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Abstract: While land reclaimed from the sea meets the land demand for coastal development, it si-
multaneously causes socio-economic systems to be prone to coastal flooding induced by storm surges
and sea-level rise. Current studies have seldom linked reclamation with coastal flood impact assess-
ment, hindering the provision of accurate information to support coastal flood risk management
and adaptation. This study, using Xiamen, China as a case study, incorporates the spatiotemporal
dynamics of reclamation into a coastal flood impact model, in order to investigate the long-term
influence of reclamation activities on coastal flood inundation and the consequent exposure of the
population to coastal flooding. We find that rapid population growth, continual economic develop-
ment and urbanization drive a substantial logarithmic increase in coastal reclamation. Historical and
future expansions of seaward land reclamation are found to cause dramatic surges in the expected
annual inundation (EAI) and the expected annual population (EAP) exposed to coastal flooding.
In Xiamen, EAI is estimated to increase by 440.2% from 1947 to 2035, owing to continuing land
reclamation. Consequently, the population living in the flooded area has also increased sharply: the
EAP of total population is estimated to rise from 0.8% in 1947 to 4.7% in 2035, where reclamation
contributes over 80% of this increase. Moreover, a future 10 cm sea-level rise in 2035 will lead to extra
5.73% and 8.15% increases in EAI and EAP, respectively, and is expected to cause massive permanent
submersion in the new reclamation zone. Our findings emphasize an integration of hard structures
and nature-based solutions for building resilient coasts.

Keywords: reclamation; coastal flooding; population exposure; sea-level rise; nature-based solutions

1. Introduction

Rapid increases in coastal urbanization, global population and economic activity have
resulted in a significant rise in the consumption of land over the past 30 years [1]. Reclaim-
ing land from the sea—the production of additional land—has often been the preferred
solution in order to meet the demand for more land in support of urban development [1,2].
For example, China extensively reclaimed 11,162.89 km2 of land from the sea between
1979 and 2014, to meet the increasing needs of agriculture, industrialization and urbaniza-
tion [3]. In particular, Shanghai—the largest city in China—increased its land area by about
728 km2 between 1980 and 2015 by extending the urban built-up area into the ocean [4].
While coastal reclamation is utilized in many countries for promoting socio-economic
development, it has also resulted in many negative environmental consequences, such
as degradation of the natural coastline, damages to coastal ecosystems, pollution of the
marine environment and geological disasters [5,6].
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A coastal reclamation zone is prone to storm tide-induced coastal flooding, due to its
low-lying elevation and dense socio-economic and physical exposure, and the compound
effects of rapid urbanization and climate change are projected to exacerbate the impacts of
coastal floods. It was projected that global mean sea level will continue to rise, approaching
1 m by the end of the 21st century [7]. Sea-level rise will raise extreme water levels in storm
surges, leading to large increases in future overall flood frequency and intensity [8–10].
There is also growing evidence for a future shift in the average global intensity of tropical
cyclones, toward stronger storm surges [11]. In addition, socio-economic development is
of equal importance in altering coastal flood impacts [12]. Ongoing rapid urbanization is
likely to continue in most cities over the next few decades [13], indicating that an overall
increasing trend of exposure and vulnerability to coastal flooding can be expected in the
future. However, neither current activities nor planned reclamation projects take the risks
of extreme coastal flooding into consideration [14]. It is therefore urgent to investigate
the influence of the dynamic characteristics of reclamation on coastal flooding, as well
as its socio-economic impacts, in order to support the planning, implementation and
optimization of measures that can create coastal flood-resilient cities.

There have been an increasing number of studies in the literature focusing on coastal
land reclamation. Several seminal studies have analyzed the industrial reclamation, both
considering the environmental and the social aspects of reclamations. Loures and Craw-
ford [15] discussed the role of public participation in the post-industrial landscape recla-
mation of Emscher Park, Germany, and concluded that public participation contributes
to achieving sustainable development through improving community consciousness and
responsibility. Loures and Panagopoulos [16] analyzed two industrial reclamation projects
in Portugal, and highlighted the importance of industrial landscape in developing new
multifunctional urban landscapes. More recently, the characteristics of coastal reclamation,
including its driving factors and ecological and environmental influences, have been fre-
quently investigated. Yet, few studies have thoroughly analyzed reclamation to identify
the dynamics of the coastal hazards it can inflict. With the help of multi-temporal remote
sensing data and statistical data, Li et al. [6], Sengupta et al. [1], Wang et al. [17] and
Zhang et al. [4] determined the extent of spatial change attributable to coastal land reclama-
tion, and concluded that the area of reclaimed land has been increasing dramatically over
the last 40 years. Based on the spatial and temporal distributions of coastal reclamation,
Meng et al. [3] and Tian et al. [18], in a further step, evaluated the effects of economic
development, population growth, and urbanization rate on coastal reclamation, and found
that a booming economy is the main driver of high-intensity coastal reclamation.

Some other previous studies have also emphasized the ecological and environmen-
tal impacts of coastal reclamation. Duan et al. [5] and Xue et al. [19] demonstrated the
substantial ecosystem-related damages and the deterioration of marine environmental
quality in coastal reclamation zones in China, including circulation and siltation, water
quality, sediment, the benthic community, and mangrove stands. In particular, reclamation
activities have caused massive declines in coastal wetland areas [20,21] and resulted in con-
siderable ecosystem service losses [22,23]. In addition to the ecological and environmental
impacts, land reclamation-related geological disasters, such as land subsidence, landslides
and related earth movements, have also been reported [24,25]. However, few studies
have investigated or discussed the impacts of land reclamation on storm tide-induced
coastal flooding. Although Ding and Wei [26], Gao et al. [27] and Song et al. [28] modeled
the impact of land reclamation on tidal dynamics and storm surges, the role of reclama-
tion on inundation features and the socio-economic consequences of coastal flooding are
still unknown.

Similarly, in the field of coastal flood impact assessment, previous studies have in-
vestigated the impact of sea-level rise, socio-economic development, subsidence and land
use change on coastal flooding, but failed to include coastal reclamation in their analyses.
Benassai et al. [29], Huang et al. [30], Neumann et al. [31] and Rizzi et al. [32] included
future sea-level rise scenarios in hazard modeling, to investigate the impact of sea-level rise
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on coastal flood risk, in the Sele plain of Southern Italy, the Red River Delta in Vietnam, and
the North Adriatic coast, respectively. Socio-economic factors such as population and gross
domestic product (GDP) are widely used in estimating the global economic exposure and
population exposure to coastal flooding [33,34]. Previous studies also combined different
sources to explore their compound effects on coastal flooding and the resulting risk. For
instance, Du et al. [35], Wang et al. [36], Yin et al. [37] and Yin et al. [38] modeled the
combined impacts of sea-level rise, subsidence and land use changes, and socioeconomic
development on coastal flood risk in Shanghai, China. Moreover, the well-known dynamic
interactive vulnerability assessment (DIVA) model is widely used to integrate sea-level
rise, population growth, economic development and future adaptation measures for the
dynamic assessment of coastal flood risk [39–41]. Nevertheless, none of these studies
included coastal reclamation as a driving factor of coastal flooding.

Therefore, in this study, by using Xiamen City, China as a case study, we extract the
spatiotemporal dynamics of coastal reclamation in order to: (1) identify the influence of
historical and future land reclamation on coastal inundation and the consequent population
exposure; (2) analyze the future additional impact of sea-level rise on coastal flooding in
the reclamation zone; and (3) discuss applicable implications for coastal management and
resilient urban land use planning, for adaptation to coastal flooding.

2. Materials and Methods
2.1. Study Area

Xiamen City, with a 226 km coastline, is a typical highly urbanized coastal city, located
on the southeastern coast of China and adjacent to the East China Sea (Figure 1). Xiamen is
designated a Special Economic Zone of China. It has a land area of 1700.6 square kilometers
and had a population of 4,290,000 in 2019. Owing to Xiamen’s booming economy and
rapid urbanization, its coast has been experiencing rapid and intensive land reclamation in
order to meet the needs of development [42]. Xiamen is also frequently subjected to coastal
flooding from typhoon storm surges, because of its low-lying terrain: the land area with an
elevation of less than 10 meters accounts for 16% of the total area of Xiamen. Historically,
Xiamen suffered from 160 coastal flooding events induced by storm surges between 1956
and 2012, with an average frequency of 2.8 times a year, and the average water depth
and the highest water depth were 0.33 m and 4.54 m, respectively. In 1999, a storm surge
from Typhoon No. 9914 induced extreme coastal flooding, causing 23 deaths, and was
responsible for RMB 1.94 billion in direct economic losses. Given the combination of
ongoing and future sea-level rise and rapid socio-economic development, especially in the
reclaimed zone, the coastal flood risk facing Xiamen will increase dramatically, indicating
an urgent need for understanding future coastal flood risk and the corresponding measures
for local adaptation and risk management.
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2.2. Methods
2.2.1. Methodology Overview

Figure 2 shows the overall methodology of the study conducted for incorporating
the spatiotemporal dynamics of reclamation into a coastal flood impact model, in order to
investigate the long-term influence of reclamation activities on coastal flood inundation
and the consequent population exposure.
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Figure 2. Flowchart showing the methodology of the study.

2.2.2. Coastline and Land Reclamation Extraction

In this study, we combine two sources of data for extracting the historical coastline
and reclamation: (1) historical maps of Xiamen, after being scanned and digitized, are
employed for the extraction of coastline and reclamation data for 1947 and 1960; (2) remote
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sensing images of Xiamen are employed for obtaining coastline and reclamation data
for 1972, 1978, 1988, 1997, 2008 and 2017. Detailed descriptions of these data are shown
in Table 1.

Table 1. Data descriptions.

Data Type Data Resolution Data Source

Map Historical maps of Xiamen in
1947 and 1972 1:5000

Xiamen Bureau of Land Resources
and Real Estate Administration,

2016. Xiamen Atlas

Remote Sensing Images

MSS images in December 1972
and November 1978 80 m http://glovis.usgs.gov (accessed on

16 May 2019)
TM image data in December

1988 and January 1997 30 m

SPOT 5 image in January 2007 2.50 m http://www.gscloud.cn/ (accessed
on 13 August 2019)SPOT 7 image in January 2017 1.50 m

The remote sensing images were pretreated by ENVI 5.2 software, including band
synthesis, image clipping, geometric correction, image enhancement, etc. By referring to
the methods of Ghaderpour [43] and Karney [44], the digitized historical maps and the
sensing images were then adjusted in the same geographic coordinate systems: the WGS-84
coordinate system and universal transverse Mercator projection. With the digital maps and
remote sensing images, we adopted the visual interpretation method to manually vectorize
the coastline via the ArcGIS 10.2 software platform.

2.2.3. Coastal Flood Modeling and Exposure Analysis

Storm surges are a natural phenomenon in which the water level rises abnormally
when a storm with low atmospheric pressure and strong winds passes over the sea [45]. If
a storm surge coincides with an astronomically high tide, a storm tide may emerge [46].
Based on the long-term tide observation data from 1960 to 2009 at the Gulangyu National
Tide Gauge Station, we employed a generalized extreme-value distribution (GEV) to
model the storm tide. It should be emphasized that the processes of periodic inundation
occurring in low-lying coastal zones due to tidal influences are complex. Tidal surges can
carry sediments that could elevate land on low-lying coasts, which could reduce flood
potentials [47]. Such a complex coastal process has not been considered in this study,
because the sediment deposition due to tide is not clear in Xiamen and there is lack of
long-term observation data. In addition, land subsidence has also been proven to alter
coastal flooding. According to the National Land Subsidence Prevention Plan (2011–2020)
and Xiamen Geological Engineering Investigation Institute, ground subsidence is unlikely
to occur because of Xiamen’s granite geology with low groundwater reserves, and no uplift
has been observed historically. Thus, the vertical land movement was not considered in
the study.

Generally, there are two types of approach for coastal flood modeling: a digital
elevation model (DEM)-based approach and a hydrodynamic modelling approach. A
DEM-based approach is a simple method with a basic assumption: all areas with elevation
less than the extreme water level of a given storm tide, and of connectivity to the source
of water, are indicated as inundated. There are several drawbacks associated with this
method: for example, overestimation of the flooded area due to no volume control, neglect
of the effects of dike lines, and the absence of the actual dynamics of the inundation
process [48]. A hydrodynamic modelling approach is more sophisticated and can address
the disadvantages of the DEM-based model, because it is able to consider the hydraulically
important features such as streets, buildings, channels, underground drainage network,
etc. [48]. However, it needs a wide range of data, such as the digital surface model, the
drainage pipeline data, and more detailed hydrological data. By contrast, the DEM-based

http://glovis.usgs.gov
http://www.gscloud.cn/
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model is less dependent on data, and its calculation process is faster, and therefore was
frequently used in many previous studies. Given the scarcity of the complex dataset
required for a hydrodynamic model, here we built a DEM-based approach to simulate the
coastal flooding by a storm tide. The DEM with 10 m resolution was created based on a
1:5000 topographic dataset provided by the Xiamen Municipal Bureau of Land Resources
and Real Estate Management. Here, elevation points in the topographic data refer to the
Huanghai Height Datum system. The DEM generation and coastal inundation mapping
were carried out using ArcGIS software. The coastal inundation is estimated according to
the criteria: cells of the DEM that have an elevation value less than or equal to a specified
extreme sea level, and have locations adjacent to the sea or are connected to cells of equal
or lower elevation that are adjacent to the sea. According to the Flood and Tide Prevention
Plan of Xiamen, the current seawalls and levees of Xiamen can only withstand those
storm-tide events with a return period of less than 10 years. Thus, we simulated the
inundation extents under five extreme sea level events: 10-year, 50-year, 100-year, 200-year,
and 500-year return period storm tides. Under these scenarios, seawalls and levees are
insufficient to defend against flooding, and hence their effects were not considered.

Regarding the validation of the inundation model, it has been a common problem in
current studies, because sufficient data on observed inundation extent are lacking. Given
that historically, Xiamen was frequently subjected to storm tide-induced flooding with
a return period of about 10 years, the Xiamen Bureau of Water Resources extracted the
observed inundation area of a 10-year storm-tide event in Maluan Bay of Xiamen. Therefore,
the observed inundation map was compared with the results from inundation modelling,
for the validation of the built DEM-based inundation model. As shown in Figure 3, the
simulated inundation map fits well with the observed one, with 84.4% of the inundation
area been correctly modeled. This demonstrates an acceptable performance of the built
inundation model, and thus is applicable for modeling the inundation extent for other
storm tide events.
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Population exposure analysis was conducted to determine the extent to which the
population will be exposed to the inundation area. Population census data were overlaid
with the flood-area map, to extract the population exposed to a given flood event. Finally,
the expected annual population (EAP) exposed to coastal flooding was calculated to
represent the average value of the population affected in a given year.
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3. Results
3.1. Dynamics and Drivers of Sea Reclamation

The reclamation area of Xiamen has been increasing continuously, although the speed
has varied over different periods of time. The total reclamation area reached 175.49 km2

over the period from 1947 to 2017 (occupying 10.32% of the current total land area of
Xiamen), with an increase rate of 2.28 km2 per year. Due to the massive reclamations
for agriculture and aquaculture, the reclamation rate between 1947 and 1972 was highest,
reaching 3.26 km2 per year. Reclamation activities from 1972 to 2017 remained relatively
stable, with a reclamation rate of around 1.73 km2 per year. During this period, the recla-
mation area was mainly used for port and airport construction, and for urban expansion.
The coastline has also been altered as a consequence of these reclamation activities. As
shown in Figure 4, the coastline of Xiamen has been moving toward the sea over the past
70 years. Generally, the coastline shrank from 303.88 km in 1957 to 222.23 km in 2017, with
a significant decreasing magnitude of 26.87%. Over the long-term dynamic process, the
length of the coastline experienced a significant decreasing trend from 1947 to 1978, and
thereafter started to increase from 1978 to 2017. From 1947 to 1978, massive reclamations
for agriculture and aquaculture enclosed many bays, resulting in a significant reduction in
the coastline. By contrast, from 1978 to 2017, urban expansion dominated the process of
land reclamation, and caused the coastline to protrude outward, leading to an increase in
the coastline.
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Here, to further understand the relationship between land reclamation and socio-
economic development, we chose GDP, population, urbanization rate and built-up area to
fit with the reclamation area. As shown in Figure 5, all of the urban socio-economic indica-
tors display a statistically significant relationship with land reclamation. This is consistent
with the results from Meng et al. [3] and Tian et al. [18]. Notably, the relationships between
reclamation and GDP, population, urbanization rate and built-up area are not linear, but
reclamation area responds in a logarithmic curve as GDP, population, urbanization rate
and urban built-up area rise. Our results imply that in the early stages of urbanization,



Land 2021, 10, 866 8 of 18

socio-economic development requires relatively more land reclamation, while in the later
stages of urbanization, the demand for reclamation from socio-economic development is
relatively reduced.
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3.2. Impact of Land Reclamation on Coastal Inundation

Figure 6 shows the storm tide modeled by GEV, represented in terms of storm-tide
height at different return periods. The hazard curve of storm tides fits well with the results
provided by the Xiamen Municipal Bureau of Water Resources, implying an acceptable
accuracy for our modeling. In this study, we employ five storm-tide events—10-year,
50-year, 100-year, 200-year, and 500-year return period—to model their respective coastal
inundation levels and the corresponding expected annual inundation (EAI).
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The inundation hazard maps corresponding to a series of storm-tide events from
1947 to 2017 are shown in Figure 7 (here, we take 10-year, 100-year and 500-year extreme
water levels as examples to illustrate the inundation features). Generally, the inundated
area under each storm-tide event increases rapidly with the expansion of coastal recla-
mation from 1947 to 2017. For example, considering a 10-year storm tide—a relatively
smaller coastal flooding hazard—the inundated area increased from 21.43 km2 in 1947 to
44.58 km2 (+108.0%) in 1960, 67.04 km2 (+212.8%) in 1972, 78.69 km2 (+267.2%) in 1978,
85.25 km2 (+297.7%) in 1988, 89.80 km2 (+319.0%) in 1997, 99.81 km2 (+365.7%) in 2008
and 118.47 km2 (+452.8%) in 2017. In the case of a 500-year storm tide—a relatively larger
extreme coastal flooding hazard—the inundated area increased from 39.03 km2 in 1947 to
63.84 km2 (+63.6%) in 1960, 98.64 km2 (+152.7%) in 1972, 111.39 km2 (+185.4%) in 1978,
120.31 km2 (+208.2%) in 1988, 126.58 km2 (+224.3%) in 1997, 139.51 km2 (+257.4%) in 2008
and 159.10 km2 (+307.6%) in 2017. The consequent expected annual inundation (EAI)
area also exhibits a stable increasing trend: its value increased from 12.33 km2 in 1947 to
25.12 km2 (+103.7%) in 1960, 38.06 km2 (+208.6%) in 1972, 44.50 km2 (+260.9%) in 1978,
48.18 km2 (+290.7%) in 1988, 50.73 km2 (+311.4%) in 1997, 56.31 km2 (+356.7%) in 2008 and
66.61 km2 (+440.2%) in 2017, with an annual average rate of 2.44% from 1947 to 2017. In
the inundation area of 2017, built-up area is the major land use type, indicating that the
urban socio-economic system is subjected to large impacts from coastal flooding.
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3.3. Impact of Sea Reclamation on Population Exposure

Dramatic land reclamation drives the dynamic trend of population exposure to coastal
flooding. Figure 8a shows the population exposed to coastal flooding. According to the
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model, the expected annual population (EAP) exposed to coastal flooding was estimated to
increase significantly from 1947 to 2017. Additionally, the EAP exposed to coastal flooding
has in fact increased sharply, from 4.66 thousand (corresponding to 0.8% of total population
in Xiamen) in 1947 to 165.55 thousand (corresponding to 4.1% of total population in Xiamen)
in 2017. Two major factors contributed to this increase: population growth in the non-
reclamation area, and the expansion of the reclamation area accompanied by the consequent
population growth it accommodated. Therefore, we further quantitively identified the
relative contributions of these two influences on the population exposed to coastal flooding.
As depicted in Figure 8b, the growing population in reclamation areas dominates the
population exposure, and its relative contribution is increasing, rising from 50.90% in 1960
to 83.92% in 2017. This is consistent with the reality that population and economic activities
tend to be concentrated in coastal areas, because of the rapid urbanization there [34].
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Given that historically, reclamation has substantially increased population exposure,
it is essential to incorporate reclamation into the assessment process of future coastal
flooding impacts. Previous studies estimated the future population living in coastal flood
plains, but failed to incorporate the impact of reclamation. For instance, Fang et al. [49]
applied the DIVA model to quantify the potential impacts of coastal flooding in China
over the 21st century, and found that 0.7–20.0 million people may be flooded annually by
2100. In a study by Kulp and Strauss [50], the expected annual population exposure in
New York City is estimated to rise from 23,700 in 2000 to 206,700 in 2100 under an RCP
8.5 scenario. A study by Neumannet et al. [34] showed that the population living in the
100-year coastal flood plain is estimated to increase from 189 million in 2000 to 411 million
by 2060. Although these studies considered future sea-level rise and socio-economic
development and demonstrated the increasing trend of future population exposure, coastal
land expansion due to reclamation was not considered, and thus we argue that population
exposure might have been underestimated in these studies. To demonstrate our argument,
we further modeled the future population living in the coastal inundation area of Xiamen
by 2035. Based on the Xiamen Master Plan 2017–2035 [51], we extrapolated the additional
land reclamation of coastal Xiamen from 2017 to 2035, and in a further step simulated the
inundated area and the resulting population exposure. According to our modelling, 83%
of the new reclamation zone is estimated to be episodically flooded in 2035. As shown in
Figure 9, EAI will reach 72.52 km2—8.88% more in comparison to the value in 2017, owing
to future continuing land reclamation. In addition, the resulting EAP exposed to inundation
is estimated as 266.8 thousand—1.61 times that of 2017, and new land reclamation from
2017 to 2035 accounts for almost 21.48% of the increase in future population exposure.
Therefore, ignoring coastal reclamation is very likely to lead to underestimates of coastal
flood impacts.
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3.4. Extra Pressures from Future Sea-Level Rise

In addition to the socio-economic development in both non-reclaimed areas and re-
claimed areas, the ongoing and expected accelerating sea-level rise in the future will have
substantial influence on coastal flood impacts. Sea-level rise will raise extreme water levels in
storm surges, leading to large increases in future overall flood frequency and intensity [8–10].
These influences are expected to exacerbate future coastal flood risk either in isolation or in
combination with other factors such as land reclamation. Therefore, we applied a scenario-
based analysis to investigate the role of future local sea-level rise in alerting the population
living in or relocating to coastal flood plains. According to the China Sea Level Bulletin
in 2019, local sea level in 2035 is estimated to rise by up to 10 cm compared to 2017 [52].
As shown in Figure 10, considering a future 10 cm sea-level rise, the expected inundation
area in 2035 is projected to increase by 5.73%, to 76.67 km2, in comparison to the situation
without sea-level rise. As a result, the EAP that will live in the coastal flooded area will also
increase, by 8.15%, reaching 282.06 thousand. The extra pressure exerted by sea-level rise is
also demonstrated in a study by Hoegh-Guldberg et al. [53], who quantified that an increase
of 0.1 m of SLR will lead to an additional 10 million people being exposed to coastal flooding
globally by 2100. In particular, new reclamation zones built from 2017 to 2035 will be those
most prone to being affected by sea-level rise, due to their low-lying terrain and geographical
proximity to the ocean, and flood impacts in terms of both inundated area and population
will also be exacerbated by sea-level rise. For example, a 10 cm sea-level rise is expected to
cause 23.80% of new reclamation zones to be permanently submerged.
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4. Discussion
4.1. Explanation of Results

Our long-term analysis helps to reveal the spatiotemporal dynamics of coastal recla-
mation and its influences on coastal flood inundation and population exposure. As demon-
strated in our case study, continuing reclamation activities drive dramatic increases in
coastal inundation area. Jongman et al. [33] and Small and Nicholls [54] found that the
population growth in flood-prone zones is higher than the average population growth
in the hinterland. This effectively explains our findings that, with the increase in coastal
inundated area, the population exposed to coastal floods over the period of 1947-2017 also
increased exponentially, and can be mainly attributed to population growth in reclama-
tion zones. With respect to future coastal flood impacts, reclamation is also an important
contributor, and excluding it will lead to an underestimate of coastal flood impacts. Of
particular concern is the influence of future sea-level rise, since, as demonstrated in our case
study, it can exacerbate the coastal inundated area and exposed population, particularly
in the reclamation zones. This result corresponds with the studies of Neumann et al. [31],
Wang et al. [55], Xu et al. [45] and Zimmermann et al. [56], who also investigated the
impact of sea-level rise on coastal flooding, and found that sea-level rise could lead to an
increase in coastal flood frequency and, in addition, land, population, GDP, buildings and
infrastructure being exposed to inundation.

4.2. Implications for Coastal Flood Resilience and Adaptation

Understanding and characterizing both current and future impacts of reclamation
on coastal flood hazards and its socio-economic consequences are essential for mitigating
and adapting to coastal flood hazards, in the context of rapid urbanization and climate
change. Given the dramatic increases in inundated area and exposed population induced
by reclamation, and additional significant pressures from future sea-level rise, a hybrid
approach for adaptation is necessary. On the one hand, hard solutions, that describe the
installation of engineering measures to limit or stop natural processes of coastal flooding,
are needed to offset threats from sea-level rise and climate change. Generally, protection
strategies, such as the construction of more substantial seawalls, dikes, revetments, groynes
and breakwaters, and accommodation strategies, such as elevating buildings, and updating
drainage systems, are widely used hard solutions. On the other hand, soft solutions, which
involve the use of urban planning, more natural methods and policy-related management
to reduce the effects of coastal flooding, should be implemented. In particular, smart
urban growth in the reclamation zone, via land use planning and design, and nature-based
solutions should be emphasized. Hybrid solutions are not only effective to combat coastal
flooding, but also contribute to coastal sustainability. Figure 11 depicts the combination of
hard solutions with soft solutions, and its contributions to sustainability.

With respect to smart growth in reclamation zones, climate hazard-resilient land use
planning and urban form design are effective for coastal flood risk reduction [57]. Given the
massive impacts of reclamation on coastal exposure, optimizing land use planning and de-
sign is critically important for reducing coastal flood risk. It has been proved that landscape
can affect flood area, rate and duration, and socio-economic systems and physical systems
exposed to flood also differ among land use types [58,59]. Therefore, in an inundation area,
urban sprawl should be strictly prohibited, and new construction land should be allocated
in the relatively safe areas of lower hazard severity in terms of inundation depth, duration
and flow rate. Moreover, low-density zoning in the coastal floodplain has been proved to
decease exposure to flooding, and should thus be encouraged [60].
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Figure 11. Hybrid approach for coastal flood resilience and adaptation. Our results suggest the
importance of integrating both hard solutions and soft solutions for combating coastal flooding.
Traditional hard defenses can be constructed in shorter timeframes, and take effect immediately.
Soft solutions, such as nature-based coastal defenses, on the other hand, are more cost-effective,
sustainable and eco-friendly. The hybrid approach is highly related to coastal sustainability, by
contributing to the “climate actions” and “sustainable cities and communities” of the Sustainable
Development Goals (SDGs).

In addition, current coastal wetlands and blue and green space must be well protected,
managed and restored to maximize their functions as key ‘nature-based solutions.’ The pre-
vious literature has demonstrated that nature-based solutions mitigate flood risk generally
in two ways: (1) they avoid the placement of people and structures in the most flood-prone
areas, reducing the chances for property loss and economic disruption [61]; and (2) they
provide critical and diverse ecosystem services within a floodplain, enabling a substantial
reduction in surface water run-off and storm waves, and effective accommodation of long-
term sea-level rise [56,62]. As revealed by Arkema et al. [63], fully intact coastal wetlands
are estimated to reduce the population and property exposed to future storm surges and
sea-level rise in the United States by 2100 by almost half. However, as demonstrated by
Beck et al. [64], the annual anticipated global losses from coastal flooding would double
if global coral reefs disappear. Del Valle et al. [65] and Sun and Carson [66] revealed that
coastal wetlands such as wide mangrove belts are capable of mitigating losses in economic
activity and reducing property damage during tropical cyclone-induced coastal flooding.
However, as we demonstrated here, the shrinking of the coastline of Xiamen has led to the
degradation of coastal wetlands. As shown in Figure 12, natural mangrove stands in coastal
Xiamen have shrunk dramatically, with the area declining from 320 hm2 in 1960 to 21 hm2

in 2020 [67,68]. During the dynamic process of coastline changes, the natural coastline has
been replaced by a man-made coastline, transforming it from wetlands (e.g., mangrove
stands, saltmarshes, dunes and beaches) to urban impervious surfaces, a shift leading to
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great disadvantages for adapting to coastal floods. Therefore, it is critically important for
coastal cities such as Xiamen to conserve and recover coastal wetlands and green open
space, and make full use of them in combating coastal flooding, since ‘nature-based coastal
defenses’ are a more cost-effective, sustainable and ecologically sensitive alternative to
traditional coastal defense.
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With increasingly intense storms and rising sea levels associated with climate change,
coastal cities should also build robust hard structures to protect low-lying coastal com-
munities against coastal flooding. A sustainable hard-structure system, consisting of sea
walls, dikes and drainage systems, etc., can be completed within shorter timeframes in
order to provide a coastal defense solution, and may be suitable when the urgency of
asset protection is high [69]. Successful engineering solutions can effectively reduce the
coastal flood risks regarding hazard, exposure and vulnerability, as is urgently demanded
in urban planning. Hinkel et al. [41] quantified the effects of enhanced dikes on global
coastal flood damage under the conditions of 21st century sea-level rise, and found that,
compared to the current protection scenario, enhanced protection will reduce coastal flood
impacts by about 2–3 orders of magnitude in 2100. This study only assessed the coastal
inundation extent and the consequent population exposure without considering future
enhancement of adaptation. The future state of flood risk-reducing measures should be
included in future research. Overall, climate-resilient coastal protection outcomes require a
combination of ‘nature-based solutions’ and hard structures.

4.3. Limitations

While this study expands our understanding of the role of land reclamation in altering
coastal flooded area and population, it also labors under several limitations that future
research needs to address. First, although the performance of our DEM-based inundation
model was well validated before it was used for coastal flood modelling, there are a wide
range of uncertainties in terms of topography data, coastal sediments due to tide, flood
prevention measures, etc. Further studies thus need to take these uncertainties into account
to simulate the complex processes of coastal inundation and arrive at the results closer
to reality, with the application of more advanced approaches, such as the hydrodynamic
models. Second, to explore the impacts of reclamation on coastal flooding, we assumed
other driving factors to be static. For instance, changes in the intensity and frequency
of storm tides were not included in our analysis, since there is great uncertainty with
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respect to how storm tide activity changes at the local scale because the observational
records are insufficient to establish a definitive trend of change in the frequency and
intensity of storm tides. Moreover, some other factors, such as coastal subsidence and
landscape changes, were also not considered in our study. Future research should focus on
incorporating diverse sources of driving factors and their dynamics, in order to investigate
their compound effects and relative importance on coastal flooding. Third, as seen in
many previous studies, here we employed only population exposure as an indicator to
quantify coastal flood impacts, while other elements in urban systems—including buildings,
infrastructure and economic activities—are also prone to being affected by coastal flooding.
Therefore, it is of substantial significance to incorporate more physical and socio-economic
indicators into coastal flood impact assessment, so as to reveal the more comprehensive
impacts of reclamation on coastal flooding in terms of exposure, vulnerability, loss and risk.

5. Conclusions

Here, we provide a novel empirical study, incorporating the historical and future
dynamics of land reclamation into coastal flood modeling, and investigating the influence
of reclamation activities on coastal flood inundation and population exposure, in order to
elevate the importance of better reclamation planning for resilient coasts. As demonstrated
by a case study of Xiamen, China, coastal reclamation associated with rapid socio-economic
growth and urbanization has increased substantially and led to dramatic changes in
coastlines. Historical expansion of reclamation zones has continuously caused significant
increases in the inundation area and population exposed to storm tide-induced coastal
flooding. Furthermore, future reclamation is expected to continue to drive an increase in
coastal flood impacts. These alarming facts indicate that ignoring reclamation is very likely
to cause serious underestimates of coastal flood impacts. Sea-level rise is another variable
that should also be emphasized, since it can intensify coastal flooding and lead to further
inundation and population exposure, especially since portions of the new reclamation
zones are estimated to be permanently submerged, as we demonstrated in this study. Based
on our analysis, we recommend developing a hybrid solution for coast flood resilience and
adaptation, namely conserving and restoring coastal wetlands as nature-based solutions for
combating coastal flooding, while also building hard engineering structures for offsetting
extra pressures from future sea-level rise or any other climate-change factors.
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