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1. The FLUS model description and implementation

The parameters used in the FLUS model are listed in Table S1. We conducted a 10% uniform 
sample to train the ANN. The former study suggested that the simulation accuracy could reach the 
highest when 𝑁 is 5 in this study area (Huang            et al. forthcoming), and thus it was chosen as 
the neighbouring window size.
Table S1
The terminology, the formula and the description in the FLUS model.

Terminology Formula Description
The input layer, 
the hidden 
layer, the 
output layer 
and neurons in 
each layer

𝑋 = [𝑥1, 𝑥2,…,𝑥𝑖]𝑇

: the input layer;𝑋
: the  neuron in the input layer, corresponding to a 𝑥𝑖 𝑖th

certain driving force of land-use change.

An ANN has 
three types of 
layers: the input 
layer, the hidden 
layer and the 
output layer. 
Each layer is a 
set of neurons in 
this layer.

Signal 𝑛𝑒𝑡𝑗(𝑝,𝑡) = ∑
𝑖
𝑤𝑖,𝑗 × 𝑥𝑖(𝑝,𝑡)

: the signal received by a neuron ( ); 𝑛𝑒𝑡𝑗(𝑝,𝑡) 𝑥𝑗

: the adaptive weight between the input and the hidden 𝑤𝑖,𝑗

layers;
: the input neuron  on grid cell  at training time 𝑥𝑖(𝑝,𝑡) 𝑖 𝑝

.𝑡

The signal 
received by a 
neuron ( ) in 𝑥𝑗

the hidden layer 
from input 
neurons and it is 
calibrated in 
each iteration.

Output 
probability-of-
occurrence

𝑃(𝑝,𝑘,𝑡) = ∑
𝑗
𝑤𝑗,𝑘 ×

1

1 + 𝑒 ‒ 𝑛𝑒𝑡𝑗(𝑝,𝑡)

: probability-of-occurrence of land type  on grid 𝑃(𝑝,𝑘,𝑡) 𝑘
cell  at training time ;𝑝 𝑡

: similar to  but between the hidden layer and the 𝑤𝑗,𝑘 𝑤𝑖,𝑗

output layer.

The Sigmoid 
function is used 
as the activity 
function to 
connect the 
hidden layer and 
the output layer, 



and to calculate 
the output 
probability-of-
occurrence.

The 
neighbourhood 
effect

Ω 𝑡
𝑝,𝑘 =

∑
𝑁 × 𝑁

𝑐𝑜𝑛(𝑐𝑡 ‒ 1
𝑝 = 𝑘)

𝑁 × 𝑁 ‒ 1
: the neighbourhood effect; Ω 𝑡

𝑝,𝑘

: the total number of grid cells ∑
𝑁 × 𝑁𝑐𝑜𝑛(𝑐𝑡 ‒ 1

𝑝 = 𝑘)

occupied by land use type  at the last iteration time  𝑘 𝑡 ‒ 1
within the  window.𝑁 × 𝑁

The 
neighbourhood 
effect describes 
the influence of 
the status of 
surrounding grid 
cells to the 
central one. 

Inertia 
coefficient

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑡
𝑘 =

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑡 ‒ 1
𝑘 ,  𝑖𝑓 |𝐷𝑡 ‒ 1

𝑘 | ≤ |𝐷𝑡 ‒ 2
𝑘 | 

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑡 ‒ 1
𝑘 ×

𝐷𝑡 ‒ 2
𝑘

𝐷𝑡 ‒ 1
𝑘

,  𝑖𝑓 𝐷𝑡 ‒ 1
𝑘 < 𝐷𝑡 ‒ 2

𝑘 < 0

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑡 ‒ 1
𝑘 ×

𝐷𝑡 ‒ 1
𝑘

𝐷𝑡 ‒ 2
𝑘

,  𝑖𝑓 0 < 𝐷𝑡 ‒ 2
𝑘 < 𝐷𝑡 ‒ 1

𝑘

: the inertia coefficient at iteration ;𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑡
𝑘 𝑡

 and : the difference between the macro 𝐷𝑡 ‒ 1
𝑘 𝐷𝑡 ‒ 2

𝑘

demand and the allocated amount of land use type  until 𝑘
iteration  and , respectively.𝑡 ‒ 1 𝑡 ‒ 2

Inertia 
coefficient 
reflects and 
automatically 
adapts the 
inheritance of 
the current land 
uses. It is used to 
implement 
spatial 
allocation more 
efficiently.

Conversion 
difficulty factor

𝐶𝐷𝑘 ‒ 𝑙 = 1 𝑜𝑟 0
: Conversion difficulty factor. 𝐶𝐷𝑘 ‒ 𝑙

A binary 
variable that 
equals 0 if the 
conversion from 
land-use type  𝑘
to  is 𝑙
prohibited or 1 
otherwise.

Constraint 
factor

𝐶𝑜𝑛𝑝 = 1 𝑜𝑟 0
: Constraint factor.𝐶𝑜𝑛𝑝

A binary 
variable that 
equals 0 if grid 
cell  is 𝑝
located within 
restricted 
regions (where 
land-use change 
is prohibited) or 
1 otherwise.

Total 
probability

𝑇𝑃(𝑝,𝑘,𝑡) = 𝑃(𝑝,𝑘,𝑡) × Ω 𝑡
𝑝,𝑘 × 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑡

𝑘 × 𝐶𝐷𝑘 ‒ 𝑙 × 𝐶𝑜𝑛𝑝 Totally 
probability that 



is used for the 
roulette wheel 
selection.

2. Urban population prediction

We assumed that the increase rate of population ( ) declines with the increase in population amount 𝑟
( ), and thus the logistic model was used. Let  be a linearly decreasing function of , we had: 𝑥 𝑟(𝑥) 𝑥

{𝑟(𝑥) = 𝑟 ‒ 𝑠𝑥 (𝑟 > 0, 𝑥 > 0)  (eq.1)
𝑑𝑥
𝑑𝑡 = 𝑟(𝑥)𝑥,   𝑥(0) = 𝑥0  (eq.2) }

We assumed that the carrying capacity of the environment is , and the population amount 𝑥𝑚

will not increase when  (i.e., ); obviously, . Thus, eq.1 can be 𝑥 = 𝑥𝑚 𝑟𝑥𝑚 = 0 𝑠 = 𝑟 𝑥𝑚

transformed to: , and eq.2 can also be transformed to 𝑟(𝑥) = 𝑟(1 ‒ 𝑥 𝑥𝑚) 𝑑𝑥 𝑑𝑡 = 𝑟𝑥(1 ‒ 𝑥 𝑥𝑚), 𝑥

. Solving the last differential equation, we had: (0) = 𝑥0

𝑥(𝑡) =
𝑥𝑚

1 + (
𝑥𝑚

𝑥0
)𝑒 ‒ 𝑟𝑡

  (e𝑞. 3)

where  is the population amount in time ,  is the initial population amount; other 𝑥(𝑡) 𝑡 𝑥(0)
variables denote the same meanings as above. Through the historical data (Data S1 in SI), 
parameters in eq.3 were obtained. We had the predicted amount of urban permanent residents in 
2020 as 10.37 million (the population in 2010 is 7.05 million). 

3. Other supporting tables

Table S2
Movement cost characterizing the impedance effect of each land-use type. Cost values were 
attributed to land-use types through literature review (Gurrutxaga et al., 2011; He et al., 2018; 
Tannier et al., 2016), but without sufficient information to distinguish between these costs for three 
target species. Transportation infrastructures such as roads and railways were not analysed 
separately, as they are involved in “Urban land” land-use type in our land-use datasets.
Land-use 
type

Description Cost

Cropland Sites used to grow crops, suitable for animal movements. 40
Forest The forested lands that provide habitats for Flora and fauna and space 

favourable to species movement. The vegetation is predominantly natural.
1

Grassland Near-natural grassland, suitable for animal movements. 30
Water body Lakes, reservoirs and rivers. Inhospitable for terrestrial mammals. 10000
Urban land Land used for the construction of residences, public facilities, 

transportation and industrial purposes. Little or no vegetation is present. 
10000



Inhospitable for species movements.
Unused 
land

Land that has not been exploited or vegetated. The impedance is higher 
than forest, meadow and cropland, but lower than water body and urban 
land.

50
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