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Abstract: Land surface temperature (LST) and air temperature (Tair) have been commonly used
to analyze urban heat island (UHI) effects throughout the world, with noted variations based on
vegetation distribution. This research has compared time series LST data acquired from the Moderate
Resolution Imaging Spectroradiometer (MODIS) platforms, Landsat 7 Enhanced Thematic Mapper
(ETM+) and Tair from weather stations in the Southern Ontario area. The influence of the spatial
resolution, land cover, vegetated surfaces, and seasonality on the relationship between LST and in
situ Tair were examined. The objective is to identify spatial and seasonal differences amongst these
different spatial resolution LST products and Tair, along with the causes for variations at a localized
scale. Results show that MODIS LST from Terra had stronger relationships with Landsat 7 LST than
those from Aqua. Tair demonstrated weaker correlations with Landsat LST than with MODIS LST
in sparsely vegetated and urban areas during the summer. Due to the winter’s ability to smooth
heterogenous surfaces, both LST and Tair showed stronger relationships in winter than summer over
every land cover, except with coarse spatial resolutions on forested surfaces.

Keywords: land surface temperature; Landsat 7 Enhanced Thematic Mapper; MODIS; air tempera-
ture; Southern Ontario; land cover; seasonality; scale

1. Introduction

Land surface temperature (LST) and air temperature (Tair) are useful for assessing and
mapping earth surface and near-surface thermal conditions using information related to
sensible and latent heat fluxes [1]. In urban environments, increased impervious surfaces,
reduced vegetated areas with canopy cover, and atmospheric pollution affect the local
LST and Tair [2]. As a result, heat absorption from numerous types of urban surfaces and
anthropogenic activities lead to urban heat island (UHI) effects with rising LST and Tair [3].
Therefore, examining the temporal and spatial changes of LST and Tair is commonly used
to study the impact and footprint of UHI caused by urbanization [4–6].

Tair is often measured through weather stations. Canopy cover, wind, humidity,
and other atmospheric properties affect the local Tair at each station, and vegetated land
cover distributions influence Tair with its microclimatic effects, along with rapid cool and
warm air advections [7]. Although Tair measured at sparse weather stations often has high
accuracy and temporal frequencies, its application in assessing UHI is dependent upon
its location and the surrounding surface characteristics. For example, measuring Tair at
airport locations found no evidence of correlation with population accumulation [8], while
using in situ stations located within urban centers provides contrasting results [9].

Satellite-based LST provides comprehensive earth surface temperature data at differ-
ent spatial resolutions, with different temporal resolutions. Comparing with ground-based
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Tair, satellite-based LST has the advantage of detailed spatial coverage, although its tempo-
ral resolution is often limited. For example, the most commonly used Moderate Resolution
Imaging Spectroradiometer (MODIS) LST data often have a coarse spatial resolution of 1
km with daily overpass frequency, which would reveal intra-annual dynamics and overall
patterns throughout large areas [10]. However, its coarse spatial resolution often results in
mixed pixels, containing more than one land cover in heterogenous landscapes [11,12]. Al-
ternatively, finer spatial resolution sensors, such as Landsat 7 Enhanced Thematic Mapper
(ETM+), have the ability to resolve complex land cover patterns, reduce mixed pixels, add
surface detail, and validate coarse resolution maps [13]. Although many satellite-based LST
products are available, there seems to be few direct comparisons of different LST products
at local regional levels.

Previous studies have compared ground-measured Tair with satellite-based LST at
global and continental scales [14–16]. By comparing the LST from MODIS, AVHRR,
and (A)ATSR, researchers have found that MODIS LST has the highest agreement with
Tair [15,17,18]. Vegetation, land cover, terrain, and seasonality would impact the correlation
between MODIS LST and Tair [15,16,19–21]. However, most of those studies are based
on MODIS or similar coarse resolution-based LST products, not on fine-resolution LST
products such as Landsat ETM+, especially at the local scale. Limited studies have been
conducted to investigate the relationship between surface temperature from Landsat TM
and Tair during winter nights [22]. In UHI studies, the sparse Tair measures from limited
weather stations cannot provide the detailed spatial variation and change of urban thermal
surface. Therefore, fine-resolution LST products would provide an additional dimension
for understanding the temperature variability in an urban setting. In addition, the recent
availability of using Google Earth Engine (GEE) to simplify methods of obtaining LST from
Landsat imagery makes an extensive LST comparison acquired at different scales easily
accessible.

This study is intended to compare LST products derived from Landsat 7 and MODIS
and examine the impact of seasonality and land cover on the relationship between LST
and Tair at a local scale. The key questions addressed in this study are: (1) What is the
difference between LST data derived from MODIS at 1 km resolution and Landsat 7 ETM+
at 30 m resolution? (2) How does the seasonality, land cover, and spatial resolution impact
the relationship between satellite-derived LST and Tair at a local scale?

2. Materials and Methods
2.1. Study Area

Milton, Ontario, Canada, is used as the central point to determine the study area.
Milton is the fastest-growing community in Ontario, and the sixth overall throughout
Canada amongst the most rapidly urbanizing communities nationwide. To study the
relationship of satellite-based LST and Tair, we need to collect ground air temperature data
from weather stations. To maximize availability of in situ data from weather stations near
GTA and its surrounding area, a 100 km buffer around its urban core was used as the study
area, as shown in Figure 1. There are 46 weather stations located in the study area (marked
in red dots in Figure 1) and included in the analysis.

The area has a population greater than 7 million people, representative of the most
populated area in Canada. It has a humid continental climate with short spring and autumn
seasons. The annual average temperature of the region is around 9 ◦C, and the annual
average precipitation is around 830 mm. Precipitation in all months is quite consistent,
with mainly snow during the winter. The average minimum temperatures in December
January, February, and March are below zero, with the average minimum temperature of
around −7 ◦C in January and February. From the end of March, the temperature rises, and
usually reaches to the average maximum temperatures of 24 ◦C, 27 ◦C, and 26 ◦C in June,
July, and August, and then declines. Average maximum temperatures in the summer can
range from 23 ◦C to 31 ◦C, with moderate to high humidity due to the lake effect. Snow
can fall in early spring or late fall, but usually melts quickly in spring and fall.
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Figure 1. The locations of the study area and all the weather stations used in this study. The area in
green represents the 100 km buffer around Milton, encompassing the populated Southern Ontario
region. Milton is located at 79.9◦ W, 43.5◦ N.

2.2. In Situ Meteorological Data

Hourly Tair data was acquired from the Climate Services department of the Govern-
ment of Canada’s Ministry of Environment and Climate Change. The metadata for each
weather station, such as the geographical coordinates, instrument parameters, and station
ID, were also obtained. In order to maximize the database, all stations within the study
area, including the ones which were only temporarily operational and contain data gaps,
are included.

For use in a daytime comparison with LST products, the data collected at the nearest
hour to the time of acquisition for all products from each satellite platform was used. The
LST data derived from Landsat 7 ETM+ products within the area were all obtained within
twenty minutes of 16:00. The fluctuations with the overpass time of each of the MODIS
platforms results in far more complex comparisons. Both satellites capture daily data
throughout a 2.5 h overpass window over the Milton area. In order to present data at the
nearest hour to the overpass time of each satellite, the MODIS Terra data is compared with
the 10:00, 11:00, and 12:00 Tair measurements, while the Aqua data is compared to the 12:00,
13:00, and 14:00 data. In addition, due to the processing employed to derive the level 2
MODIS LST data, both platforms are also compared with the daily average and maximum
Tair data.

2.3. Land Cover Data

Raster and vector land cover maps were provided by the Southern Ontario Land
Resource Information System (SOLRIS). An accuracy assessment conducted in the same
area as this analysis has an overall accuracy of 93%, captured by fuzzy error assessment
results [23]. The version 3.0 SOLRIS package includes a raster dataset (with all of the land
cover designations), a vector land cover changes dataset, and a land cover class corrections
dataset (including class updates, accuracy assessment results, and transformations) with a
15 m spatial resolution [24].

Simplified land cover classifications are used to reduce the quantity of different land
covers to five categories (Forested, Wetland, Lakeside, Agricultural, and Urban) (Table 1).
‘Wetland’ refers to any surface where the water table is either seasonally or permanently
at, near, or above the substrate surface [24]. Any weather station adjacent to a large water
body is classified as “lakeside”. Table 1 displays how the classifications are simplified into
five main land cover categories.
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Table 1. The reclassification of all land covers into five manageable categories. Any station located in proximity to an open
water land cover is reclassified as a lakeside station regardless of the dominant land cover within 100 m.

Agricultural Urban Lakeside Forested Wetlands

Plantations-Tree Cultivated Transportation Open Water Forest Treed Swamp
Hedge Rows Built-Up Area-Pervious Coniferous Forest Thicket Swamp

Tilled Built-Up Area-Impervious Mixed Forest Marsh
Undifferentiated (orchards,
vineyards, perennial crops,

and idle land) Extraction

2.4. Remote Sensing Data

Imagery was collected from MODIS and Landsat TM sensors with different spatial
and temporal resolutions, obtainable product levels, and processing requirements. Both
remote sensing products use similar variables related to Tair, such as albedo, LST, and
normalized difference vegetation index (NDVI) [25].

2.4.1. MODIS LST

Selection of MODIS as coarse resolution sensors for the comparison is based on data
availability, product accuracy, and an established foundation of land cover analysis reports.
Consisting of two platforms launched in a similar time period as Landsat 7 ETM+ (although
the Aqua platform was released in 2002), MODIS products can provide high accurate LST
data, with spatial representativeness being a limiting factor [14,15,26–28].

MOD11A1 and MYD11A1 are level 3 LST products from the MODIS Terra and Aqua
platforms on a 1200 × 1200 pixel grid, with an exact spatial resolution of 0.928 × 0.928 km in
the Sinusoidal projection. LST pixel values are generated using the split-window algorithm
(SWA) with clear-sky conditions and are averaged in areas with overlapping pixels with
overlapping areas of weight [29]. Its advertised one-day temporal resolution is optimistic
based on the availability of clear-sky distribution. Since the thermal infrared (TIR) bands
on the MODIS sensors are unable to penetrate clouds, any pixel experiencing cloudy
interference must be skipped [30].

Both satellite platforms operate on a sun-synchronous orbit [15]. Based on the esti-
mates provided by the NASA LaRC Satellite Overpass Predictor (https://cloudsway2.larc.
nasa.gov/cgi-bin/predict/predict.cgi, accessed in 30 August 2020), the overpass times at
the selected location for the Terra platform range between 10:00 and 12:30 and 12:00 to
14:30 for Aqua in the local Eastern Standard Time.

2.4.2. Landsat 7-Derived LST

Landsat 7 ETM+ was the ideal choice for finer resolution LST data. It is a major
leap forward from its predecessors, with multispectral spatial resolutions ranging from its
15 m panchromatic band to the 60 m TIR band [31]. Reference [1] presents an innovative
method using the Statistical Mono-Window Algorithm (SMW) in Google Earth Engine to
simplify the calculations needed to derive LST by reducing the amplitude of data required
for time series analyses. Access to the algorithm is simply introduced through the use of
the JavaScript function “require( . . . )”, thus eliminating the necessity to download bulk
quantities of data. To retain data consistency, no interpolation was performed following
the failure of the Landsat 7 scan line corrector, resulting in pixilation loss.

To access LST, the surface reflectance is calculated from the radiative transfer for
atmospheric data using the Landsat Ecosystem Disturbance Adaptive Processing Sys-
tem Algorithm [1]. A cloud mask is applied to eliminate interference. Data from the
Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Emissivity
Dataset (ASTER) is spectrally adjusted and modified accounting for phenology and snow
coverage using shortwave infrared Landsat data [32]. The SMW algorithm used within
the [1] code presents two options for achieving LST, the direct application of instantaneous

https://cloudsway2.larc.nasa.gov/cgi-bin/predict/predict.cgi
https://cloudsway2.larc.nasa.gov/cgi-bin/predict/predict.cgi
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ASTER emissivity corrected values or the inclusion of NDVI-based corrections. With the
latter option, the coarse TIR band can be resampled with an enhanced spatial resolution
from NDVI and surface emissivity to generate LST [33]. For the purposes of understanding
the influence which NDVI has upon LST, both methods are implemented.

2.5. Analysis Methods

The first step involves the data extraction from all meteorological stations collecting
hourly data within the study area, from 1 January 2000 to 31 December 2019. From each
station, all 16:00 data was used for comparison with the Landsat 7 ETM+-derived LST data.
Since the time of the data acquired from both MODIS platforms ranges from 10:00 to 14:30,
every hour’s temperature recordings within the range are used, relative to its corresponding
satellite. The daily mean and maximum Tair measurements are also incorporated due to the
SWA processing techniques for acquiring LST. A 100 m buffer is implemented surrounding
each weather station to determine the dominant land cover from SOLRIS data. All stations
classified under each surface type are grouped together.

Based on the provided longitude and latitude data from each weather station, all
MODIS (Terra and Aqua) and Landsat 7 LST data are extracted for the time series anal-
ysis. Among all the Tair and LST data extracted, only the data that exists when in situ
measurements and remote sensing data were simultaneously collected are utilized for com-
parison. The quantity of Tair and LST observations pairs within each analysis is included
in Tables 3–7.

To better compare the satellite-based LST and Tair, each year is divided into two
parts, representing the changing land surface distribution amongst seasons (summer and
winter). Rather than utilizing the four traditional seasons, each year only uses two to
describe the changing land surface characteristics due to the short spring and fall seasons.
The warmer portion of the year, referred to as “summer” (days 100–290), ranges from
mid-spring (April 9/10) to mid-autumn (October 16/17), and the colder portion (named
“winter” in reference to days 1–99 and 291–366) indicates the rest of the year. The summer
content is largely unaffected by snow or ice coverage and is representative of vegetation
growth and increased solar radiation, as opposed to the winter.

Linear regression analyses are conducted based on geographical variables land cover
type for summer and winter days and performed through R. The results are compared
using R2 values, root-mean square error (RMSE), bias, and the number of observations. All
remote sensing data are acquired and processed in Google Earth Engine.

An additional comparison between satellites excludes Tair measurements. Several
large areas with land cover consistently within each category are selected and aggregated.
Within each land cover designation, 70 points are randomly selected accessing the mean
temperature within a 50 m homogenous buffer. The mean LST measurements from each
category and platform are compared to determine the quantity and quality of the variations
of data.

3. Results

As a result of the vastly different temporal resolutions amongst the remote sensing
platforms, there is far less Tair data to compare with the Landsat 7 LST. The validity of all
analyses is based on p-values and the R2 values, which measure the quantity of variance in
the dependent variable explained through the independent variable [34]. All regression
results from these analyses produced statistically significant p-values, with a few exceptions
(all of which are related to the small quantity of LST data to compare with wetlands Tair
measurements due to the limited quantity of stations on or near wetlands). In addition,
the RMSE and bias were included to further understand the distribution of residuals and
real values [25]. The bias refers to subtracting the LST by Tair, or in the Landsat 7/MODIS
comparison, MODIS LST minus Landsat 7 LST.

Table 2 summarizes the regression analysis results based on all pairs in winter days
and summer days. In general, there are higher R2 values in the winter days compared
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with the corresponding values in summer days, indicating a stronger relationship in all
comparisons in winter than in the summer. The correlations are slightly higher between
Tair and Terra LST than Aqua LST, although this difference is not significant at all. The
slight difference in correlations during the different time is not significant, indicating the
similar trend of different temperature measurements when compared with LST. LST from
Terra with Tair recorded at 12:00 provides the strongest overall relationship with either
of the MODIS missions, with an R2 value of 0.79. The Landsat 7 NDVI-derived LST’s
relationship with Tair is a marginal improvement, with RMSE of 4.16 and an R2 value of
0.81, slightly higher than ASTER-derived data. In contrast, the summer data in Table 2
correlations are far less robust. Comparisons with MODIS data have R2 values as high as
0.45, while the Landsat 7 LST overall data comparison is slightly weaker, with R2 values
of 0.35.

Amongst the two Landsat 7 LST datasets, the results are very similar. NDVI corrections
produce marginally improved R2 and RMSE values; however, the bias is weaker.

Table 2. The results from regression analyses for both MODIS Aqua and Terra and Landsat 7 for winter days (Days 1–99
and 291–366) and summer days (Days 100–290) of every year between 2000 and 2019. The Tair relationships with the best R2

results are included. All p-values are <0.001.

Winter Days Summer Days

Regression Variables R2 RMSE Bias R2 RMSE Bias

12:00 Air Temperature and Aqua LST 0.74 4.64 3.17 0.38 5.28 6.08
13:00 Air Temperature and Aqua LST 0.75 4.61 2.58 0.38 5.29 5.49
14:00 Air Temperature and Aqua LST 0.75 4.57 2.22 0.38 5.26 5.12

Daily Mean Air Temperature and Aqua LST 0.72 4.85 5.58 0.41 5.16 9.68
Daily Maximum Air Temperature and Aqua LST 0.74 4.69 1.27 0.40 5.19 4.28

10:00 Air Temperature and Terra LST 0.78 4.38 3.60 0.44 4.68 6.14
11:00 Air Temperature and Terra LST 0.79 4.29 2.53 0.44 4.70 5.18
12:00 Air Temperature and Terra LST 0.79 4.27 1.74 0.43 4.71 4.45

Daily Mean Air Temperature and Terra LST 0.76 4.54 4.14 0.45 4.64 8.17
Daily Maximum Air Temperature and Terra LST 0.77 4.43 −0.11 0.45 4.64 2.73
16:00 Air Temperature and Landsat 7 NDVI LST 0.81 4.16 2.48 0.35 6.14 5.28

16:00 Air Temperature and Landsat 7 ASTER LST 0.78 4.50 1.68 0.35 6.34 4.59

Tables 3–7 list the R2 values, RMSE, and biases from regression analysis between
LSTs and Tair for stations located in five land cover types respectively, along with the
number of pairs used in the analysis. The summer and winter analyses developed differing
conclusions regarding the land cover in which strongest relationships between LST and
Tair exist. In the summer, the wetland surfaces had the most robust correlations, with
MODIS at R2 values as high as 0.69 (Terra and the daily maximum Tair) and the smallest
RMSE. Meanwhile, both Landsat 7 LST measurements failed to collect enough data from
stations located near wetlands. With the other land covers, R2 and RMSE results between
fine-resolution LST data and Tair were only slightly weaker than MODIS relationships with
forested and lakeside stations compared to larger deviations with agriculture and urban.

With the winter comparisons, Landsat 7 LST showed stronger correlation with Tair
than MODIS LSTs; however, they are only marginally better in agricultural and urban
areas. Forested weather stations’ data during the cold season exhibit the largest deviation
in variance explained through Landsat 7 LST (R2 values of 0.67 without NDVI) over the
highest MODIS R2 values of 0.50. All other land covers yield similar comparisons, with
slight improvements when NDVI corrections are applied to calculate LST.

The number of observations with Landsat 7 is a continuous issue throughout the anal-
ysis. Wetlands results with Landsat 7 are insufficient throughout both seasons. Although
conclusions can be drawn with forested land covers, the quantity of winter observations
limits the validity.
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With the scaled LST analysis excluding Tair, the relationships are marginally stronger
with the MODIS Terra platform and Landsat 7 with NDVI across both seasons and ev-
ery land cover. Much like the Tair comparisons, the winter has significantly stronger
correlations, with the only exception being open water land covers.

Winter results in Tables 3–7 show that fine-resolution LST with NDVI corrections and
coarse resolution data from MODIS Terra have the strongest relationship based on every
conducted measurement. For summer results, Landsat 7 LST using NDVI has an improved
relationship, with R2 values ranging from 0.74 to 0.91, with Terra. Relationships over water
bodies provided the strongest summer R2 and RMSE (0.91 and 1.98, respectively) results
between Landsat 7 and the Terra sensor.

Table 3. Detailed results from regression analyses conducted using both MODIS satellites and Landsat 7 against air
temperature based on agricultural in situ stations. All p-values are <0.001.

Summer Days Winter Days

Regression Variables R2 RMSE Bias N R2 RMSE Bias N

12:00 Tair and Aqua LST 0.42 4.86 7.38 6741 0.80 4.56 3.30 2746
13:00 Tair and Aqua LST 0.42 4.86 6.78 6738 0.80 4.51 2.68 2747
14:00 Tair and Aqua LST 0.43 4.83 6.39 6741 0.80 4.47 2.30 2744

Daily Mean Tair and Aqua LST 0.47 4.66 11.46 6782 0.78 4.67 5.92 2773
Daily Maximum Tair and Aqua LST 0.45 4.73 5.68 6782 0.79 4.59 1.42 2773

10:00 Tair and Terra LST 0.50 4.14 7.41 7663 0.82 4.21 3.72 3425
11:00 Tair and Terra LST 0.49 4.19 6.38 7671 0.83 4.13 2.59 3433
12:00 Tair and Terra LST 0.48 4.22 5.60 7658 0.83 4.14 1.78 3446

Daily Mean Tair and Terra LST 0.52 4.06 9.83 7713 0.81 4.33 4.38 3471
Daily Maximum Tair and Terra LST 0.51 4.12 3.97 7713 0.81 4.37 −0.09 3472
16:00 Tair and Landsat 7 NDVI LST 0.37 5.90 6.90 193 0.85 3.77 2.65 96

16:00 Tair and Landsat 7 ASTER LST 0.36 6.29 6.03 232 0.82 4.29 1.88 130

Table 4. Detailed results from regression analyses conducted using both MODIS satellites and Landsat 7 against air
temperature based on urban in situ stations. All p-values are <0.001.

Summer Days Winter Days

Regression Variables R2 RMSE Bias N R2 RMSE Bias # N

12:00 Tair and Aqua LST 0.53 4.27 5.50 11,738 0.79 4.11 3.46 5025
13:00 Tair and Aqua LST 0.53 4.27 4.91 11,741 0.79 4.06 2.82 5042
14:00 Tair and Aqua LST 0.54 4.24 4.52 11,733 0.80 4.00 2.47 5036

Daily Mean Tair and Aqua LST 0.56 4.14 9.35 11,982 0.76 4.37 6.00 5166
Daily Maximum Tair and Aqua LST 0.54 4.20 3.82 11,982 0.78 4.16 1.61 5166

10:00 Tair and Terra LST 0.58 3.84 5.88 13,033 0.81 3.99 3.91 5945
11:00 Tair and Terra LST 0.58 3.83 4.84 13,058 0.82 3.89 2.78 5958
12:00 Tair and Terra LST 0.58 3.83 4.07 13,074 0.82 3.85 1.92 5952

Daily Mean Tair and Terra LST 0.58 3.85 8.06 13,343 0.79 4.18 4.48 6126
Daily Maximum Tair and Terra LST 0.59 3.82 2.49 13,343 0.81 3.99 0.15 6126
16:00 Tair and Landsat 7 NDVI LST 0.46 5.23 5.81 469 0.84 3.79 3.10 188

16:00 Tair and Landsat 7 ASTER LST 0.44 5.64 5.03 569 0.81 4.17 2.37 277
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Table 5. Detailed results from regression analyses conducted using both MODIS satellites and Landsat 7 against air
temperature based on lakeside in situ stations. All p-values are <0.001.

Summer Days Winter Days

Regression Variables R2 RMSE Bias N R2 RMSE Bias N

12:00 Tair and Aqua LST 0.39 4.91 8.51 4789 0.68 5.47 3.39 1964
13:00 Tair and Aqua LST 0.39 4.92 8.02 4797 0.68 5.48 2.94 1966
14:00 Tair and Aqua LST 0.39 4.92 7.60 4792 0.68 5.49 2.59 1962

Daily Mean Tair and Aqua LST 0.32 5.18 10.38 4831 0.64 5.77 4.71 1989
Daily Maximum Tair and Aqua LST 0.39 4.89 6.16 4831 0.67 5.56 1.16 1989

10:00 Tair and Terra LST 0.45 4.33 7.69 5511 0.72 5.01 3.27 2474
11:00 Tair and Terra LST 0.44 4.34 7.06 5517 0.73 4.94 2.51 2479
12:00 Tair and Terra LST 0.43 4.37 6.52 5513 0.73 4.93 1.92 2477

Daily Mean Tair and Terra LST 0.38 4.57 8.38 5572 0.69 5.22 3.25 2504
Daily Maximum Tair and Terra LST 0.44 4.35 4.18 5572 0.72 5.07 −0.26 2504
16:00 Tair and Landsat 7 NDVI LST 0.32 5.24 6.19 204 0.75 4.73 1.64 90

16:00 Tair and Landsat 7 ASTER LST 0.37 5.30 5.55 256 0.74 4.94 0.38 130

Table 6. Detailed results from regression analyses conducted using both MODIS satellites and Landsat 7 against air
temperature based on forested in situ stations. All p-values are < 0.001.

Summer Days Winter Days

Regression Variables R2 RMSE Bias N R2 RMSE Bias N

12:00 Tair and Aqua LST 0.53 3.87 −3.72 1695 0.48 3.24 0.87 883
13:00 Tair and Aqua LST 0.53 3.90 −4.24 1698 0.48 3.24 0.37 882
14:00 Tair and Aqua LST 0.52 3.93 −4.47 1698 0.47 3.27 0.10 884

Daily Mean Tair and Aqua LST 0.51 3.97 0.77 1708 0.47 3.30 3.99 891
Daily Maximum Tair and Aqua LST 0.50 3.99 −5.21 1708 0.46 3.31 −0.63 891

10:00 Tair and Terra LST 0.53 3.87 −2.93 1903 0.49 3.31 2.29 977
11:00 Tair and Terra LST 0.52 3.93 −3.89 1908 0.49 3.29 1.19 980
12:00 Tair and Terra LST 0.52 3.93 −4.56 1908 0.50 3.30 0.47 980

Daily Mean Tair and Terra LST 0.50 4.01 0.07 1920 0.49 3.38 3.66 990
Daily Maximum Tair and Terra LST 0.49 4.03 −5.96 1920 0.48 3.39 −0.97 990
16:00 Tair and Landsat 7 NDVI LST 0.47 4.82 −4.79 74 0.59 3.60 0.33 23

16:00 Tair and Landsat 7 ASTER LST 0.38 5.40 −5.17 85 0.67 3.77 0.38 34

Table 7. Detailed results from regression analyses conducted using both MODIS satellites and Landsat 7 against air
temperature based on wetland in situ stations. All MODIS p-values are <0.001 (with Landsat 7, it is NA).

Summer (Days 100–290) Winter (Days 1–99 and 291–366)

Regression Variables R2 RMSE Bias N R2 RMSE Bias N

12:00 Tair and Aqua LST 0.63 3.99 8.81 1041 0.88 3.45 2.78 458
13:00 Tair and Aqua LST 0.64 3.96 8.15 1039 0.88 3.43 2.00 458
14:00 Tair and Aqua LST 0.64 3.96 7.72 1028 0.88 3.42 1.52 459

Daily Mean Tair and Aqua LST 0.59 4.22 13.26 1046 0.85 3.94 5.58 461
Daily Maximum Tair and Aqua LST 0.65 3.93 7.16 1046 0.87 3.70 0.76 461

10:00 Tair and Terra LST 0.68 3.39 8.15 1225 0.91 3.19 3.41 621
11:00 Tair and Terra LST 0.68 3.37 7.00 1231 0.92 3.00 2.12 620
12:00 Tair and Terra LST 0.68 3.38 6.15 1228 0.92 3.01 1.14 622

Daily Mean Tair and Terra LST 0.63 3.64 10.69 1236 0.89 3.38 3.70 625
Daily Maximum Tair and Terra LST 0.69 3.36 4.61 1236 0.89 3.41 −0.78 625
16:00 Tair and Landsat 7 NDVI LST NA NA 5.72 1 NA NA −0.87 2

16:00 Tair and Landsat 7 ASTER LST NA NA 5.46 1 0.9721 1.47 0.98 5

A visual analysis of the plots for individual weather stations was necessary to ensure
that the temperature variations and patterns throughout each season in each year are
followed closely. Although some stations have far more data than others, certain parameters
are required to complete a thorough visual examination. Tair station dates which contain
data recorded from both remote sensing platforms are used for the analysis. Figure 2
displays patterns that Landsat 7 (with NDVI corrections) LST data has with MODIS Aqua
LST and the daily mean Tair recordings during the summer, and Figure 3 has a similar
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comparison except with MODIS Terra LST during the winter. Although the satellite-
produced LST data differs from the ground Tair data, winter patterns appear more aligned.
Comparing the scatterplots in Figures 2 and 3, it is also clear that the summer LST has more
mismatching between coarse-resolution MODIS and fine-resolution Landsat LSTs than the
winter LSTs for both stations, indicating that the winter’s ability to smooth heterogenous
surfaces presented stronger relationships with both LST and Tair over land cover.
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is an urban station setting and Hamilton A is surrounded with agricultural land.
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4. Discussion

A major obstacle confronted in this analysis relates to the vastly different quantities of
imagery available from each satellite platform. The 16-day revisit cycle for the Landsat 7
satellite limits the availability of data to compare and analyze with MODIS and Tair. Both
MODIS platforms calculate the LST based on clear-sky pixel coverage, masking clouds with
the cloud mask algorithm [29]. The strongest correlations between MODIS and specific Tair
hours varies based on the range of overpass times and SWA methods used to achieve LST.
With Landsat 7-derived LST, only 479 observations are possible (provided every overpass
occurs during a clear sky) at each location throughout the provided time frame compared
to the near daily results optimistically attainable from MODIS.

4.1. Impact of Seasonality

The results based on time of year remain consistent with previous research comparing
MODIS results with Tair. The authors of [16] noted the much stronger relationship that
MODIS LST has in the winter (daytime and nighttime) when compared with the summer
daytime (the nighttime results were stronger due to lacking a solar radiation variable),
with fluctuations based on ecological context. Other researchers [21] concluded that the
relationships between surface temperature and air temperature were the strongest during
late summer and autumn, and the weakest during winter and early spring in complex
mountainous regions of Nevada. Stronger relationships between LST and Tair are found in
winter than summer with both scales in this study. Extensive snow and ice cover in the
winter can cause more homogeneity of land cover, except forest land. Surface conditions,
changes to the soil moisture content, and heterogeneity of the surrounding land covers can
play a major role in determining the variations in the summer days.

Winter seasonal energy exchanges heavily affect the comparisons in this study. The
albedo consistency varies based on low-temperature snow coverage over agriculture,
grassland, near-surface shrubbery, and diversified canopy cover, with heterogenous types
of forest life [35]. The impact is limited to the spatial resolution each sensor possesses and
the ecosystems surrounding the study site. In addition, due to the time frame of the winter
analysis (mid-October to mid-April), discrepancies can occur due to the varying degrees
of snow coverage throughout the time interval. A temperature bias happens as the year
progresses from the winter solstice, resulting in stronger solar radiation [36]. The necessity
to encompass the entire period of each year where snow cover is possible enhances the
ability to identify the true relationship LST has with Tair, regardless of circumstances.

Overall, the finer scale LST products with NDVI corrections retained the strongest rela-
tionships with Tair. With an R2 value of 0.81 (slightly higher than with coarse sensors) and
RMSE of 4.16 (slightly lower than with coarse sensors), the winter’s ability to homogenize
the surrounding environment increases the reliability of surface temperature to determine
near-surface temperatures. The relationship difference between coarse- and fine-resolution
sensors is minor, with the exception of in situ stations surrounded by forested surfaces.
Finer resolution LST and Tair have R2 values between 0.60 and 0.67, compared to 0.50 with
coarse-resolution LST.

The summer comparisons lead to alternative results with each land cover and scale.
Surface temperatures are high with non-evaporating surfaces and lower with water bodies
due to the radiant reflection. The reflected solar radiation on the impervious pixels can
strongly impact the LST, especially at a finer scale. Vegetated covers also have low radiant
temperature as a result of a reduction in heat stored in the soil from transpiration [37].
Overall, coarse-resolution LST data possess the strongest R2 and RMSE results, especially
with the MODIS Terra platform. Agricultural and urban stations have the largest differ-
ence in relationship between coarse and fine resolutions, while lakeside, forested stations
displayed minor improvements.

The diversity of temperatures across each land cover poses strong catalysts for how
the remote sensing-derived LST relates to Tair, depending on scale. Each biome maintains
its own unique set of physical, climatological, botanical, and animal habitat characteristics,
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which cause variances that are not expressed through simple temperature observations and
predictions [16]. The diversity of variables within dense and sparse vegetation during the
growing season affect the temperature on the ground and in the air above it. Comparing
the coarse spatial resolution of MODIS to the much finer Landsat 7 data, the additional en-
vironmental factors can cause fluctuations, especially with agriculture and urban surfaces.

4.2. Land Cover Impact

The impact of land cover on land surface temperature has been widely
recognized [12,37–40]. Different land cover types have different degrees of absorption
of solar radiation, evaporation rate, heat storage, etc., and thus impact LST. Variations
dependent on land cover type imply discrepancies based on vegetation cover, impervious
surface distribution, and soil type. Bare lands absorb lower amounts of heat and reflect
high radiation, leading to an increase in LST, while vegetative lands decrease LST. Areas
with a lower surface albedo are more likely to result in a greater overestimation of daytime
temperature in satellite images than areas with a higher surface albedo [28]. This is reflected
in the weaker relationship at lakeside stations with larger RMSE results.

The phenology of a land cover can also have a major impact upon the temperature
variations. For example, summer results in vegetated areas with increased canopy coverage
provided stronger results with Landsat 7.

MODIS has advantages over finer spatial resolution sensors as it subsumes the detail
throughout heterogenous urban and vegetated areas across broad geographical extents [12].
The precision useful with Landsat 7 LST analyses in the summer serves as a disadvantage
when compared with in situ observations due to the increased likelihood of variables
affecting Tair outside of the 30 m resolution pixels. For example, the RMSE values in
Tables 3–7 and the Figure 2 patterns display how MODIS sensors have improved abilities
for determining LST more closely aligned with Tair. Opposing results occur throughout the
homogenously transformed surfaces during the winter season, with finer spatial resolutions
yielding superior results expressed through R2 and RMSE values.

Defining an exact location within pixels of either 1 km or 30 m spatial resolutions
challenges the ability to acquire specified temperatures for that location. Although this issue
exists with each land cover classification, the lakeside stations are the most problematic. Its
issues are reduced in the winter, with snow cover affecting the spectral reflectance over
water in a similar manner to land; however, complications are exposed in the summer time
frame. In addition to the provided coordinates for each station not being detailed enough to
have their locations precisely georeferenced, the proximity to the large Ontario Lake water
body and proportion of land surfaces incorporated into the pixels affects the classification
with MODIS calculations more than Landsat 7. The open space over water bodies may also
increase humidity- and wind-related elements, which affect Tair observations.

The forested in situ station’s Tair relationship with coarse-resolution LST revealed the
only instance where summer produced a stronger seasonal relationship. Due to the dense
flora, the Canadian winter is unable to completely homogenize the forest environment.
The canopy density produces low R2 values in the winter, which finer resolutions can
marginally improve upon. Considering the strong results in the LST regression analysis
based on scale, forested land covers inhabit variables, relevant to vegetation density and
height, affecting air, which snow coverage fails to smooth at coarse resolutions.

The linear regression analyses between LST scales produced robust results, especially
over forested and wetland pixels (compared with the Tair analyses which lacked suffi-
cient data). In contrast to the limited number of observations at each weather station for
comparisons with Landsat, Terra data produced far more results with superior variance
and reliability in each regression analysis. The application of 70 randomly selected points
for scaled LST comparisons allowed for more complete representations with land covers
where in situ stations were seldomly placed. The summer comparison between Landsat 7
(with NDVI) and Terra delivered the strongest R2 and RMSE results, especially over water
(due to its homogeneity) and forests.
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In the winter, the factors which affect the variance in summer LST, such as solar
radiation, vegetation growth, surface roughness, and albedo, are reduced. Water is the
land cover with the most variation and highest bias amongst the two platforms, with vastly
different spatial resolutions (which contrasts summer results). The stronger relationship
within water pixels in the summer is due to homogeneity with both fine and coarse spatial
resolutions. Winter provides more variance with LST at a coarser scale.

4.3. ASTER-Derived Emissivity Values vs. NDVI-Corrected Values

The minor differentiation amongst the two methods of deriving LST from Landsat 7
imagery is definitive for this region. The only category in which NDVI-corrected values
are not superior is around lakeside and forested in situ stations. NDVI LST data have a
significantly stronger relationship with forested Tair in the summer. In contrast, ASTER
LST values had an R2 improvement of 0.0732 in the winter. The only other instance is
with lakeside stations during the summer. Otherwise, NDVI-corrected LST maintains a
dominance. NDVI plays a stronger role with summer data due to the influx of vegetation
across each land cover. In the winter, even with snow coverage and a major reduction of
vegetation life, the results continue to reveal the necessity for NDVI corrections on the
ASTER emissivity values.

5. Conclusions

This study evaluates the correlations between LST products from different MODIS
platforms, Landsat 7, and ground Tair measurements, and analyzes the impact of seasonality
and land cover on the consistency of these relationships at a local scale. It was found
that MODIS LST from Terra had stronger relationships with Landsat 7 LST than those
from Aqua. Tair at the satellite over passing time does not show significantly different
correlations from other Tair measurements. When compared to Tair measurements from
calendar days 100 to 290, success with coarse-resolution LST products is reflective of
previous research. MODIS imagery maintained overall R2 values between 0.41 and 0.45,
while Landsat 7 results were 0.35 with a weaker RMSE. For the remainder of the year,
Landsat 7 is more highly correlated with overall R2 value as high as 0.81, while MODIS
data is between 0.71 and 0.79 with similar RMSE.

Individual land covers produce much more varied results based on phenology, albedo,
and moisture content on the heterogenous land surfaces during the summer. As a result,
the summer conditions for a finer resolution satellite do not account for the greater variety
of variables present in heterogenous surfaces. The differences in variances explained
through coarse- and fine-resolution satellite imagery with Tair over lakeside and forested
stations are marginally smaller (R2 difference within 0.08) compared to agriculture and
urban surfaces. In addition, coarse-resolution LST explains more variance in Tair at forested
locations during summer due to the winter’s inability to homogenize the landscape due to
dense flora content.

When comparisons based on the surrounding land covers for each in situ observation
were conducted, Landsat 7-derived LST concluded with R2 values between 0.03 and 0.15
lower than MODIS in summer. Results with agricultural and urban in situ stations provided
the most variations between air measurements and different LST scales. This emphasizes
the disadvantage for using satellites with a finer spatial resolution during the summer due
to a greater availability of heterogenous factors over sparse vegetation and low-density
impervious spaces. Further assessment is needed on the atmospheric variability in a variety
of environments based on the radiation, atmospheric contents, and surface biomass factors.

The availability of weather stations in or near wetlands was a limitation in the LST
comparisons made with Tair. For Landsat 7 data, 1 to 5 observations are entirely insufficient
to make a distinction on its accuracy. Future exploration of the relationship with Tair
stations may provide greater insight on the correlation with fine-resolution LST located at
wetlands.
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