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����������
�������

Citation: Mozgeris, G.; Juknelienė, D.
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Abstract: Effective management decisions regarding greenhouse gas (GHG) emissions may be
hampered by the lack of scientific tools for modeling future land use change. This study addresses
methodological principles for land use development scenario modeling assumed for use in processes
of GHG accounting and management. Associated land use policy implications in Lithuania are also
discussed. Data on land uses, available from the National Forest Inventory (NFI) and collected for
GHG accounting from the land use, land use change and forestry (LULUCF) sector in the country,
as well as freely available geographic information, were tested as an input for modeling land use
development in the country. The modeling was implemented using the TerrSet Land Change Modeler.
Calibration of the modeling approach using historical land use data indicated that land use types
important for GHG management in the LULUCF sector were predicted with an accuracy above
80% during a five-year period into the future, while the prediction accuracy for forest and built-up
land was 96% or more. Based on several land management scenarios tested, it was predicted that
the LULUCF sector in Lithuania will accumulate CO2, with the forest land use type contributing
most to CO2 absorption. Key measures to improve the GHG balance and carbon stock changes were
suggested to be the afforestation of abandoned or unused agricultural land and prevention of the
conversion of grassland into producing land.

Keywords: land use; land use change; scenario; carbon stock changes; simulation; forest; producing
land; grassland

1. Introduction

Substances of anthropogenic origin have a major influence on the climate system [1].
Human economic activity contributes to thermal atmospheric pollution—increasing green-
house gas (GHG) concentration enlarges the natural greenhouse effect and plays a decisive
role in the rise of the average global temperature [2–4]. GHGs are mainly generated by
the combustion of fossil fuels in industrial and agricultural production processes, and, by
a large proportion, from waste [3,5–9]. GHG absorption is usually associated with the
physiological properties of green vegetation, as other solutions to sequester carbon have not
yet been proven to be either technologically or economically effective [10,11]. Meanwhile,
climate change is a global issue and needs to be addressed through global cooperation
among countries to improve energy efficiency, develop and deploy clean technologies, and
increase natural GHG absorption. In this context, the processes in and around land use,
land use change, and forestry (LULUCF) are becoming crucially important. The LULUCF
sector includes GHG emission and its removal from forests, arable or producing land,
grasslands and pastures, wetlands, built-up areas, and other land plots. Emissions and
removals of GHGs are accounted using internationally accepted approaches [12–14]. How-
ever, in order to actively increase carbon absorption, it is necessary to know and manage
the processes involved in the development of land surface layers and land use. Cognitive
processes and management decisions will be hampered by a lack of access to scientifically
based tools for modeling land use and hence GHG emissions.
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Nowadays, many land use change modeling tools exist, differing in their methodolog-
ical implementation [15,16]. They may cover universal or very specific application fields,
with the focus on local case studies or continental exercises. There are several concepts
of land cover and use modeling [17]—economic models, system dynamics approaches,
cellular automata, and agent-based models. Spatial economic or econometric models
deliver generalized predictions of states of phenomenon by balancing various inter-related
input factors determining their development. System dynamics or causality-driven models
assume an empirical modeling of land cover or land use changes. This involves (i) an
assessment of past changes first, (ii) a determination of relationships between land changes
and factors driving such changes, (iii) an evaluation of change potential, and (iv) an alloca-
tion of land to the new land cover or land use types [18]. Cellular automata usually operate
in a raster domain, representing the landscape as an n-dimensional grid of cells. Each cell
may acquire a finite number of states, which may change over time following some set
of rules and depending on the state of neighboring cells. Models are iterated over time,
delivering land cover or land use status within the cell at specific times [19,20]. Agent-
based models are aimed at modeling the behavior of autonomous individuals (agents)
who may perceive their environment and interact with individuals [21]. Even though
there are numerous potential solutions for land use change modeling, their applicability is
heavily restricted by various legal, technological, and organizational aspects. The land use
change modeling depends on the specific requirements of GHG emission accounting, the
availability and specifics of input data, modeling tools, and experiences, especially when
considering specific countrywide exercises.

There are many factors influencing GHG emissions and absorptions in the LULUCF
sector, potentially resulting in uncertainties in both GHG accounting and projections [22–26].
Simultaneously, availability, or often the lack of input data for land use change analysis,
makes the task more challenging [27]. Even though there are international standards to
account for GHGs, there are always some specialties present in the operational approaches
of each country. Lithuania, following its international climate change mitigation commit-
ments, has developed an original LULUCF monitoring system, which is used for GHG
reporting. This system predetermines the approaches of land use development projections.
The core data source for GHG accounting from the LULUCF sector in the country is the
National Forest Inventory (NFI), which is implemented by the State Forest Service [28,29].
Originally developed to provide statistical information on forest resources for strategic
forestry planning at a country level, the Lithuanian NFI has recently been expanded to
collect countrywide data on land uses and land use changes. The land uses are monitored
in a systematic network of observation points through the whole country, while forest
attributes are surveyed at points in the forest. There are operational solutions introduced
in Lithuania to model the development of forest resources and forestry, ranging from forest
stand-level simulators to systems manipulating aggregated countrywide data [30–32]. The
State Forest Service uses the European Forestry Dynamics Model (EFDM), developed as
a harmonized forestry modeling tool for all European countries, based on NFI data. The
EFDM has been used to calculate the forest reference level (FRL) for Lithuania following
the European Union LULUCF regulation for 2021–2030 [13]. The EFDM is a matrix-based
model of a Markov chain type representing change by transition of areas (in this case, the
NFI sample plots) between different fixed states of the forest [33]. This matches well with
the system dynamics or causality-driven models introduced above. The reference levels
for land uses other than forest are based on historical data, thus, one may assume that no
sophisticated modeling solution is needed. Nevertheless, successful land use management
provides challenges for modern decision-support tools which are based on land use devel-
opment scenarios. To our knowledge, the solution that has been widely used to make GHG
projections in the LULUCF sector in Lithuania has been the land use, land use change and
forestry emission accounting tool, LULUCFeat [34]. LULUCFeat delivers GHG predictions
based on aggregated LULUCF data and past trends, using information on driving factors
and expert knowledge. Methodologically, this fits the economic models mentioned above.
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However, the solution is too focused on delivering certain GHG reports and underfitting
expectations for a versatile land use change modeling system, based on all NFI data and
compatible modeling principles.

Thus, the aim of the study introduced in this paper is to test the methodological
principles for land use development scenario modeling for use in processes of GHG
accounting and management. First, we ask what is the performance of the Markov chain
analyses methodological approach in modeling land use development using standard GIS
software? To conduct the modeling exercise, we use inputs available from already running
in Lithuania inventory projects and freely available geographic databases. Then, we test
the capacity of the LULUCF sector in Lithuania to accumulate carbon during the next
decade, starting in 2020. For that, we project the development of major land use types in
Lithuania until 2030 using several land use management scenarios and estimate potential
contributions of different land uses on carbon emission/absorption. We hypothesize
that the carbon accumulation in the LULUCF sector in Lithuania during the next decade
should increase. Finally, we end with a discussion and proposals for both methodological
enhancements of modeling solutions and land use management policies.

2. Materials and Methods
2.1. Study Area

The study was conducted in Lithuania, located in Central Europe (Figure 1) and having
historically strong links with Eastern Europe. Land use development in Lithuania in recent
decades strongly depended on the radical societal transformations after Lithuania broke
away from the Soviet Union in 1990 and later joined the European Union in 2004 [35]. The
area of three land uses important in GHG accounting and management (forest, producing
land and grassland) was rather similar (around 28–30%) in 1971. Then, the proportions
of forest, wetland, built-up areas, and other land use types changed relatively steadily
since 1971, while the trends of producing land and grassland development changed their
trajectories around 1990 and again about 2005 (Figure 2). The proportions of forest land
and producing land in 2015 were, respectively, 34% and 33%. The proportion of grassland
was reduced to 23%, and the proportions of both wetland and built-up land were 5%. It
should be noted that the total area of Lithuania is 65,200 km2.

Figure 1. Location of the study area. Source of the data used: https://thematicmapping.org/
downloads/world_borders.php (accessed on 22 March 2021).

https://thematicmapping.org/downloads/world_borders.php
https://thematicmapping.org/downloads/world_borders.php
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Figure 2. Specification of the study area: (left) associative illustration of the distribution of sample
plots at different scales, with gray squares referring to the 100× 100 m cells associated with Lithuanian
National Forest Inventory (NFI) sample plots with 100 buffers used to extract driver variables for
land use change modeling; (right) proportions of major land use types in Lithuania in 2015 and
changes in proportions since 1971. Source of the data used: Lithuanian National Forest Inventory.

2.2. Input Data

Two types of input data were used in the study: (i) data describing the land uses in
Lithuania and (ii) data describing the factors influencing the land use changes. Land use
information was available from the Lithuanian NFI [29,36]. Land use types and subtypes
have been identified annually on a network of 16,349 systematically distributed sampling
points (Figure 2) since 1971 using the nomenclature of GHG inventories [37]. Usually,
three levels of identification are used; however, we used only two levels in our study,
i.e., Level 1 with 6 land use types (forest land, producing land, grassland and pastures,
wetland, built-up areas, and other land) and Level 2 with 25 subtypes specifying the types
in more detail (Appendix A, Table A1 provides a full list of land use subtypes). To conduct
the modeling and to integrate the NFI data with other datasets, we created a raster map
with a cell size of 100 × 100 m and assured that each NFI plot was associated with a
unique cell. Only cells with an NFI plot were used for the study. Free data available
from the spatial information portal of Lithuania (www.geoportal.lt, accessed on 22 March
2021) were used to describe the factors influencing the land use changes. The following
geographic datasets were used: GRPK (spatial dataset of (geo) reference base cadaster),
GDR50LT (georeferenced spatial dataset for the territory of the Republic of Lithuania at
the scale of 1:50,000), AZ_DRLT (spatial dataset of abandoned land of the territory of the
Republic of Lithuania), SŽNS_DR10LT (database of limited land use areas of the Republic
of Lithuania at scale 1:10,000), Dirv_DR10LT (spatial dataset of soil of the territory of the
Republic of Lithuania at scale 1:10,000), KŽS (land parcel identification system database),
the spatial dataset on the farmland, cropland, and crop types from the National Paying
Agency under the Ministry of Agriculture and Population, and the 2011 housing census
data from Lithuanian official statistics portal (https://osp.stat.gov.lt/documents/10180/
1491916/WHOLE.zip, accessed on 22 March 2021). Two approaches were used to specify
the explanatory variables: (i) the area of specific features within a 100 m buffer zone
around each 100 × 100 m cell associated with the NFI sample plot was estimated, and (ii)
the shortest distance from the NFI sample plot center to specific features was estimated.
All explanatory variables were stored as raster maps with a cell size of 100 × 100 m.
Optimization of the explanatory variables is described in the next subchapter.

www.geoportal.lt
https://osp.stat.gov.lt/documents/10180/1491916/WHOLE.zip
https://osp.stat.gov.lt/documents/10180/1491916/WHOLE.zip
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2.3. Modeling Land Use Development

Modeling of the land use development was implemented using the TerrSet 18.21 Land
Change Modeler [38]; thus, some approaches used were predefined by the functionality of
the available tools. Therefore, the modeling started with an analysis of land use changes
between two points in time. The potential of land use transitions was then modeled using
a set of driver or explanatory variables. A set of maps of suitability for each transition
was developed. Based on land use changes in the past, probabilities of land use change in
the future were calculated by building a matrix with probabilities of all possible land use
changes. Finally, the land use changes were predicted using the historical rates of change
and the transition potential models for a specified date in the future.

Our study consisted of two stages. First, we calibrated and validated land use change
modeling using input data freely available in Lithuania. We then simulated land use devel-
opment for the next decade using several land use change scenarios. The methodological
framework of our study is summarized in Figure 3.

Figure 3. Flowchart summarizing the overall structure of the study: (a) calibrating and validating
the land use change model, and (b) modeling land use development until 2030.
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We first analyzed the land use development during the period from 2005 to 2010
to predict land uses in 2015. Transitions were modeled using a multilayer perceptron
(MLP) neural network algorithm. All driver variables were tested before using them to
build the transition potential models. First, Cramer’s V statistic was calculated for each
potential explanatory variable—only variables that had a Cramer’s V of 0.15 or higher
were considered as having potential for modeling. The variable with a higher Cramer’s
V statistic was considered for modeling among highly intercorrelated variables. Finally,
the lists of driver variables were optimized, analyzing the modeling reports delivered by
the TerrSet system and iterating the final lists of variables that produced the best MLP
performance. All driver variables were considered static. Six strategies were tested to
include the driver variables in building the transition potential models, differing by the
number and type of driver variables, the date they referred to, and the preprocessing
solutions (Table 1).

Table 1. Tested strategies for the inclusion of driver variables in building the transition potential models (+ means that the
variables from the respective group were considered or an optimization of variables was applied).

Strategy of
Using Driver

Variables

Versions of KŽS AZ_DRLT,
SŽNS_DR10LT,

Dirv_DR10LT, and
Census Data

Land Use
Declaration

Data

Optimization
of Explanatory

VariablesBefore 2005 Between 2005
and 2010 After 2010

1 + +

2 + + +

3 + + +

4 + + + +

5 + + + + +

6 + + + + + +

Driver variables originating from the KŽS database were grouped according to the
date they were created: variables based on data collected (i) before 2005, (ii) between
2005 and 2010, and (iii) after 2010. This was aimed to simulate exercises, where variables
changing over time were considered land use development scenario specifications. For
example, variables collected after 2010 did not influence the land use change before 2010,
but they could be used to specify the future (actual or expected) dynamics of factors
influencing land uses. The land use declaration data from the spatial dataset on farmland,
cropland, and crop types refer to 2012. The most current versions of other datasets were
used. A full list of explanatory variables considered is provided in Appendix A, Table A2.
Future land use was predicted using a hard prediction model. The quantity of change in
each transition was modeled through a Markov chain analysis.

The second stage of our study included predicting land use development in the future,
i.e., acquiring the areas of major land use types for 2020, 2025, and 2030. The sixth strategy
using driver variables was applied, i.e., all available explanatory variables were tested
before use in the transition potential models. Two options of actual land use change were
considered to build the Markov matrix, i.e., (i) the changes from 2005 to 2010 and (ii) from
2010 to 2015. The land use change scenarios were also specified by editing the Markov
matrix. The land use development scenarios considered are introduced in Table 2.
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Table 2. Description of future scenarios of land use change.

Scenario Title
Main Features for Building the Markov Matrix

Period Manual Transformations of Transition Probabilities

Reference (2005–2010) 2005–2010 -
Reference (2010–2015) 2010–2015

Producing land to forest (2005–2010) 2005–2010
The probability of transformation of the following land
into the forest is doubled: arable land, natural grassland

with trees and brush, brush

Producing land to forest (2010–2015) 2010–2015

The probability of transformation of arable land into
cultural grassland and pastures is doubled, and the
remaining natural grassland with trees and brush is

transformed into cultural grassland and pastures

Grassland to forest (2005–2010) 2005–2010 All natural grasslands with trees and shrubs are
transformed into forest land.Grassland to forest (2010–2015) 2010–2015

No grassland to producing land
(2005–2010) 2005–2010 There is no transformation of grassland/pasture land into

producing land, and all other land use changes follow
trends during the reference periodNo grassland to producing land

(2010–2015) 2010–2015

To obtain approximate indications of potential contributions of different land uses on
carbon emission/absorption, we applied average conversion factors for 2015, as used to
prepare the national GHG report from the LULUCF sector [39]; i.e., the following emission
values in tons of CO2 equivalent per ha were used: forest land, 3.93; producing land, 1.43;
grassland, 0.51; wetland, 2.64; and built-up land, 1.6; other land, 6.25.

2.4. Validation Approaches

Approaches originating from remote sensing were used to validate the performance
of land use prediction. Land use types for the year 2015 were predicted on all NFI sample
plots, and the predictions were compared with actual land use types recorded by the
Lithuanian NFI. Error matrices were constructed where the true and predicted land use
types were cross-tabulated. The validation statistics used to evaluate the prediction were
the overall accuracy of prediction and Cohen’s kappa:

Kappa =
Observed accuracy− Expected accuracy

1− Expected accuracy
(1)

Observed accuracy = Overal accuracy =
tp
N

(2)

Expected accuracy =
k

∑
i=1

nti
N
× nci

N
, (3)

where tp refers to the number of samples predicted to be positive that are, in fact, positive,
k refers to the number of classes, nti refers to the number of samples truly in class i, nci refers
to the number of samples assigned to class i, and N refers to the total number of samples.

The interpretation of Cohen’s kappa was as follows: under 0: “poor”; 0–0.2: “slight”;
0.2–0.4: “fair”; 0.4–0.6: “moderate”; 0.6–0.8: “substantial”; 0.8–1.0: “almost perfect” [40].

Land use type–specific prediction performance was evaluated using precision (pro-
ducer’s accuracy), recall (user’s accuracy), and the F-score (the harmonic mean of recall
and precision):

Precision =
tp

tp + f p
(4)
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where fp refers to the number of samples predicted positive that are, in fact, negative;

Recall =
tp

tp + f n
(5)

where fn refers to the number of samples predicted negative that are, in fact, positive;

F-score = 2× Recal × Precision
Recal + Precision

(6)

The Z statistic was used to test whether two prediction error matrices were statistically
different:

Z =
|κ̂ 1 − κ̂ 2|√

var(κ̂ 1) + var(κ̂ 2)
, (7)

where κ̂ 1 and κ̂ 2 are the Cohen’s kappas of compared predictions, and var(κ̂ 1) and
var(κ̂ 2) refer to the variances of the respective matrices. Compared predictions were
treated as statistically differing if Z was more than 1.96 [41].

3. Results
3.1. Calibration and Validation of Land Use Change Models

First, we predicted all land uses in 2015 for all sample points using the input data for
2005–2010 and assuming the Reference scenario. The overall accuracy of prediction was
in the range 82–83% (Table 3). The kappa statistic was 0.76–0.77. It seems that the factor
inclusion strategy in the calculation of transformation potential had no significant effect on
prediction accuracy; the kappa statistics did not differ with statistical significance, with
the highest value of the Z statistic being 0.148 (not presented in Table 3). The prediction
accuracy statistics of the most encountered land use classes are summarized in Figure 4.
The most accurately predicted land cover class is forest land—both the producer’s and
user’s accuracies yielding nearly 99%. The development of built-up areas is also accurately
predicted; the F-score is 96%. It is noteworthy that practically in all cases the producer’s
accuracy (~94.5%) is lower than the user’s accuracy (~97.5%), suggesting that other land
use classes are more often incorrectly predicted to be transformed into built-up land, rather
than vice versa.

The accuracy of predicting the producing land was notably better than that of cultural
grassland/pastures, natural grassland, or natural grassland with trees and brush. On aver-
age, producing land was predicted with 84–87% accuracies, and the producer’s accuracy
was higher than the user’s accuracy. Cultural grasslands/pastures, natural grasslands,
and natural grassland with trees and brush resulted in the lowest prediction accuracies
(if considering the most abundant land uses). Only the prediction accuracy for cultural
grasslands/pastures reached 50%, and the producer’s and user’s accuracies did not differ.
More in-depth analysis of error matrices confirmed that the abovementioned land uses
were mixed with each other during the prediction. Therefore, cultural grasslands/pastures,
natural grassland, and natural grassland with trees and brush are combined into one
class—grassland. Following this combination, the overall classification accuracy increased
by 7–8%, but the increase in kappa was not statistically significant (Table 3). After the
merge, grasslands were predicted with 73–80% accuracy, and the producer’s accuracy was
lower than the user’s accuracy. Land with brush was predicted with ~60% accuracy, but
the area of this type was relatively small.

The modeling exercise was repeated using the assumptions of Scenario 3: no grassland
to producing land (2005–2010). Although the overall prediction accuracy improved by
1–2%, this improvement is not statistically significant. Different scenario conditions had an
impact in predicting the grassland development when using detailed grassland subtypes.
After combining the grassland subtypes, we achieved very similar producer’s and user’s
accuracies, i.e., differing by no more than 1%.
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3.2. Land Use Changes in the Future

Predicted proportions of three major land use types—forest land, producing land, and
grassland—are presented in Figure 5. The proportion of forest land is expected to increase
regardless of the scenario. It should be noted that scenarios involving active efforts to
increase the area of forest land result in larger forest land areas, although never exceeding
37%. Using the land use trends from 2010–2015 to model the transition potential resulted
in larger forest land proportions. The area of producing land is expected to increase only if
using 2005–2010 land use data to model the transition potential. However, if extrapolating
the trends from 2010–2015, the areas of producing land decrease. Manual adjustment of
Markov matrices, aimed to specify additional land use policy measures, resulted in even
fewer areas of producing land, if compared with the Reference scenarios. If the land use
changes during 2010–2015 continue into the future, the proportion of producing land in
Lithuania will be reduced to below 30%. The area proportion of grassland is increased if
considering the trends during 2010–2015 and, vice versa, decreased if using the 2005–2010
period to model the transition potential. The exception was the scenario with no grassland
for producing land, where the grassland decrease stopped by adjusting the Markov matrix.
If the land use change trends during 2010–2015 continue in the near future, the proportion
of grassland will be projected to increase to 23–28%, depending on the scenario. The lowest
grassland proportions were achieved in the scenario of grassland to forest (2005–2010), i.e.,
following the fast decreasing grassland areas from the half decade, since Lithuania joined
the EU and introduced measures for grassland conversion into forest land. It should be
noted that the projected trends of producing land development are inversely followed by
the trends of grassland proportion.

Table 3. Prediction accuracy of all tested land use types.

Strategy of Using
Driver Variables

All Land Use Subtypes Grasslands Merged into One Class
Z StatisticsOverall Prediction

Accuracy Kappa Overall Prediction
Accuracy Kappa

Scenario: Reference

1 81.9 0.76 87.7 0.83 1.296 *

2 82.1 0.76 88.0 0.84 1.310 *

3 82.2 0.76 88.3 0.84 1.361 *

4 82.1 0.76 88.2 0.84 1.369 *

5 82.8 0.77 88.6 0.84 1.295 *

6 81.9 0.76 88.9 0.86 1.783 *

Scenario: No grassland to producing land (2005–2010)

1 82.8 0.77 89.5 0.86 0.268/0.467 **

2 82.9 0.77 89.6 0.86 0.228/0.414 **

3 83.0 0.78 89.8 0.86 0.248/0.394 **

4 82.8 0.77 89.5 0.86 0.235/0.349 **

5 83.1 0.78 89.7 0.86 0.112/0.292 **

6 83.1 0.78 89.8 0.86 0.254/−0.022 **

* all classes vs. grassland in the one-class Reference scenario, ** Reference scenario vs. scenario with no grassland for producing land
(2005–2010) (in the numerator—all land use subtypes; in the denominator—grasslands merged into one class).
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Figure 4. Predicting accuracy of some of the most encountered land uses, achieved using a strategy of driver variable
selection based on optimization.

Figure 5. Projected development of selected land uses in Lithuania, depending on land use change scenarios: (a) forest land,
(b) producing land, and (c) grassland.
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None of the tested scenarios suggested carbon emissions from the LULUCF sector
in Lithuania before 2030 (Figure 6). A larger absorption (up to 33%) was projected when
considering land use changes that took place from 2010 to 2015 in modeling the transition
potential. The largest overall absorption (above 1 ton of CO2 equivalent from 1 ha) was
achieved in the scenario where producing land became forest (2010–2015), i.e., aiming to
maximize producing land conversion into forest land.

Figure 6. Predicted carbon emission and absorption from the land use, land use change and forestry (LULUCF) sector
in Lithuania, depending on scenario: (a) Reference (2005–2010), (b) Reference (2010–2015), (c) producing land to forest
(2005–2010), (d) producing land to forest (2010–2015), (e) grassland to forest (2005–2010), (f) grassland to forest (2010–2015),
(g) no grassland to producing land (2005–2010), and (h) no grassland to producing land (2010–2015). The value shown
below each bar indicates the total carbon sequestration value. Numeric values can be found in Appendix A, Table A3.
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4. Discussion

There are two parts in the discussion that follows. First, we briefly address the choices,
findings, and limitations related to the methodological approaches used to predict the land
use changes. Second, we use our predictions to discuss potential land use development in
Lithuania and the related land use policy implications.

The choice of methodological land use modeling approach was influenced both by
the specificity of the general modeling environment and scientific considerations. First,
the focus has been on the needs for current land use change modeling in Lithuania. We
associate our study with the needs related first to the management of GHG emissions and
absorption in the LULUCF sector. Thus, the input data on land use was based on infor-
mation collected on a network of systematically distributed samples, inheriting differing
estimation accuracies for specific land use types. Similar modeling studies usually focus on
wall-to-wall land covers or land uses, even though they may be of rather coarse resolution,
such as the CORINE database [27]. On the other hand, pointwise land use estimates may
make the availability of information driver variables easier, as we do not necessarily need to
map wall-to-wall all the factors influencing land use development. Moreover, many driver
variables used in the current study are extracted using distance-based, focal, or zonal GIS
analysis. Our approach is to use only publicly available information on driver variables,
usually downloadable from the spatial information portal of Lithuania (www.geoportal.lt)
or freely available from authorized institutions based on license agreements for research
and education use. Unfortunately, we could not acquire data on land ownership, which
use is commercialized using legal regulations. Finally, our methodological approach had
to be compatible with that used by Lithuanian authorities to implement their international
commitments, including the European Union land use, land use change, and forestry
regulation for 2021–2030 [13], that is, we choose a modeling engine that is compatible with
the EFDM, which has been used to calculate the forest reference level for Lithuania and
already used to facilitate forest policy building processes. Last but not least, the exercise
was implemented using standard GIS software packages, including both data engineering
and modeling, i.e., not requiring extra efforts for software development.

The prediction of land cover or land use development in general, and the use of
models of the Markov chain type in particular, has always been a very challenging exercise.
The most difficult task is to evaluate the transition potential from one land use type into
all possible other types. Numerous methodological approaches are reported, such as the
weight of evidence [42], empirical probabilities [43], logistic regression [44], and neural
network modeling [38,45]. Usually, the results achieved using different solutions are rather
different, since studies address very different land use change tasks. Nevertheless, priorities
are given to the use of the MLP algorithm, which is a type of neural network [18]. This
was also used in our study. Two other methods implemented in TerrSet LCM, a similarity
weighted instance-based machine learning algorithm and logistic regression, were rejected
in the initial stages of our study, mainly due to the ability to model only one transition
at a time and because additional complexity in the modeling exercise did not increase
prediction accuracy.

The best prediction accuracies were achieved for land use types that followed linear
development trends in recent decades, i.e., forest and built-up lands. Forest land change
trends were most stable not only during the modeled period but also throughout the entire
accounting period. Afforestation/deforestation is a relatively slow process in Lithuania [46],
strictly regulated from a legal point of view, and therefore potentially the easiest to predict.
Similarly, the development of built-up areas has also been steadily increasing since 1970.
The areas of producing land were increasing in Lithuania since the country joined the EU,
usually at the expense of grassland. Thus, the prediction of producing land and grassland
changes is very important in supporting land use policies, especially for GHG management,
because producing land is associated with carbon emissions, whereas grassland, in contrast,
contributes to the carbon accumulation on average [47]. Usually, the misclassifications
of producing land as grassland and vice versa were the main types of prediction errors,
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e.g., ~16% of producing land points were wrongly predicted as grasslands and ~12% of
grassland points were wrongly predicted as producing land. Identification of grassland
management intensity or differentiating between, e.g., cultural and natural grassland, has
always been a challenging task [48]. Using nomenclature for grassland subtypes that is too
detailed has resulted in lower prediction accuracies because the grassland types are mixed
with each other. Land use type in the Lithuanian inventory system refers to the center point
of the sample plot, so the presence of single trees or brush may also be neglected during
the inventory, unless the land has not yet been converted into forest land. The increase
of forest land is usually very strictly controlled during the inventory, which has always
been first focused on evaluating forest resources and involves precise measurements
of individual trees on 500 m2 circular plots [36]. Thus, we continued without specific
grassland subtypes. No significant differences were found among the results obtained
using different six-factor inclusion strategies for modeling transformation potentials. We
explain this by the performance of the MLP, which is a type of machine learning algorithm.
However, the number of input driver factors is limited in TerrSet LCM. Therefore, it is
suggested that, in the future, the maximum amount of supporting information is collected
and used in modeling the selected driver factors that are most strongly related to the land
use transformations.

All scenarios tested suggested that the LULUCF sector in Lithuania will accumulate
carbon, basically due to carbon accumulation in the forest land. Thus, a further increase
of forest land area is extremely important to further contribute to GHG absorption. Nev-
ertheless, none of the scenarios resulted in a forest land area percentage in the country
exceeding 37% in 2030. According to official forestry statistics, forest land covered 33.7% of
the country’s area in 2019 [49]. Our prediction introduces some questions for official forest
and land use policies in the country. The political objective is set to increase the forest land
area in Lithuania by year 2030 to 23,000 km2, i.e., 35% of the country’s area [50]. Increasing
the forest land area proportion in Lithuania is also among the key objectives of national
forest policy, primarily associated with the management of GHG emission/absorption [51].
Abandoned or unsuitable agriculture lands are usually identified as afforestation targets
in regulations for afforestation and reforestation [52]. In parallel, deforestation is strictly
controlled and legally possible only upon the compensation of expenses for establishing
new forest land [53]. Therefore, our simulations confirmed that the political afforestation
targets can be achieved by 2030. There are no scenarios that suggested forest land reduction,
yielding steadily increasing GHG absorption potential. Even though the GHG accumula-
tion in forest land is increased most by introducing active measures to facilitate producing
land or grassland transformation into forest land, the first tested option (producing land to
forest scenario) most improves the GHG balance from the LULUCF sector.

Assuming that there are limited possibilities to further increase the areas of forest
land or reduce built-up areas and wetlands, the key factor to improve the GHG balance in
the LULUCF sector will be the proportion of producing land and grassland. If land use
management as it was in the period between 2005 and 2010 continues without additional
measures to support specific land use transformation types (Reference 2005–2010 scenario),
the GHG emissions from agricultural land could increase over the next decade from 2020
by ~9.5%. However, if continuing land use management policies as they were after 2010
(Reference 2010–2015 scenario), GHG emissions could decrease by 20–35% compared with
the Reference 2005–2010 scenario, and by 2030 the emissions from agricultural land could
be reduced by 11%. Therefore, we can assume that different suggested development trends
are affected by changes in Lithuanian land management. Historically, several periods
have shaped Lithuanian land management in the last three decades. The largest impact
on the use intensity of agricultural lands could be associated with the agrarian reform
in the country, which started in 1991. This reform resulted in fully changed formats of
agriculture, land management, and land use relationships, and production capacities of
agricultural subjects. The second group of impacts is associated with Lithuania joining
the European Union in 2004 and the availability of EU and national budget resources to
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support agriculture and rural development. The factors influencing land use development
are usually interdependent, and the outcomes of their inter-relationships during specific
periods of socioeconomic development are shaped mainly by political and social factors,
with natural conditions playing only a secondary role. Bearing in mind the time periods
used to build the land use change models in our study, 2005–2010 could have been influ-
enced by agriculture restructuring (which started in 1991–1992), and the next period is
likely associated with the impacts of joining the EU and the state support for agriculture
and rural development.

Additional measures to support specific land use transformation types were intro-
duced in the models by manual adjustment of the Markov matrices. Three types of such
measures are discussed. First, forcing the transformation of producing land into forest was
associated primarily with the strategic forest policy objective to increase the proportion of
forest land area, coupled with current land use management efforts to sustain grassland
areas or at least to prevent their transformation back to producing land. The second type
of measure (grassland to forest) was aimed to increase the forest land area on current grass-
land. It matches the first scenario, however, with no conditions regarding the efforts to
prevent transformations from producing land into grassland. The third type of measure (no
grassland to producing land) was associated with additional efforts to prevent grassland
transformation into producing land only, i.e., leaving out the extra efforts to increase forest
land area. Therefore, if a land use management policy generally follows that in effect from
2005 to 2010, additional measures to support specific land use transformation types will
not result in reducing GHG emissions, either from agricultural land or the entire LULUCF
sector in the decade starting at 2020. Conversely, GHG emissions from agricultural land
are predicted to be reduced in the coming decade if the land use management policy used
from 2010 to 2015 is followed. Introducing extra measures would support the reduction of
GHG emissions from agricultural land. Especially important in this context is the reduction
of producing land by its transformation into forest land (producing land to forest) or
preventing the transformation of grassland into producing land (no grassland to producing
land). The introduction of such measures may reduce GHG emissions in the next decade
by ~16 and 28%, respectively.

Summarizing, in order to improve the GHG balance in the LULUCF sector in Lithuania
over the next decade starting at 2020, the focus in Lithuania should be to increase forest
and grassland areas. This objective is supported by national strategic political documents,
especially those aimed at the effective use of EU support [54–56]. The key contributor
to the total CO2 balance in the LULUCF sector will remain the total forest land area and
the potential to increase it in the future. Thus, the EU contribution should be targeted
to support the establishment of new forests, assuming that backward processes remain
under strict legal restraint. The common agricultural policy (CAP) of the EU should further
focus on green direct payment, especially maintaining permanent grassland, which not
only supports carbon sequestration but also contributes to the protection of biodiversity
(Regulation (EU) No. 1307/2013). In parallel, Lithuania should continue to maintain its
permanent grassland [55].

5. Conclusions

The prediction accuracy of land use types directly related to GHG accounting and
emission/absorption management in the LULUCF sector in Lithuania was above 80% over
a five-year period into the future. Land use types whose abundance changed relatively
linearly during the last three decades—forest and built-up lands—were predicted with
accuracies of 96% and above. The most challenging was the prediction of land use types
on agricultural land, i.e., the separation between producing land and grassland. These
results were obtained using a compatible methodological approach based on a Markov
chain-type model as used by Lithuanian authorities to estimate forest reference levels
for the country following the European Union land use, land use change, and forestry
regulation for 2021–2030. It should be emphasized that driver variables affecting land
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use transformation over time were estimated from information freely available from GIS
databases, as the modeling exercise was implemented using standard GIS software.

All scenarios tested suggested that the LULUCF sector in Lithuania would accumulate
carbon during the next decade, starting in 2020. The main land use type contributing to
the most carbon absorption will remain forest land. Even though the proportion of forest
land area in Lithuania is predicted to increase, we did not manage to simulate forest land
proportions exceeding 37% of the country’s area by either applying land use management
approaches as they were applied since 2005 or by introducing additional measures to
support forest land expansion. The key factors to improve the GHG balance from the
LULUCF sector in the near future, assuming a stable development of forest land and strict
deforestation control, are keeping the proportion of producing land and grassland and
afforestation of abandoned and uncultivated agricultural lands.

To facilitate CO2 emission/absorption management in the LULUCF sector together
with increasing socioeconomic and environmental benefits of Lithuanian rural landscapes,
more sophisticated tools to support the monitoring, analysis, and modeling of land-related
mitigation activities are needed. Lithuania has developed an original land use monitoring
system that is used for GHG reporting, which, up to some level, predetermines land
use development projections. However, even though the system is sufficient to fulfil the
country’s international climate change mitigation commitments, it encompasses a number
of limitations in both substantiating the methodology and the way it is operationally
implemented. Further research is needed to improve the methodological framework for
integrated land management, which can make use of the digital technologies for inventory
and decision support to serve the needs of managers and policy makers with a specific
focus on GHG management. More specifically, wall-to-wall mapped land use and land use
changes would provide better inputs for land use development scenario modeling using
the methodological approach tested in this study. The development of spatially explicit
land use change scenario modeling and analysis tools could focus on the use of cellular
automata and agent-based modeling approaches.
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Appendix A

Table A1. List of land use subtypes.

Land Use Subtype Area Proportion in 2015 *

Forest land 33.78

Arable (producing) land 32.49

Cultural meadows and pastures 11.44

Natural grassland 5.16

Natural grassland covered by trees and brush 5.06

Cities, settlements and homesteads 3.84

Natural lakes and rivers 3.02

Roads and railways 1.35

Brush 0.95

Land reclamation ditches 0.87

Wetlands covered by trees and brush 0.64

Wetlands 0.34

Peat bogs 0.34

Orchards 0.15

Other built-up land 0.15

Routes and electricity lines 0.10

Queries 0.10

Berry fields 0.08

Other other land use 0.07

Other meadows and pastures 0.02

Other waters and wetlands 0.02

Short rotation plantations, willow plantations 0.02

Other producing land 0.02

Stony land 0.01

* based on the validation data set.
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Table A2. List of explanatory variables tested to predict the land use transition potential.

Description of the Variable Source Database

Distance based variables

Distance to the nearest agricultural block in KŽS. If the distance equals 0, then the plot is
located in agricultural block

KŽS

Distance to the nearest built-up block in KŽS. If the distance equals 0, then the plot is
located in built-up block

Distance to the nearest miscellaneous block in KŽS (basically, forest). If the distance equals
0, then the plot is located in miscellaneous block

Distance to the nearest road block in KŽS. If the distance equals 0, then the plot is located on
the road

Distance to the nearest block around linear hydrographic object in KŽS. If the distance
equals 0, then the plot is located on the linear hydrographic object

Distance to the nearest block around areal hydrographic object in KŽS. If the distance equals
0, then the plot is located on areal hydrographic object

Area proportion-based variables

Proportion of agricultural land in the zone around the NFI sample plot

Proportion of built-up land in the zone around the NFI sample plot

KŽS

Proportion of miscellaneous land (basically, forest) in the zone around the NFI sample plot

Proportion of land associated with the road blocks in the zone around the NFI sample plot

Proportion of land associated with the blocks around linear hydrographic object in KŽS in
the zone around the NFI sample plot

Proportion of land associated with areal hydrographic object in KŽS in the zone around the
NFI sample plot

Proportion of land associated with the miscellaneous blocks with dominance of land not
used for agriculture in KŽS in the zone around the NFI sample plot (for the period after
2010 only)

Proportion of protected areas in the zone around the NFI sample plot

SŽNS_DR10LTProportion of nature heritage areas in the zone around the NFI sample plot

Proportion of protective zones in the zone around the NFI sample plot

Proportion of abandoned agricultural land in the zone around the NFI sample plot AZ_DRLT

Variables available from land declaration data

Proportion of producing land in the zone around the NFI sample plot

Spatial data set on the farmland,
cropland and crop types

Proportion of berry-field land in the zone around the NFI sample plot

Proportion of orchard land in the zone around the NFI sample plot

Proportion of other producing land in the zone around the NFI sample plot

Proportion of forest land in the zone around the NFI sample plot

Proportion of pastures and meadows in the zone around the NFI sample plot

Proportion of natural grassland in the zone around the NFI sample plot

Proportion of other pastures and meadows in the zone around the NFI sample plot

Proportion of waters and wetlands in the zone around the NFI sample plot

Other variables

Average soil productivity grade in the zone around the NFI sample plot Dirv_DR10LT

Population density in 1 km2 cell, the NFI sample plot belongs to Population and housing census 2011
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Table A3. Predicted carbon emission and absorption from the LULUCF sector in Lithuania, depending on scenario (numeric
values used to build Figure 6, in t CO2 eq./ha).

Land Use Type
Prediction Years

2020 2025 2030 2020 2025 2030

Reference (2005–2010) Reference (2010–2015)

Forest land −1.331 −1.343 −1.355 −1.351 −1.378 −1.406

Producing land 0.519 0.535 0.546 0.460 0.468 0.428

Grassland −0.098 −0.090 −0.085 −0.117 −0.112 −0.123

Wetland 0.139 0.139 0.139 0.138 0.134 0.138

Built-up land 0.084 0.084 0.084 0.083 0.080 0.077

Other land 0.013 0.013 0.013 0.011 0.011 0.011

GHG balance in LULUCF sector −0.674 −0.662 −0.658 −0.775 −0.795 −0.874

GHG balance in agricultural land 0.421 0.445 0.461 0.343 0.357 0.305

Producing land to forest (2005–2010) Producing land to forest (2010–2015)

Forest land −1.345 −1.372 −1.392 −1.458 −1.419 −1.449

Producing land 0.451 0.479 0.480 0.393 0.393 0.369

Grassland −0.120 −0.107 −0.103 −0.128 −0.136 −0.140

Wetland 0.139 0.139 0.139 0.138 0.138 0.138

Built-up land 0.084 0.084 0.084 0.078 0.070 0.071

Other land 0.013 0.013 0.013 0.011 0.011 0.011

GHG balance in LULUCF sector −0.778 −0.764 −0.780 −0.966 −0.943 −1.001

GHG balance in agricultural land 0.331 0.372 0.377 0.265 0.257 0.228

Grassland to forest (2005–2010) Grassland to forest (2010–2015)

Forest land −1.380 −1.388 −1.395 −1.424 −1.436 −1.452

Producing land 0.519 0.535 0.546 0.460 0.444 0.428

Grassland −0.091 −0.084 −0.080 −0.112 −0.116 −0.119

Wetland 0.139 0.139 0.139 0.138 0.138 0.138

Built-up land 0.084 0.084 0.084 0.067 0.069 0.071

Other land 0.013 0.013 0.013 0.011 0.011 0.011

GHG balance in LULUCF sector −0.717 −0.701 −0.693 −0.860 −0.889 −0.923

GHG balance in agricultural land 0.427 0.451 0.466 0.348 0.329 0.309

No grassland to producing land (2005–2010) No grassland to producing land (2010–2015)

Forest land −1.331 −1.343 −1.355 −1.351 −1.377 −1.412

Producing land 0.418 0.407 0.399 0.428 0.399 0.376

Grassland −0.134 −0.136 −0.137 −0.128 −0.136 −0.141

Wetland 0.139 0.139 0.139 0.138 0.138 0.134

Built-up land 0.084 0.084 0.084 0.083 0.080 0.077

Other land 0.013 0.013 0.013 0.011 0.011 0.011

GHG balance in LULUCF sector −0.811 −0.837 −0.858 −0.818 −0.884 −0.955

GHG balance in agricultural land 0.285 0.271 0.261 0.300 0.263 0.235
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Ulevičius, V.; et al. Spatial pattern of climate change effects on Lithuanian forestry. Forests 2019, 10, 809. [CrossRef]

33. Packalen, T.; Sallnäs, O.; Sirkiä, S.; Korhonen, K.; Salminen, O.; Vidal, C.; Robert, N.; Colin, A.; Belouard, T.; Schadauer, K.; et al.
The European Forestry Dynamics Model: Concept, Design and Results of First Case Studies; EUR 27004; Publications Office of the
European Union: Luxembourg, 2014. [CrossRef]
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Parengimas: Galutinė Ataskaita; Lietuvos Energetikos Institutas: Kaunas, Lithuania, 2016.

35. Juknelienė, D.; Valčiukienė, J.; Atkocevičienė, V. Assessment of regulation of legal relations of territorial planning: A case study in
Lithuania. Land Use Policy 2017, 67, 65–72. [CrossRef]
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