an ecological time
series based on its power spectrum [18,21,45], pointing to the system’s self-organization
strength [46]. However, because of non-stationarity, noise, relatively short time series [47]
and frequently complex shapes of recurrent periodicities, more advanced methods are
needed for quantifying non-linear dynamics [21,48].

2.3. Methods

The methodology is based on two steps:
First step: satellite data harmonization and cross-correlation with temperature and pre-

cipitation.
The Moderate Resolution Imaging Spectroradiometer (MODIS, https://modis.gsfc.

nasa.gov/ accessed on 25 June 2018), onboard the NASA Terra and Aqua satellites, provides
both NDVI and EVI images with high temporal frequency and medium spatial resolution,
allowing us to gauge the continuous flow of ANPP. MODIS EVI images (USGS, https:
//glovis.usgs.gov/ accessed on 25 June 2018) are already filtered from daily data, although

https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://glovis.usgs.gov/
https://glovis.usgs.gov/
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further filtering was necessary to keep the most reliable EVI. To this end, a simple filter (to
avoid high drops of EVI between two high EVI values) was applied as in [49], and then, to
build the most reliable EVI profile, a simple gap-fill approach has been used to implement
the method of Xiao et al. [16,43].

For each pixel belonging to the Apulia region, we extracted EVI time series relative to
323 EVI maximum value composite MODIS images acquired by the two MODIS platforms
TERRA and AQUA with a spatial resolution of 250 m (MOD13Q1 v.005 and MYD13Q1
v.005) and with a sampling time (∆t) of 16 days over fourteen years (2000–2014). To facilitate
interpretation, EVI time series for each location were associated with land cover classes
according to the 2011 4th level CORINE land cover map (https://www.dataset.puglia.it/
dataset/uso-del-suolo-2011-uds accessed on 25 June 2018) (Figure 1).

Finally, cross-correlation analyses of EVI with temperature and precipitation were
performed on a ten-day basis, acquired from the Italian National Environmental Informa-
tion System (http://www.sinanet.isprambiente.it/it/sia-ispra accessed on 25 June 2018),
and related to six weather stations distributed throughout the Apulia region inside or in
proximity to the types of land cover analyzed in this study. This was performed to evaluate
how the EVI and associated RAQ metrics were related to precipitation and temperature.
Understanding this is central to being able to pull out signals of other perturbations, as
well as responses to drought.

Step 2: Recurrence Plots/Recurrence Quantification Analysis.
Recurrence Plots (RPs) and Recurrence Quantification Analysis (RQA) are non-linear

time series analysis techniques [14] with growing application in different fields [50–55] be-
cause of their applicability to relatively short time-series, full independence from constrain-
ing assumptions (outliers, linearity, stationarity) and signal transformations (detrending,
noise filtering).

In this research, RP-RQA was performed on the average time series of the four main
types of land cover (Forests, Olive Groves, Arable Lands, Grasslands) representing 94.2% of
the entire Apulia region, with a sampling time of 16 days over fourteen years (2000–2014). The
recurrence is the time it takes for the trajectory of an EVI series to return to its original state.

A brief overview of RP and RQA is reported below, but more details of the principles
and algorithms can be found in [14,21].

A landscape state consists of state variables describing all the important properties of
dynamical systems; therefore, it can be mathematically depicted by a vector

→
x i =

(
ui, ui+τ , . . . , ui+(m−1)τ

)
with embedding dimension m and time delay τ.

The temporal evolution of the state is expressed by the phase space trajectory of the
dynamical system. Formally, the RP is based on the recurrence matrix:

Ri,j =

{
1 i f ||→x i −

→
xj|| ≤ ε

0 otherwise
with

→
x i∈ Rm and i, j = 1, . . . , N (1)

where N is the number of measured states
→
x i, i.e., the length of the time series reduced

by the number (m − 1) τ; ε is a threshold distance; and ||·|| is a norm, i.e., the spatial
distance between two points xi and xj in the phase space trajectory. The choice of m is
usually based on counting false nearest neighbors when increasing m and choosing the
value of m where the number of false nearest neighbors goes to zero [14]. The delay τmust
be selected to minimize the autocorrelations between the time series points, e.g., by using
mutual information. The parameter ε is crucial as systems often do not recur exactly but
just approximately to a formerly visited state. The appropriate threshold ε can be selected
by following three methods, i.e., mean or maximum phase space diameter, recurrence point
density, and standard deviation of the observational noise [14].

The RP is a graphical representation of this recurrence matrix (Figure 2), where black
points represent those time points where the spatial distance between two states

→
x i and

→
x j

is falling below the threshold ε and, therefore, the system recurs [14,54]. For illustrative
purposes, the RPs of three typical synthetic time series (A, B, C) are presented (Figure 2).

https://www.dataset.puglia.it/dataset/uso-del-suolo-2011-uds
https://www.dataset.puglia.it/dataset/uso-del-suolo-2011-uds
http://www.sinanet.isprambiente.it/it/sia-ispra
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In particular, the trajectory with regular oscillations (Figure 2B) is the least common in
nature, but the possibility given by RQA to analyze more complex but recurrent oscillation
trends represents the strength of the RQA approach. Diagonal lines in the RP indicate that
the temporal evolution of states is similar at different times and, therefore, can point to
deterministic processes; vertical or horizontal lines in the RP indicate that some states do not
change or change very slowly for some time and can suggest laminar or persistent states.
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Periodic motion is reflected in the RP by uninterrupted diagonals, and the vertical
distance between them corresponds to the period of the oscillation. These uninterrupted
diagonals represent the “predictability time”, i.e., the time that two trajectories are nearby
before diverging out in state space, and the longest diagonal represents the maximum time.

We first estimate the value of τ from the first minimum of the average mutual in-
formation and space-time separation plots, and then m for ≤5% false-nearest neighbors.
The estimated minimum embedding dimension is the one that initially gives a significant
fraction of false nearest neighbors with the threshold ε, which in our case study varies from
0.08 to 0.13 among land covers.

RQA allows the estimation of recurrence variables [48], all concurring to provide a
quantitative picture of spatiotemporal dynamics. In particular, the recurrence rate (REC) is
the ratio of all recurrent states, namely recurrence points closer than ε to all possible states
and, therefore, the probability of the recurrence of a certain state. The ratio of recurrence
points forming diagonal structures to all recurrence points is called the determinism (DET)
and gives indications about the predictability of service provisioning by the dynamical
landscape. The laminarity (LAM) is the proportion of recurrence points forming vertical
lines and is related to the number of laminar phases in the system (intermittency). LAM
reveals laminar states, i.e., where some states do not change or change slowly and, hence,
the state is stable for some time. The divergence (DIV) is simply 1/Lmax, where Lmax is
the maximum predictability time given by the length of the longest diagonal line in the
plot excluding the main diagonal line. DIV gauges the rate at which trajectories diverge
and is the hallmark for dynamic chaos. The higher the DIV, the more chaotic (less stable)
the signal is [14].

Recurrence variables can be interpreted in terms of landscape adaptability; a few of
their corresponding theoretical descriptors are given in Table 1
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Table 1. Relationships between some recurrence variables (stability metrics) and theoretical descrip-
tors of landscape adaptability.

Recurrence Variable—Stability Metrics System’s Adaptability Theoretical
Descriptors

Determinism (DET): the percentage of
recurrence points, which form diagonal lines.
It gauges the stability and predictability of the
dynamical system [14].

Stability: concentrates on the adaptive
capacity of the system to remain within the
same domain because of mutually reinforcing
structures and processes [56].

Resilience: the probability that a system’s
multiple states will persist [15].

Predictability: the reliability of event
recurrence [57].

Laminarity (LAM): the percentage of
recurrence points, which form vertical lines
(laminar phases) in the system where some
states do not change or change slowly
(intermittency) and, hence, the state is trapped
for some time [14].

Constancy: when the state of the system
remains the same [58].

Divergence (DIV): the inverse of the length of
the longest diagonal line (L max). It gauges the
rate at which trajectories diverge and is the
hallmark for critical transitions and dynamic
chaos [14].

Precariousness: the proximity or trajectory of
an ecosystem state to a threshold that if crossed
will result in a regime shift or critical transition
[4,59]. Chaoticity: The condition of being
chaotic.

The longest diagonal line in the plot (L max):
the maximum predictability time; the smaller
the divergence, the higher the system’s
trajectory stability and predictability [14].

Stability: qualities of a stability domain that
resist changes in state or shifts in regime [60].

Resilience: the probability that a system’s
multiple states will persist [15].

Predictability: the reliability of event
recurrence [57].

Recurrence plots (RPs) and recurrence quantification analysis (RQA) were performed using the R Package
“fNonlinear” [61]. Confidence intervals for the recurrence variables were derived from RQAs of 100 random
Enhanced Vegetation Index (EVI) time series extracted from each land cover.

3. Results
3.1. EVI Time Series and Cross-Correlations with Climate Data

Mean EVI time series of the Apulia region provide a picture of land cover types
fluctuating around some trends (increasing or decreasing) or stable average, but with clear
differences in the regularities of periodicities and amplitudes of the processes (Figure 3).
Broadleaf Forests present the highest average EVI with clear periodicities, with a maximum
EVI in late spring (May) and a minimum in winter (February). In contrast, Olive Groves
show irregular periodicities with lower amplitude, with a maximum EVI in winter (January)
and a minimum in summer (July). Arable Lands show periodicities that clearly reflect the
cycle of agricultural practices such as sowing, irrigation and growing, and harvesting, with
a maximum EVI in spring (April) and a minimum in July. Grasslands, including semi-
arid grasslands, garigues, steppes and pastures, show irregular periodicities with higher
amplitude than Olive Groves but with a similar average EVI, with reduced photosynthetic
activity in the summer.
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Figure 3. Mean Enhanced Vegetation Index (EVI) time trajectories with standard deviations for pixels of the four main land
cover classes (Forests, Arable Lands, Olive Groves, and Grasslands) in Apulia region over 14 years, in 16-day time units.

Cross-correlations of the EVI with temperature and precipitation demonstrate that
most of the time series are consistent with a climatic forcing and variability (Figure 4).
However, cross-correlations for Forests are antithetical to those of other types of land cover
as forests’ greater self-organization makes them almost independent of precipitation events.
In contrast, there is an evident direct correlation between the EVI of Forests and temperature.
For Arable Lands, the cross-correlations with both precipitation and temperature are
negative, highlighting that water availability is not dependent on precipitation events,
but on groundwater for irrigation. The cross-correlation between precipitation and Olive
Groves behaves similarly to Grasslands, which shows a strong dependence on precipitation
events. However, Olive Groves are negatively related to temperature, with the highest EVI
in winter.
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3.2. RP and RQA Analysis

The visual appearance of recurrence plots (Figure 5) provides many hints about the
functional dynamics of land covers and their stability and predictability.

Distances between diagonal lines, i.e., the period of the oscillation appear rather
similar among the types of land cover. Higher predictability, determinism, recurrence rates
and Lmax shown by Forests and Arable Lands mean that the dynamics of both land cover
types are rather persistent and predictable, with strong periodic components (Table 2).
Relatively high laminarity means intermittency in the EVI of Forests whenever some states
do not change or change slowly.

Forests and Arable Lands are more stable and resilient than Olive Groves and Grass-
lands, with effects on the provision of landscape services associated with the first two land
cover classes. Forests and Arable Lands are rather quasi-periodic, but with determinism
(DET) greater for Forests than for Arable Lands (Table 2). For Arable Lands, some states do
not change or change slowly as an effect of human-managed balancing feedback loops at
work (irrigation versus drought, soil fertilization versus soil impoverishment, etc.).
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Figure 5. Recurrence plots (RPs) for the main land cover classes in the Apulia region based on 14-year Enhanced Vegetation
Index (EVI) time series.

Table 2. Results of RQA for EVI time series for the four land cover classes (Forests, Arable Lands,
Olive Groves, Grasslands) in the Apulia region (95% confidence intervals in brackets).

Forests Arable Lands Olive Groves Grasslands

DET 0.948
(0.940–0.956)

0.930
(0.920–0.938)

0.880
(0.870–0.890)

0.891
(0.880–0.901)

REC 0.125
(0.115–0.130)

0.084
(0.077–0.091)

0.056
(0.050–0.062)

0.038
(0.030–0.040)

LAM 0.932
(0.922–0.942)

0.888
(0.878–0.898)

0.768
(0.760–0.776)

0.717
(0.705–0.729)

Lmax 227.03
(218.40–235.60)

195.10
(187.68–202.50)

117.20
(112.75–121.65)

41.3
(39.73–42.87)

DIV 0.0041
(0.0044–0.0040)

0.0051
(0.0053–0.0049)

0.0085
(0.0089–0.0080)

0.0250
(0.0262–0.0242)

The three-dimensional reconstruction of the EVI time delays in the phase space for
Forests shows that the trajectories remained approximately in the same phase space in
fourteen years, exhibiting the greatest stability and predictability with a minimum EVI
in winter (Figure 6). Such a three-dimensional reconstruction supports the existence of
much less temporal variation in CO2 fluxes than commonly assumed for trees subjected to
periodic photosynthetic down-regulation [62].
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Figure 6. Three-dimensional reconstruction of the EVI signal in phase space for Forests in Apulia
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winter season).

3.3. Maps of Recurrence Variables and Hot Spots Undergoing Degradation and Desertification (LDD)

The most significant recurrence variables related to predictability (Determinism, DET;
Laminarity, LAM) and chaoticity (Divergence, DIV) for Apulia were mapped (Figure 7B–D)
for the four most representative land cover types (Forests, Olive Groves, Arable Lands,
Grasslands) together with recurrence estimates of other Corine land covers (Figure 1) [63]
derived from randomly selected MODIS pixels.
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The maps clearly show regions characterized by a greater recurrence (high predictabil-
ity, DET, LAM, Figure 7C,D) mainly linked to the National Park of Gargano (1 in Figure 7A),
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Murgia of Trulli (7 in Figure 7A), the northern Daunia mountains (2 in Figure 7A) and
extensive olive groves (9,10,11 in Figure 7A).

Conversely, evident and coherent space clusters, less predictable and with more
chaoticity (higher divergence, DIV) (Figure 7B), are clearly identifiable in central Alta
Murgia (6 in Figure 7A), in the Gargano plateau (1 in Figure 7A) and in the southern
Daunia mountains (2 in Figure 7A). In all these areas, the Grasslands class, including semi-
arid grasslands, garrigue, steppes and permanent pastures, has its highest concentration.
These three areas correspond exactly to already known regional hot spots [19,29,31,64,65]
with land desertification in progress.

More specifically, the central Alta Murgia area (6 in Figure 7A) is a limestone plateau
primarily used as pastures with widespread surface features: karst and layers of outcrop-
ping rock with discontinuous and thin soils where xeric grasslands cover almost 24% of
the total area. In this area, the Alta Murgia National Park is present (67,739 ha), which
covers most of the territory and represents one of the most important conservation areas
in Europe for the presence of habitats listed in the 92/43/EEC Habitat Directive with the
highest priority for conservation, such as semi-natural dry grasslands and scrubland facies
on calcareous substrates (Festuco-Brometalia), pseudo-steppe with grasses and annuals of
the Thero-Brachypodietea* and eastern sub-Mediteranean dry grasslands (Scorzoneratalia
villosae) [66].

In this area, the greatest decrease (−26%) in the extent of xeric grasslands from 1990 to
2018 is already known, and it has been mainly due to their conversion to Arable Lands [67]
by extensive interventions of mechanical “stone crushing” (up to pulverization) of the
soil-calcareous rock with the emergence of less productive shrublands [67]. This practice is
banned nowadays.

As a result, in reclaimed arable lands, crops (mainly wheat) cover the thin soil for
few months a year, and this increases the exposure to extreme weather events. The soil
structural characteristics worsen as the percentage of organic matter decreases and the
inert fine particles increase. Therefore, during heavy rains, even with moderate slopes, part
of these low-quality soils can slide along the slopes [19]. Therefore, some pixels belonging
to Arable Lands also contributed to the chaoticity in the area.

Another relevant cluster of high divergence with more chaotic greenness behavior is
represented by the Gargano karst plateau (1 in Figure 7A), which occupies, from west to
east, the central nucleus of the Gargano National Park. It is characterized by rangelands
with bald and stony ridges alternating with woods. It is a karst environment, character-
ized by fields of sinkholes and tombs, with the alternation of semi-arid grasslands and
pastures with trees, arable land and wooded areas. Here, the frequency of fires [21,68]
has historically promoted the adaptation of evergreen trees such as Pinus halepensis and
grasses such as Hyparrhenia hirta and Brachypodium ramosum, which can recover after fire
disturbances [21]. The severity of the fire event influences the surface hydrological response
and the consequent loss of soil. In the years following the fire, soil loss could be quite high
and soil degradation processes much greater than before the event [19].

Finally, the third spatial cluster of high divergence is the South Daunia mountains (2 in
Figure 7A), mainly associated with semi-arid grasslands, garrigue, steppes and permanent
pastures, but also with land degradation for slope instability and subsequent landslides
during seasonal rainfalls because of land use conversion and land abandonment [69,70].
Most of the unfavorable biophysical factors affecting Alta Murgia also occur substantially
for southern Daunia.

4. Discussion

There are several approaches proposed for land degradation and desertification (LDD)
analysis. One of the most popular spatially evaluates variables and indicators without
considering their dynamics to map specific LDD issues through the recombination of
thematic layers (e.g., [19,31,34,71]). However, all these studies are static and limited to the
generation of desertification risk maps.
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On the other hand, remote sensing-based analyses of vegetation cover decline rely
on a wide range of change detection methods [72]. One approach is based on image
classification when multitemporal Land Use Land Cover (LULC) maps are compared to
identify changes (e.g., [73]). Such classification-based analyses, however, fail to evaluate
the temporal evolution of LDD processes and can lead to high mapping inaccuracies
due to error propagation between LULC classification results. Trend analyses of multi-
year satellite images allow the capture of gradual LDD processes [74], but they are not
independent from constraining assumptions like linearity. Trend analyses were routinely
employed for LDD assessment using coarse- and multi-temporal imagery [75].

The present non-linear approach, based on the integration EVI-RQA, represents a
clear novelty in the approaches for LDD assessment. It is a multi-temporal satellite analysis
where non-linear time series analysis techniques are applied to extract information from
time series of EVI pixels useful to analyze their complex behavior. It can also be useful
in making the MEA definition of LDD operational, as poor and erodible soils, erratic
precipitation (mainly during the winter), high summer temperatures with frequent drought
events, land use conversion, extensive deforestation with frequent wildfires, and land
abandonment can significantly reduce the ability of vegetation cover to provide, regulate
and support landscape services. All these factors reverberate on the greater chaotic behavior
of the EVI time series over time, mainly for the general Grasslands class (divergence, DIV;
Table 2, Figure 7B). Therefore, greater chaoticity (less resilience) of the EVI over time can
indicate LDD.

The results have shown that Forests and Arable Lands are more stable and resilient
than Olive Groves and Grasslands, with effects on the provision of landscape services
associated with the first two land cover classes. Forests and Arable Lands are rather quasi-
periodic, but with determinism (DET) greater for Forests than for Arable Lands (Table 2).
Specifically, for Arable Lands, some states do not change or change slowly, as highlighted by
relatively high DET just with some intermittency, so that some states change slowly because
of agricultural practices characterized by some periodic components. However, under
human control, there are stress-responsive life-history strategies as for wheat (Triticum
turgidum ssp. durum), whose cultivars exhibit traits adapted to both drought and heat [76].

The recurrent behavior of EVI trajectories as a proxy of ANPP indicates that services
provided by Forests and Arable Lands are expected to continue with current balancing
feedback loops at work. Some Mediterranean forests show, according to Garbulsky and
colleagues [77], a low temporal variability in their EVI, being the coefficient of variation less
than 10%. This is confirmed by the high DET, REC, Lmax and LAM values and the relatively
very low DIV values for Forests (Table 2). Moreover, Mediterranean forests exhibit the
highest determinism of the EVI (A N P P) (Table 2), suggesting a strong self-organizing
component resistant to the noise structure of the hydroclimatic forcing. These results are
like those for European temperate forests, which are largely able to maintain relatively
constant physiological settings and water retention even during severe drought and heat
events [78]. Apulian evergreen forests are apparently in balance with the Mediterranean
climate. This because their sclerophyllous oaks (Quercus ilex, Q. calliprinos and Q. coccifera)
and Pinus halepensis represent the woody climax at the end of successional dynamics that
can be achieved where biophysical factors remain favorable [79,80].

Permanent Olive Groves have seen their concentration and intensification increase
like in other Mediterranean countries [81]. Olive Grove time series show shorter and more
interrupted diagonals (Figure 5); therefore, this land cover class is less periodic and less
persistent than the century-old olive groves, which are more sparsely distributed probably
because the management is based on traditional ecological knowledge and it is considered
a best sustainable practice with benefits for the provision of landscape services. Hence, the
recurrence rate of Olive Groves is lower than Forests and Arable Lands (Table 2). Their
behavior appears more like Grasslands as satellite images also capture the grassy vegetation
of the undergrowth. Olive Groves are moderately irrigated, and those laminarity states
mainly occur because of balancing physiological feedback controls that determine under
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summer water stress less stomatal conductance and lower photosynthetic rates to avoid
drought-induced hydraulic failure [82], and hence lower values of EVI. As a result of the
adaptation of single olive trees to drought, traditional olive groves present an opposite
periodicity with a maximum EVI in winter, and this can explain the lower amplitude of
their periodic component.

In addition, the slight increasing trend of EVI time series of Olive Groves (Figure 3)
may reflect the merging and enlarging of olive groves with the transition from ancient
and traditionally managed farms, consisting of widely spaced century-old olive trees
surrounded by a grassland matrix used for grazing animals, to modern and mechani-
cal managed farms where olive trees are tightly packed with fewer grasses and more
shrubs [81]. This replacement can be interpreted in terms of biodiversity loss as well as a
decrease in the landscape services provided by century-old olive groves.

Natural Grasslands are also known for physiological balancing feedback loops inhibit-
ing or reducing photosynthetic activity to adjust their responses to drought. Despite these
adaptations, divergence is greatest for Grasslands, implying a more chaotic (less stable)
signal (Table 2). This occurs because the structural dynamics and eco-physiological activity
of xeric grasslands are mainly driven by discrete inputs or “pulses” of increasing seasonal
precipitation [83] (Figure 4). Furthermore, there is an added spatial chaotic effect due to the
unceasing conversion of natural Grasslands to Arable Lands through stone removal and
crushing. From Table 2, it is evident that the divergence of Grasslands is six times greater
than that of Forests. Finally, predictability decreases significantly from closed canopies
to open drylands, i.e., from Forests to Grasslands, while chaoticity increases (Table 2). If
degradation and desertification worsen due to climate change and/or water shortages,
xeric grasslands are likely the first system to degrade, and, therefore, this land cover type
should be monitored as it represents the weakest state through which desertification can
occur and spread.

5. Conclusions

The spatialization of recurrence variables from non-linear RP-RQA represents a clear
novelty among the integrated approaches used for the monitoring and assessment of soil
degradation and desertification (LDD). Its strength lies in the applicability to relatively
short time-series, its complete independence from binding hypotheses and signal transfor-
mations, and in the provision of resilience-related recurrence variables that can be applied
spatially to inform planning and management choices. This is fundamental to identify new
sustainable landscape planning, intervention, and management choices, based on func-
tional stability and predictability patterns. The approach could be used alone or alongside
the traditional ones, based mainly on static structural knowledge.

The approach presented here measures persistent recurrence and chaoticity over time,
and it appears to provide an efficient method to quantify and spatialize functional dynamic
stability and predictability in dryland SELs, as well as to gauge the phase and function
instabilities, which are otherwise undetectable. The mapping of the recurrence variables
summarizes the (ir)regularity of the different land cover functional dynamics, providing a
powerful insight to discriminate between areas with different stability/predictability in
the landscape.

The effectiveness of this approach is validated by its ability to confirm already known
hot spots with ongoing land desertification processes. However, its potentiality is to
identify new areas of interest where to focus new more specific in situ investigations.
In this perspective, the divergence (DIV) variable, represented by the chaoticity (lower
resilience) of the EVI time series over time, could be used as a novel index, making the
MEA definition of LDD operational.

The challenging goal of achieving the neutrality of soil degradation (LDN) by 2030
set by the United Nation Sustainable Development Goal (SDG) requires new conceptual
strategies for analyzing and designing landscape sustainability models. In the case of
drylands, they could include the strategic conservation of forests and xeric grasslands as
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well as the strategic planning of landscape conversion to reduce the intensity of water and
soil stress.

Finally, it is well known that the future is not likely to be a simple extrapolation of
the recent past because unexpected events can suddenly happen, as well as the recent
exacerbated effects of climate change. However, having the knowledge of recent recurrence
dynamics of vegetation cover from non-linear RP-RQA and of the spatial distribution of
recurrence variables can assist in management and policies and foster the stability and
short-term predictability (resilience) of dryland dynamics, guaranteeing the provision of
landscape services.
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