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Abstract: Land use land cover (LULC) changes are highly pronounced in African countries, as they
are characterized by an agriculture-based economy and a rapidly growing population. Understanding
how land use/cover changes (LULCC) influence watershed hydrology will enable local governments
and policymakers to formulate and implement effective and appropriate response strategies to
minimize the undesirable effects of future land use/cover change or modification and sustain the
local socio-economic situation. The hydrological response of the Ethiopia Fincha’a watershed to
LULCC that happened during 25 years was investigated, comparing the situation in three reference
years: 1994, 2004, and 2018. The information was derived from Landsat sensors, respectively Landsat
5 TM, Landsat 7 ETM, and Landsat 8 OLI/TIRS. The various LULC classes were derived via ArcGIS
using a supervised classification system, and the accuracy assessment was done using confusion
matrixes. For all the years investigated, the overall accuracies and the kappa coefficients were higher
than 80%, with 2018 as the more accurate year. The analysis of LULCC revealed that forest decreased
by 20.0% between the years 1994–2004, and it decreased by 11.8% in the following period 2004–2018.
Such decline in areas covered by forest is correlated to an expansion of cultivated land by 16.4%
and 10.81%, respectively. After having evaluated the LULCC at the basin scale, the watershed was
divided into 18 sub-watersheds, which contained 176 hydrologic response units (HRUs), having
a specific LULC. Accounting for such a detailed subdivision of the Fincha’a watershed, the SWAT
model was firstly calibrated and validated on past data, and then applied to infer information on the
hydrological response of each HRU on LULCC. The modelling results pointed out a general increase
of average water flow, both during dry and wet periods, as a consequence of a shift of land coverage
from forest and grass towards settlements and build-up areas. The present analysis pointed out the
need of accounting for past and future LULCC in modelling the hydrological responses of rivers at
the watershed scale.
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1. Introduction

Hydrological modelling and water resource management are highly related to the
processes of the hydrologic cycle [1]. This cycle can be affected by land use land cover
(LULC) changes, as LULC are an essential component of the terrestrial ecosystem, and
have been identified as a change driver worldwide [2]. Indeed, LULC changes (LULCC)
can directly influence geomorphologic processes, land productivity, and flora and fauna
species [1], with the potential to adversely impact critical ecosystem services [3], foster
habitat fragmentation [3], depletion of biodiversity [4–6], decreasing land productivity [7,8],
and changing climatic conditions [7–11]. Changes in LULC can have both short-term and
long-lasting impacts on terrestrial hydrology, altering, for example, the long-term balance
between rainfall and evapotranspiration and the resultant runoff [12,13]. Evaluating the
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past LULC, types of changes, and the forces behind them is paramount to understanding
the interrelationships between humans and the natural environment [14,15].

Remote sensing plays an important role in the management of the Earth’s surface
by providing spatio-temporal information on LULCC, especially over large [16,17] and
poorly monitored areas. LULCC are highly pronounced in developing countries, which are
characterized by agriculture-based economies and rapidly increasing populations [18,19].
In those countries, the impact of recent LULCC on biodiversity and human life is evi-
dent [20], as well as the need for better evaluating future trends and management strategies
to counteract its negative effects. In this sense, assessing the impacts of LULC changes on
hydrology remains an important step in watershed management strategies inclusive of
water resources planning and conservation measures. In their work, Meyer and Turner [21]
discussed that land cover changes are caused by many natural and human driving forces.
While the effects of natural causes such as climate change are recognizable over a long
period, the effects of human activities are generally more immediate. Population growth
causes the degradation of resources that rely on the available land and the interactions
and feedbacks between them are very complex and hard to be modelled [22]. People
demand land for food production as well as for housing, and in African countries it is
a common practice to clear the forest to make farming area and housing. The result of
such a practice is that land cover and land use can vary at a quasi-daily scale, following
human interventions.

The degree of modification of the natural land cover by human influences, the intensity
of the changes, and the location of the LULC within a catchment affect the extent to which
the land use determines the hydrological response of a catchment. However, generally,
these modifications are evaluated only at the local scale [23], involving difficulties in
estimating the contribution of LULCC on the basin-wide hydrological cycle. To overcome
such problems, hydrological modelling can be implied. Physically-based hydrological
models simulate the spatially distributed streamflow time series, and so they can be used
to estimate the relative contributions of land cover changes and climate change/variability
at the daily, monthly or even annual time scale [24]. The soil and water assessment tool
(SWAT) model has been widely used to assess the effects of LULCC on the hydrological
cycle [25,26] and sediment yield [27,28]. Indeed, it represents a cost-effective tool due to
its advanced model configuration, which can help in modelling limited data regions and
evaluating various scenarios and agriculture management practices [29,30].

The sustainable use of water is becoming increasingly important in the legislative
agenda of Ethiopia, as this is one of the developing countries from the world where agricul-
ture is the backbone of the economy, and where agriculture is facing major environmental
challenges associated with LULCC [20]. The overall goal of the Ethiopian Water Resources
Policy [31] is to enhance and promote all national efforts towards the efficient, equitable,
and optimum utilization of the available water resources of the country for significant
socio-economic development on a sustainable basis. Therefore, a better understanding
of how LULCC influence watershed hydrology will enable local governments and poli-
cymakers to formulate and implement effective and appropriate response strategies. In
Ethiopia, changes in LULC are also playing a significant role in changing the natural
hydrological processes, shifting them towards an increase in surface runoff volumes, an
increase in evapotranspiration, and a reduction of infiltration and consequent groundwater
recharge [23,32–34]. Catching the dynamics of LULC and addressing how they affect
the local livelihood is therefore paramount for establishing a sustainable development
policy [35,36].

Using the Fincha’a watershed as a case study, the present work (i) reviews past LULC,
using three reference years (1994, 2008, 2018), to evaluate the past trends of LULCC as
derived from satellite images; (ii) investigates the effects of LULCC on the watershed
hydrology, using the SWAT model, to infer a possible relationship between LULC and
surface runoff. The first point was addressed via a combination of satellite imagery and
geographical information systems. Landsat images of the 3 years were classified using a
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supervised method, and then the various LULC were compared to derive past trends of
change. After an adequate calibration and validation process, the SWAT model was used
to evaluate the effect of LULCC on the Fincha’a basin hydrology, pointing out an increase
in water discharge due to the loss of forest and grass areas in favour of agricultural and
build-up zones.

2. Materials and Methods
2.1. Study Area

The Fincha’a watershed is part of the Blue Nile basin and is located in the Oromia
region, Horro Guduru Wollega zone, Ethiopia, between 9◦10′30′′ to 9◦46′45′′ north latitude
and between 37◦03′00′′ to 37◦28′30′′ east longitude (Figure 1) [37,38]. The watershed is
bounded on the south by the Great Gibe River basin, on the north by the Abbay (Blue Nile)
River basin, on the west by the Didessa sub-basin, and on the east by the Guder sub-basin.
It covers an area of about 3781 km2, containing three sub-basins, namely the Fincha’a,
Amerti, and Neshe. It covers seven aanaa’s (the Ethiopian second-lowest administrative
unit): Abay Chomen, Guduru, Hababo Guduru, Jimma Rare, Horro, Jima Geneti, and
Jarte Jardega.

Land 2021, 10, x FOR PEER REVIEW 3 of 23 
 

hydrology, using the SWAT model, to infer a possible relationship between LULC and 
surface runoff. The first point was addressed via a combination of satellite imagery and 
geographical information systems. Landsat images of the 3 years were classified using a 
supervised method, and then the various LULC were compared to derive past trends of 
change. After an adequate calibration and validation process, the SWAT model was used 
to evaluate the effect of LULCC on the Fincha’a basin hydrology, pointing out an increase 
in water discharge due to the loss of forest and grass areas in favour of agricultural and 
build-up zones. 

2. Materials and Methods 
2.1. Study Area 

The Fincha’a watershed is part of the Blue Nile basin and is located in the Oromia 
region, Horro Guduru Wollega zone, Ethiopia, between 9°10′30″ to 9°46′45″ north latitude 
and between 37°03′00″ to 37°28′30″ east longitude (Figure 1) [37,38]. The watershed is 
bounded on the south by the Great Gibe River basin, on the north by the Abbay (Blue 
Nile) River basin, on the west by the Didessa sub-basin, and on the east by the Guder sub-
basin. It covers an area of about 3781 km2, containing three sub-basins, namely the 
Fincha’a, Amerti, and Neshe. It covers seven aanaa’s (the Ethiopian second-lowest 
administrative unit): Abay Chomen, Guduru, Hababo Guduru, Jimma Rare, Horro, Jima 
Geneti, and Jarte Jardega. 

 
Figure 1. (a) Map of Africa; (b) map of Ethiopia with ground elevation; (c) location of the Abbay 
basin (right) and the Fincha’a watershed (left). 

Figure 1. (a) Map of Africa; (b) map of Ethiopia with ground elevation; (c) location of the Abbay
basin (right) and the Fincha’a watershed (left).

The study followed the workflow presented in Figure 2, and is described in detail in
the following sections.
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Figure 2. Conceptual framework of the study.

2.1.1. Watershed Topography and Geology

The altitude in the Fincha’a basin ranges approximately between 880 and 3200 m asl.
The highlands in the western and southern part of the basin are higher in altitude, greater
than 2200 m (Figure 1). The lowlands have a lower altitude, less than 1400 m asl, and are in
the northern part.

The dominant soils of the area are clay, loam, and clay-loam, while a small part of the
watershed in the northeastern part consists of Adigrat sandstone formation. The higher
parts of the watershed near the boundary (where the drainage of all the streams begin) as
well as the elevated parts in the middle of the watershed, which are isolated outcrops, are
made of Quaternary volcanic [23].

The Fincha’a reservoir is located in the Chomen swamp [39,40], the basin of which is
covered with black clay of unknown depth. It may be as much as 10 m deep and is believed
to be underlain by volcanic rock. The soil cover forms an excellent impermeable blanket,
therefore seepage is not considered to be a serious factor in this area.

2.1.2. Weather Data

The weather data were collected from the Ethiopian National Metrological Agency
(ENMA). Specifically, for the study period, daily data of maximum and minimum tempera-
ture, precipitation, relative humidity, wind and solar radiation were collected, referring to
four gauging stations: Fincha’a, Homi, Shambu, and Neshe (Table 1). All the data were
combined and prepared to be used as input data for the SWAT model.

Table 1. Meteorological stations of the Fincha’a watershed.

Name Years of Record X [◦] Y [◦] Elevation [m asl]

Fincha’a 1989–2018 9.57 37.37 2248
Homi 1987–2018 9.621 37.241 2371

Shambu 1981–2018 9.5712 37.1 2460
Neshe 1981–2018 9.723 37.268 2060
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Figure 3 summarizes the monthly values of rainfall and temperature in the Fincha’a
watershed averaged over the study period. Details on the various parameters are provided
in the following subsections.
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Figure 3. Average monthly rainfall, minimum and maximum temperatures in the Fincha’a watershed.

The daily flow data are required for calibrating the SWAT simulations. These data
were obtained from the Ministry of Water, Irrigation, and Energy Office, and post-processed
as per the requirement of the modelling tool. The calibration and validation were done on
a daily and monthly basis, using the periods 1997–2004 for the calibration and 2005–2008
for validation. Missing and no-data were excluded from this process.

2.1.3. Temperature

The annual minimum and maximum temperatures of the watershed vary from 6.0 to
16.0 ◦C and from 19.5 to 31.5 ◦C, with a yearly average of around 10 and 24 ◦C, respectively
(Figure 4), and are the lowest during summer, due to the prevailing cloud cover experi-
enced during this season. During the observed period, the temperature was higher at the
Homi metrological gauging station, where a maximum of 27.9 ◦C was reached during the
observed period, while the minimum temperature of 10.4 ◦C was measured at the Fincha’a
metrological gauging station.
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2.1.4. Rainfall

The rainfall data collected from the stations may vary in their qualities and consisten-
cies of record. There are five weather stations in the Fincha’a watershed, but the Hareto
station was not used due to the short time record of weather data. The collected data have
missing values in all the stations. The missing values in all stations were assigned with no
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data code (−99), which was then filled by the weather generator embodied in the SWAT
model from the monthly weather parameter.

Looking at the long-term statistics of the Fincha’a watershed (see Table 1 for the years
of record), the annual rainfall ranges between 960 and 1835 mm. Lower annual rainfall
less than 1100 mm was observed in the northern lowlands of the basin and higher rainfall
greater than 1300 mm in the western and southern highlands. Generally, the rainfall
presents a peak during the summer (July to August) and exhibits minimum values during
the winter (December to February). The annual values observed in the four considered
stations during the study period vary between 1450 and 1800 mm (Figure 5).
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The double mass curve technique was used to check whether the collected rainfall data
from the Fincha’a sub-basin meteorological station were consistent through the selected
period of study and checked whether corrections were needed or not. A group of certain
numbers of neighbouring stations were chosen as base stations from the vicinity of a
doubtful station and were considered a doubtful station until checked. The precipitation of
station x (doubtful station) can be corrected using Equation (1):

Pcx = Px
Mc

Ma
(1)

where Pcx represents the corrected precipitation at any period t at station X, while Px is
the corresponding original recorded precipitation, and Mc and Ma are the corrected and
original slope of the double mass curve, respectively.

A double mass curve was used to investigate whether there was inconsistency for the
four considered gauging stations. The records of these stations did not indicate inconsis-
tency, as the graph was found to follow a nearly straight line (Figure 6). This means that all
the stations’ data in the Fincha’a watershed were almost consistent.
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Figure 6. Double mass curve of the daily annual precipitation.

2.1.5. Evaporation

The potential evapotranspiration (PET) in the basin is generally between 1365 and
1970 mm per year. In the lowlands, a higher temperature is generally observed, driving the
PET to values higher than 1800 mm/yr. The highlands in the western and eastern parts of
the basin show a lower PET, reaching values of less than 1600 mm/year.

In the upper Fincha’a basin, there are two very large swamps, with the Chomen
Swamp being the larger, with a drainage area of about 860 km2.

2.1.6. Soil Type

The soil data are a significant component in the study of how LULCC can impact the
hydrological components of a watershed. According to a previous study performed by
Makin [41], the soil type in the study area is closely related to parent materials, degree of
weathering, and the characteristics of the local reliefs. The main parent materials are basalt,
ignimbrite, acid lava, volcanic ash, and pumice.

The soil map of the study area was obtained from the Ministry of Water, Irrigation
and Electricity of Ethiopia. According to the FAO/UNESCO classification [42], six major
soil groups were identified in the Fincha’a watershed: Eutric Nitosols, Eutric Cambisols,
Water, Chromic Vertisols, Cambic Arenosols, and Dystric Cambisols (Table 2). In addition
to the location of each soil type, the Ministry of Water, Irrigation and Electricity of Ethiopia
also provided information about soil physical and chemical properties such as soil texture,
available water content, bulk density, hydraulic conductivity, and organic carbon content.

Table 2. Soils that are present in the Fincha’a watershed.

Soil Name Area Covered SWAT Naming
[ha] [%]

Dystric Cambisols 437.1643 0.14 Bd31-2c-11
Eutric Cambisols 94,827.3963 29.57 Be8-3c-24

Cambic Arenosols 35,365.7764 11.03 Qc5-1c-182
Eutric Nitosols 113,078.3254 35.27 Ne20-3b-160

Chromic Vertisols 35,579.3598 11.10 Vc23-3a-262
Water 41,360.6536 12.90 WR-192
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The SWAT model has predefined four-letter codes for each land use category. These
codes were therefore used to link or associate the land use map of the study area to the
SWAT land-use databases.

Figure 7 shows the soil map of the Fincha’a watershed, pointing out the major presence
of Cambric Arenosols in the northern part of the basin, while the southern area is largely
covered by water.
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2.2. Spatial Data and Satellite Imagery

In addition to information on the local hydrology and soil composition, the present
study also requires a digital elevation model (DEM) and satellite images for deriving
LULC. This information was derived from multiple sources, such as the Ministry of Water,
Irrigation and Energy Resource Office, National Meteorological Agency, and Nile Basin
Authority offices.

2.2.1. Digital Elevation Model

For this study, the digital elevation model of the whole Ethiopia (spatial resolution
30 × 30 m) was obtained from the Nile Basin Authority Office, and it was projected to
Addenda and UTM Zone 37 to create an overlay with soil and land use raster dataset
using Arc-GIS 10.5.1 (Environmental Systems Research Institute, Redlands, CA, USA). The
Arc-GIS software was also used to process the DEM and create a triangulated irregular
network for deriving both the river network and the flood inundation maps.

2.2.2. Landsat Imagery

Landsat satellite images were analysed to identify changes in land use and land
cover distribution in the Fincha’a watershed over 25 years (from 1994 to 2018). For this
period, three Landsat images of 1994, 2004, and 2018 were downloaded from the United
States Geological Survey website (earthexplorer.usgs.gov) GeoTIFF file format. Landsat
thematic mapper (TM), enhanced thematic mapper (ETM), operational land imager (OLI),
and thermal infrared sensor (TIRS) were selected to represent the land cover conditions
in the years 1994, 2004, and 2018, respectively. Landsat images have a variable spatial
resolution, depending on both the sensors and the bands, spanning from 15 to 120 m [43].
For this application, we used images having a spatial resolution of 30 × 30 m, which
were geo-referenced to WGS_84 datum and Universal Traverse Mercator (UTM) Zone
37 N. Preprocessing such as layer stacking, mosaicking, and band colour combinations
were carried out to orthorectify the images, using the ERDAS Imagine 2014 and GIMP
2.10.12 software.
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Table 3 reports the details of the used Landsat images.

Table 3. Attributes of Landsat images.

Sensor Spatial Resolution Acquisition Date Image Quality Path/Row

Landsat 5 TM 30 m 5 January1994 7 169/053
Landsat 7 ETM 30 m 7 December 2004 9 169/053

Landsat 8 OLI/TRIS 30 m 3 December 2018 9 169/053

Source: www.usgs.gov (accessed date 15 March 2021).

2.3. Image Classification Process

Image classification is the process of sorting pixels into a finite number of individual
classes or categories of data based on their data file values. In remote sensing, there are
various image classification methods, such as supervised, unsupervised, and hybrid, as well
as innovative methods such as artificial neural networks [44]. Unsupervised classification
is computer controlled and its limitation is that the user cannot control the computer’s
selection of pixels into clusters. In the case of a supervised image classification system, the
user relies on her/his prior knowledge and skills and can select a group of pixels belonging
to a particular LULC. In this system, the user is required to have good knowledge about the
local conditions of the area under study, or clear field evidence to validate the classification.
Supervised classification is the most common type of land use classification system and
depends on prior information about the land use and land cover.

Supervised Classification

The present analysis was performed employing the supervised classification method,
using previous studies of Bezuayehu [45] and Taye [46] as a reference for classification
numbers, as well as the expertise of the scientists involved in the study. No field evidence
was specifically collected for this work, due to logistic limits, but the results reported here
confirm previous studies [45,46] and unpublished analyses.

Using the Landsat 7 images acquired in 2004, eight classes of LULC such as cultivated
land, bare soil, forest land, shrubland, grassland, settlement, waterbody, and wetland were
produced (Table 4):

• Cultivated Land: Areas used for crop cultivation, both annuals and perennials, and
the scattered rural settlements that are closely associated with the cultivated fields.

• Bare Soil: Areas covered with soil surfaces and sand with no vegetation cover or
uncultivated farmlands consisting of exposed soil and rock outcrops.

• Forest Land: Land covered with dense trees which include evergreen forest land,
mixed forest, and sparse trees.

• Shrub Land: Land covered with open shrubs, closed shrubs, bushes, and mixed with
small trees.

• Grass Land: Areas covered with grass used for grazing, as well as bare lands that have
little grass or no grass cover. It also includes other small-sized plant species.

• Settlement: Area covered with building rural residential houses infrastructures roads.
• Waterbody: Waterlogged areas and lakes throughout the year, the rivers, and their

main tributaries.
• Wetlands: An area that is saturated with water, either permanently or seasonally

waterlogged around a swamp area.

www.usgs.gov
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Table 4. Land use classification of the Fincha’a watershed, and the corresponding SWAT code.

S. No. Land Use Land
Cover SWAT LULC SWAT Code

1 Cultivated Land Agricultural land row crops AGRR
2 Bare Soil Barren BARR
3 Forest Land Forest-Evergreen FRSE
4 Shrub Land Forest-Mixed FRST
5 Grass Land Agricultural Land-Generic AGRL
6 Settlement Residential URBN
7 Waterbody Water WATR
8 Wetland Wetlands-Mixed WETL

Since there may be a misclassification of pixels in the supervised classification, it is
necessary to test the accuracy of the classification using ground truth, as well as assessing
the accuracy via confusions matrixes, as described in Section 3.2.

In fact, a paramount step in the classification process, whether supervised or unsu-
pervised, is the accuracy assessment of the final classification produced. This involves
identifying a set of sample locations that have field evidence or using previous studies.
The land use and land cover found in the field is then compared to the one mapped in the
image for the same location. Then, the statistical assessment of accuracy may be derived for
the entire study area. Generally, the accuracy assessment is a very important measurement
to determine how accurate the referenced data agree with classified images of the remotely
sensed data [47].

The error matrix produced may be used to identify specific cover types for which
errors are in excess of that desired. The information in the matrix about which covers are
being mistakenly included in a particular class (error of commission) and those that are
being mistakenly excluded (errors of omission) from that class can be used to refine the
classification approach.

2.4. Hydrological Modelling with SWAT
2.4.1. Model Setup

Arc-SWAT version 2012.10_4.19 was downloaded from the SWAT website (swat.tamu.edu)
and its toolbar was added to Arc-GIS 10.5.1 for the modelling process. The modelling
procedure includes SWAT project setup, watershed delineation, hydrologic response units
(HRU) analysis, write input tables, edit SWAT input, and SWAT simulation. After data
collection, all the input data were prepared, the watershed was delineated, the HRUs
definition were defined, and the land-use/soil/slope classification was added to the model.
The model was run at the basis scale, assuming 3 years of the warm-up period. The details
of each step are provided in the following.

2.4.2. Watershed Delineation

The first step in generating a SWAT model is the watershed delineation. The soil map,
the LULC map, and the DEM were projected using Arc-GIS 10.5.1 to the same projection
system before watershed delineation, to assure maps overlapping. The watershed and
sub-watershed delineations were performed using the 30 x 30 m DEM. The obtained slope
classes are shown in Table 5 and Figure 8.

Table 5. Slope classes.

Slope % Area Area [ha]

0–3 22.5 71,925.8021
3–8 30 95,965.2960

8–15 21 67,548.7056
15–30 18 57,980.1691
>30 8.5 27,228.7031
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2.4.3. Hydrologic Response Units

After the watershed delineation, land use, soil, and slope characterization were per-
formed using commands from the HRU analysis menu on the Arc-SWAT toolbar. These
tools were used in loading land use and soil layers of the Fincha’a watershed into the
current project, to evaluate the slope characteristics and determine the land use/soil/slope
class combinations and distributions for each sub-basin.

The SWAT user’s manual suggests that a 20% land use threshold, 10% soil thresh-
old, and 20% slope threshold are adequate for the most common modelling applications.
However, Setegn et al. [48] suggested that the HRU definition with multiple options that
account for 10% land use, 20% soil, and 10% slope threshold combinations gives a better
estimation of runoff and sediment components in Ethiopian regions. Therefore, for this
study, the HRU definition was performed using such thresholds. The Fincha’a watershed
was divided into 176 HRUs and 18 sub-basins, having their unique land use and soil
combinations (Table 6).

Table 6. Hydrologic response units and dominant LULC.

Sub-Basin Number of HRUs Dominant LULC % Area

1 19 FRSE 63.3
2 7 uniform FRSE 3.3
3 8 uniform FRSE 1.7
4 15 FRSE 3.3
5 16 AGRR 1.4
6 8 uniform FRSE 3.2
7 5 FRSE 1.4
8 10 AGRR 5.0
9 11 WATR 0.7
10 5 AGRR 0.4
11 9 FRSE 2.1
12 6 AGRR 0.8
13 14 AGRR 2.0
14 8 AGRR 4.1
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Table 6. Cont.

Sub-Basin Number of HRUs Dominant LULC % Area

15 6 WATR 0.1
16 14 AGRR 3.4
17 6 AGRR 0.1
18 9 AGRR 3.8

Total 176 100

2.4.4. Weather Data

The weather data can be imported into the SWAT model considering six categories:
Weather generator data, rainfall data, temperature data, solar radiation data, wind speed
data, and relative humidity data. The weather generator can be used in the case of missing
values in the dataset collected from the meteorological stations [49].

The SWAT model requires daily hydro-meteorological data from measured data or
generated from values using monthly average data. Thanks to the data availability, in this
study, data measured at the daily scale were used, eventually applying the SWAT weather
generator in the case of missing values.

Weather data of the Homi station was used as an input to determine the value of the
weather generator parameters. These parameters (rainfall, temperature, relative humidity,
solar radiation, wind speed) were developed using a pivot table, dew point temperature
calculator software, DEW02, and PCP stat to calculate the average monthly and average
daily precipitation, standard deviation, skew coefficient, probability of a wet day following
a dry day, and the average number of days of precipitation in a month.

2.4.5. Sensitivity Analysis

Sensitivity analysis is defined as the process of determining the significance of one or a
combination of parameters with respect to the objective function or a model output [50,51].
Before the SWAT calibration and validation process, a sensitivity analysis was carried out
to reduce the number of parameters that needs optimization.

In this research, a semi-automated sequential uncertainty fitting (SUFI 2) was applied
to identify the sensitive parameters, by selecting the most flow influencing parameters in
the catchment. The t-Stat and p-Values of the parameters were used to rank the different
parameters that may influence the flow and finally to select the ranked values. The model
was run on a monthly basis with observed data of the Fincha’a River at the outlet of the
Fincha’a dam site. Based on previous studies, 26 parameters were selected for investigating
their effects on the final results, but only 12 parameters were finally identified to have a
significant influence in controlling the streamflow in the watershed.

2.4.6. Calibration and Validation

After sensitivity analysis, the identified parameters were used for model calibration,
considering the period 1997–2004. A preliminary manual calibration was done and some
parameters were adjusted in the SWAT model. After this, the model was run using the best
parameter output values and the simulations were compared with observed streamflow
data using Nash-Sutcliffe coefficient (NS), coefficient of determination (R2), and percent
bias (PBIAS).

The validation was performed to compare the model outputs with an independent
dataset without making a further change to parameters obtained during the calibration
process. The measured data of average monthly streamflow from 1997–2008 at the outlet
section of Chomen Lake was used for validating the SWAT model.
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2.4.7. Model Performance Evaluation

The evaluation of the model performance was done following the approach proposed
by Da Silva [52]: Nash-Sutcliffe coefficient (NS), coefficient of determination (R2), and
percent bias (PBIAS) were used to quantify the accuracy in watershed modelling.

The coefficient of determination (R2) describes the proportion of variance in measured
data by the model (Equation (2)). It indicates the linear relationship between simulated and
observed data and ranges from 0–1 (the relation between measured data and simulated
data is poor when R2 is 0 and there is a good relationship between the two when the value
approaches 1).

R2 =
∑i
(
Qm −Qm

)(
Qs −Qs

)2

∑i
(
Qm −Qm

)2(Qs −Qs
)2 (2)

where R2 is the coefficient of determination, Qm and Qs are the measured and simulated
values, respectively, while Qm and Qs are their averages.

The Nash-Sutcliffe simulation efficiency (NS) describes the deviation from the unit of
the ratio of the square of the difference computed between the observed and simulated val-
ues and the variance of the observations (Equation (3)). Following a simplified explanation
provided by Moriasi et al. [32], the Nash-Sutcliffe parameter represents an indication of
how well the plot of observed versus simulated data fits the 1:1 line.

NSE = 1−
[

∑i(Qm −Qs)
2

∑i
(
Qm −Qm

)2

]
(3)

The percent bias (PBIS) describes the tendency of the simulated data to be greater or
smaller than the observed data, expressed as a percentage (Equation (4)):

PBIAS = 100
[
∑i

Qm −Qs

∑i Qm

]
(4)

3. Results and Discussion
3.1. Land Use Land Cover Changes

Land use land cover changes of the Fincha’a Watershed were observed for three
reference years (1994, 2004, and 2018) using Landsat satellite imagery and supervised clas-
sification, and compared accounting for eight classes (Table 4). For qualitative comparison,
Figures 9 and 10 were created, while the quantitative information is reported in Table 7,
pointing out a very relevant change in LULC over the study period.

A rapid increase in the cultivated land class is observable during the study period,
as this class occupied 42.8% of the total area in 1994 but 70.1% in 2018. As pointed out
in similar studies [18], this is due to population growth and socio-economic factors. The
bare soil and settlement also gradually increased from 1.7% (1994) to 4.3% (2018) and 0.1%
(1994) to 0.4% (2018), respectively. The increment of bare soil can be explained as the result
of erosion and the steep slopes of the Fincha’a watershed, while the need for more room
for a growing population is obviously the cause of a major percentage of settlements. The
water body and wetland features such as rivers, lakes, and swamps were slightly increased
from 10.3% (1994) to 18.6% (2018) and 0.7% (1994) to 4.6% (2018), respectively.

On the contrary, other land use classes decreased over the 25 years study period. For
instance, forest land has been greatly decreased from 33.5% in 1994 to only 1.2% in 2018,
with a net decline of 32.1%, mostly due to the expansion of agricultural land. Urbanization
and agricultural expansion also cause a reduction of the areas covered by shrub and grass,
which were degraded by a net percent of 9.6% and 0.1%, respectively.
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Table 7. LULC in the Fincha’a watershed in 1994, 2004, and 2018. LULCC between 1994 and 2018.

LULC 1994 2004 2018 2018–1994
% Area [ha] % Area [ha] % Area [ha] % Area [ha]

Cultivated Land 42.8 137,352.31 59.3 189,976.87 70.1 224,624.24 +87,271.9 +27.22
Bare Soil 1.7 5376.85 3.5 11,265.78 4.3 13,600.26 +8223.4 +2.57

Forest Land 33.5 107,283.40 13.0 41,714.20 1.2 3719.33 −103,564.1 −32.3
Shrub Land 10.8 34,565.07 7.2 22,925.81 1.2 3910.08 −30,655.0 −9.56
Grass Land 0.2 488.97 0.1 391.18 0.1 97.79 −391.2 −0.12
Settlement 0.1 262.66 0.2 525.32 0.4 1161.86 +899.2 +0.27
Water Body 10.3 33,101.79 14.3 45,707.42 18.6 59,563.98 +26,462.2 +8.25

Wetland 0.7 2217.63 2.5 8163.46 4.4 14,012.86 +11,795.2 +3.67

Total 100 320,648.68 100 320,045.70 100 348,016.75

In 1994, cultivated land and forest land were 42.8% (137,352.31 ha) and 33.5% (107,283 ha),
respectively, while shrubland, waterbody, bare soil, wetland, grassland, and settlement
area were 10.8% (34,565.07 ha), 10.3% (33,101.79 ha), 1.7% (5376.85 ha), 0.7% (2217.63 ha),
0.2% (488.97 ha), and 0.1% (262.66), respectively. Therefore, in this specific year, cultivated
land and forest land were the dominant classes.

In 2004, cultivated land and forest land were 59.3% (189,976.87 ha) and 13.0% (41,714.20 ha),
while shrubland, waterbody, bare soil, wetland, grassland, and settlement were 7.2%
(22,925.81 ha), 14.3% (45,707.42 ha), 3.5% (11,265.78 ha), 2.5% (8163.46 ha), 0.12% (391.18 ha),
and 0.2% (525.32 ha), respectively. Furthermore, throughout the study period, cultivated
land has been the most dominant land use class.

In 2018, cultivated land and forest land were respectively 70.1% (224,624.24 ha) and
1.2% (3719.33 ha), while shrubland, waterbody, bare soil, wetland, grassland, and settlement
were 1.2% (3910.08 ha), 18.6% (59,563.98 ha), 4.3% (13,600.26 ha), 4.4% (14,012.86 ha), 0.1
(97.79 ha), and 0.4% (1161.86 ha), respectively. The result shows that, in 2018, grassland
and forest land were negligible and cultivated land is the most predominant LULC class in
the Fincha’a watershed.

The results reported here are in line with the recent work of Tolessa et al. [53], who
analysed the Fincha’a watershed LULCC over the period 1987–2019, showing an increment
of cultivated areas, settlement, waterbodies, and sugarcane plantation. Such changes
involved a significant reduction in areas covered by forest land, wetland, and bare land.

In their work, Dibaba et al. [38] confirmed that anthropogenic activities, such as the
construction of the reservoir and the connected river training works, were found to be
predominant and immediate as compared to the natural process as a driver of LULCC
in the Fincha’a basin. In particular, the hydro-development process affected the local
communities and their livelihoods, mostly by changing access to land and reducing the
available water [54]. As an example, the seasonal fluctuations of water levels often inundate
the croplands of the farmers settled near the water bodies. Furthermore, most of the present
land-use practices in the catchment are focused on short-term supply satisfaction, which
could involve long-term loss of ecosystem services and damage to the environment.

3.2. Land Use Classification Accuracy

In this study, the random reference points are 178, 249, and 318 for the years 1994,
2004, and 2018, respectively. To assess the classification accuracy, confusion matrixes were
derived using the ERDAS Imagine 2014 and GIMP 2.10.12 software. It is worth noting here
that the following results depend on the used classification method and the experience of
the operator.

Tables 8–10 show the confusion matrix for the three Landsat images, pointing out
that the overall classification accuracy of the total number of correctly classified pixels
(diagonal) to the total number of reference pixels was 92.52%, 92.71%, and 94.44% for 1994,
2004, and 2018, respectively. According to Anderson [23], the minimum accuracy value
for reliable land cover classification is 85%, therefore the results presented here satisfy
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the minimum accuracy assessment criteria. The user’s accuracy (error of commission or
inclusion) and producers’ (error of omission or exclusion) which are used to evaluate the
classification accuracy were also calculated.

Table 8. Confusion matrix of LULC in 1994 (S: Settlement; WL: Water body; SHL: Shrub land; CL: Cultivated land; GL:
Grassland; FL: Forest land; BS: Bare soil).

LULC S WL SHL WB CL GL FL BS Total User (%)

S 8 0 1 0 1 0 2 0 12 66.67
WL 1 18 0 2 0 1 0 1 23 78.26
SHL 0 1 15 0 2 0 0 0 19 78.95
WB 1 0 1 21 0 0 1 0 24 87.50
CL 0 3 0 0 27 1 0 0 31 87.10
GL 0 0 0 0 0 15 3 2 20 75.00
FL 0 2 0 0 0 0 33 1 36 91.67
BS 0 0 0 0 0 2 0 16 20 100.00

Total 10 24 16 23 30 19 36 20 178 OA = 86.06

Producer’s (%) 80.00 75.00 93.75 91.30 90.00 78.95 91.67 80 Ka = 83.61

Overall classification accuracy (OA) = 86.06%; Kappa coefficient (K) = 83.61%.

Table 9. Confusion matrix of LULC in 2004 (S: Settlement; WL: Water body; SHL: Shrub land; CL: Cultivated land; GL:
Grassland; FL: Forest land; BS: Bare soil).

LULC S WL SHL WB CL GL FL BS Total User’s (%)

S 10 1 0 1 0 0 1 0 13 76.92
WL 0 35 1 0 2 0 0 0 38 92.11
SHL 1 0 32 0 0 0 0 1 34 94.12
WB 0 0 1 33 0 2 0 0 36 91.67
CL 0 0 0 0 40 0 2 1 43 93.02
GL 0 0 3 0 3 20 0 0 26 76.92
FL 0 1 0 1 0 2 34 0 38 89.47
BS 0 0 0 0 0 3 0 18 21 85.71

Total 11 37 37 35 45 27 37 20 249 OA = 89.16

Producer’s (%) 90.91 94.59 86.49 94.29 88.89 74.07 91.89 90.00 Ka = 87.43

Overall classification accuracy (OA) = 89.16%; Kappa coefficient (K) = 87.43%.

Table 10. Confusion matrix of LULC in 2018 (S: Settlement; WL: Water body; SHL: Shrub land; CL: Cultivated land; GL:
Grassland; FL: Forest land; BS: Bare soil).

LULC S WL SHL WB CL GL FL BS Total User’s (%)

S 15 0 0 0 1 2 0 0 18 83.33
WL 0 43 1 0 0 0 1 0 45 95.56
SHL 1 0 40 1 0 1 0 1 44 90.91
WB 0 1 0 41 1 0 0 0 43 95.35
CL 0 0 1 0 48 0 2 1 52 92.31
GL 0 1 0 2 0 30 0 0 33 90.91
FL 1 0 0 0 1 1 42 0 45 93.33
BS 0 1 1 0 0 0 1 35 38 92.11

Total 17 46 43 44 51 34 46 37 318 OA = 92.45

Producer’s (%) 88.24 93.48 93.02 93.18 94.12 88.24 91.30 94.59 Ka = 91.30

Overall classification accuracy (OA) = 92.45%; Kappa coefficient (K) = 91.30%.

Table 8 shows that, for the reference year 1994, the percentage of overall accuracy and
kappa coefficient were 86.06% and 83.61%, respectively. The grey-highlighted diagonal
number in the matrix indicated correctly classified pixels for each LULC class, with the
yellow cell indicating the total number of correctly classified pixels.
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Table 9 shows that the classified map of 2004 has an overall accuracy of 89.16% and a
kappa coefficient of 87.43%. In this case, it is possible to notice a higher number of pixels
correctly classified.

In 2018, the overall accuracy and kappa coefficients were 92.45% and 91.30%, re-
spectively (Table 10), with the highest number of correctly classified pixels during the
study period.

3.3. Calibration and Validation of the Streamflow

The simulated streamflow was calibrated against an observed discharge, considering a
period of 8 years (1997–2004) and monthly data. The first 3 years were used as the warm-up
period, while the rest were for model calibration. The coefficient of determination and
the Nash-Sutcliffe equation (Section 2.4.7) have been used as parameters to determine the
quality of the performed calibrations. As visible from Figure 11, the SWAT model is able to
reproduce the measured water flow in a rather satisfactory manner (R2 = 0.86, NSE = 0.85),
with a slight underestimation of the peaks.
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Figure 11. Simulated and observed flow during the calibration period (1997–2004).

The Fincha’a streamflow was validated for 4 years, between 2005 and 2008. As visible
in Figure 12, the validation processes provided good results, with a correlation coefficient
R2 = 0.87 and a Nash-Sutcliffe coefficient NSE = 0.84. Moreover, in this case, it is possible to
observe an underestimation of the peak conditions which, however, does not influence the
overall simulation.

Land 2021, 10, x FOR PEER REVIEW 18 of 23 
 

 
Figure 12. Simulated and observed flow during the validation period (2005–2008). 

Table 11 summarizes the parameters used for evaluating the model performance dur-
ing the calibration and validation process (Section 2.4.7), while Figure 13 provides a scatter 
plot of the simulated and observed flow values for the two periods. Based on such results, 
it can be concluded that the SWAT model can be applied to have a reliable prediction of 
the streamflow of the Fincha’a watershed. 

Table 11. Model performance evaluation statistics. 

 R2 NSE PBIAS 
Calibration (1997–2004) 0.86 0.85 +1.13 
Validation (2005–2008) 0.87 0.84 −2.806 

 
Figure 13. Scatter plot of simulated and observed flow during the (a) calibration (1997–2004) and (b) validation (2005–
2008) periods. 

Based on these results, it is possible to observe that the model proposed here per-
forms better than a similar model developed by Ayana et al. in 2012 [51]. Indeed, they 
obtained an R2 of 0.82 and 0.81 for the calibration (1987–1996) and simulation (1997–2006) 
periods, respectively. They attributed that the differences between simulated and ob-
served values might be attributed to errors in creating rainfall inputs, but also to the fact 
that surface water coming from the reservoir used for water supply and irrigation were 
not included in the simulation. Even if using different periods for calibrating and validat-
ing the SWAT model, the present study pointed out similar drawbacks, which are intrin-
sically connected with the study, due to the lack of information on multiple uses of the 
water coming from the Fincha’a reservoir. 

Figure 12. Simulated and observed flow during the validation period (2005–2008).



Land 2021, 10, 916 18 of 23

Table 11 summarizes the parameters used for evaluating the model performance
during the calibration and validation process (Section 2.4.7), while Figure 13 provides
a scatter plot of the simulated and observed flow values for the two periods. Based on
such results, it can be concluded that the SWAT model can be applied to have a reliable
prediction of the streamflow of the Fincha’a watershed.

Table 11. Model performance evaluation statistics.

R2 NSE PBIAS

Calibration (1997–2004) 0.86 0.85 +1.13
Validation (2005–2008) 0.87 0.84 −2.806
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Based on these results, it is possible to observe that the model proposed here performs
better than a similar model developed by Ayana et al. in 2012 [51]. Indeed, they obtained
an R2 of 0.82 and 0.81 for the calibration (1987–1996) and simulation (1997–2006) periods,
respectively. They attributed that the differences between simulated and observed values
might be attributed to errors in creating rainfall inputs, but also to the fact that surface
water coming from the reservoir used for water supply and irrigation were not included
in the simulation. Even if using different periods for calibrating and validating the SWAT
model, the present study pointed out similar drawbacks, which are intrinsically connected
with the study, due to the lack of information on multiple uses of the water coming from
the Fincha’a reservoir.

3.4. Hydrological Response to LULCC Changes on Streamflow

As already observed, the hydrologic responses of watershed processes are generally
highly affected by LULCC [52]. Crucial watershed processes that can be affected by LULCC
are surface runoff, lateral flow, and groundwater flow.

Table 12 shows the stream flow simulated accounting for the LULCC situation in the
three reference years, classifying it into wet (August, September, and October) and dry
months (February, March, and April).

Table 12. Observed average flow during the dry and wet months.

Period
Average Flow [m3/s] Change of Flow [m3/s]

1994 2004 2018 1994–2004 2004–2018 1994–2018

dry months 10.72 15.89 25.86 +5.2 +9.5 +14.6
wet months 132.67 167.85 194.67 +35.2 +26.8 +62.0
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It is possible to notice that the average dry monthly streamflow increased by 5.17 m3/s
between 1994 and 2004, 9.47 m3/s from 2004 to 2018, and 14.64 m3/s over the whole period
(1994–2018). This means that, during the 25 years, the dry-months discharge increased by
8.3%. The average wet month flow was more influenced by LULCC, increasing by 35.18,
26.82, and 62 m3/s between 1994–2004, 2004–2018, and 1994–2018, respectively.

This analysis can reveal that the increment of cultivated land causes a direct increase in
surface runoff, mostly during the wettest months. Changes in the areas covered by wetland
and water bodies also cause a slight increase in flow discharge during the driest months.

3.5. Sensitivity Analysis

As anticipated in Section 2.4.5, the sensitivity analysis pointed out that, out of 26 pos-
sible parameters, only twelve have a relevant influence in controlling the hydrological
processes in the watershed (Table 13). Based on a previous work of Leta et al. [33], saturated
hydraulic conductivity, base flow alpha factor, groundwater delay, and the depth of the
water aquifer were considered the most important sensitive parameters to be used in the
calibration process.

Table 13. Streamflow sensitivity parameters.

S. No. Parameter Definition Fitted Value Max_Value Min_Value

1 SOL_K Saturated Hydraulic conductivity 0.24 −0.8 0.8
2 ALPHA_BF Base flow alpha factor (days) 0.85 0 1
3 GW_DELAY Ground water delay (days) 51 30 450
4 GWQMN The threshold depth of water shallow aquifer 0.3 0 2
5 GW_REVAP Groundwater revamp coefficient 0.11 0 0.2
6 ESCO Soil evaporation compensation factor 0.93 0.8 1
7 CH_N2 Manning’s roughness coefficient 0.045 0 0.3
8 CH_K2 Effective hydraulic conductivity 23.75 5 130
9 ALPHA_BNK Baseflow alpha factor for bank storage 0.45 0 1

10 SOL_AWC Soil available water capacity −0.17 −0.2 0.4
11 CN2 SCS runoff Curve number for moisture condition II −0.18 −0.2 0.2
12 SOL_BD Moist bulk density 0.105 −0.5 0.6

3.6. Recommendations

Based on the present study, some recommendations can be provided.

• No gauging stations are yet installed in the lower part of the Fincha’a watershed,
while some of them are installed in the upper part. For the future, greater efforts are
needed to install stations evenly distributed in the watershed, aiming to obtain a better
monitoring network, which can be used for inferring basin-wide information on the
hydro-meteorological dynamics.

• At this moment, there is a reduced agreement on the watershed delineation. In fact,
for defining the basin borders, some researchers used the outlet of the Chomen Lake,
while others prefer the right bank of the Abbay River. This can result in dissimilarities
and uncertainties between the results of studies such as the one presented here, and
foster a debate among researchers. To solve the situation, the Abbay Basin Authority
office should give a clear description of watershed delineation, support decisions, and
update information by re-organizing the management information system.

• To develop more accurate hydrological models such as the one shown here, improved
monitoring devices and protocols are needed. Indeed, the present gauging network
does not allow for developing a precise and basin-wide water use budget, knowing,
for example, how much water of the reservoir is used for domestic uses or irrigation.

• The great expansion of cultivated land exposes the local community to cutting trees
for fuel, construction of timber, and generation of additional income, but negatively
affects the natural environment. However, it could be better to wisely use the natural
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resources, managing them in an integrated, participatory, equitable, and sustain-
able manner.

• For the future, there is the need of integrating similar studies of LULCC with research
looking at the effect of LULCC on the natural capital (see, for example, [53]), for public
awareness and decision-making processes at the watershed level for sustainable development.

• If the past trends in LULCC will persist in the future, the observed increase in surface
runoff and peak events, as well as soil erosion, could be eventually fostered by
climate change, with unforeseen consequences on the environment [54] and the local
livelihood [55,56]. Therefore, there is the need for further research, accounting for not
only the most up-to-date climate scenarios but also the interrelationship between the
natural and the built environment.

• Differently from anthropogenic drivers, natural variations such as climate change af-
fect the environment and the connected ecosystem services at a longer time scale [36–38],
and therefore future studies should consider longer horizons to effectively account for
the combined effects of both natural and human-induced alterations.

4. Conclusions

This study developed a SWAT model to investigate the hydrological responses to
LULCC in the Ethiopian Fincha’a watershed. To do this, multiple steps were followed.
Firstly, satellite images were used to produce LULCC maps for three reference years, chosen
within a period of 25 years (1994–2018). Once determined, the most significant classes
covering the whole basin, weather, and hydrological data, combined with a topographical
base derived from a rather coarse DEM, were used to infer information on the surface
runoff over the entire watershed, needed for model calibration and validation.

Comparing the LULCC derived from satellite images, it is possible to observe a
significant decline of forest land (−32.3%) and shrubland (−9.6%) between 1994 and 2018,
mostly due to the creation of new agricultural zones (+27.2%) and settlement (+3.7%) to
answer to an increasing population that needs new means of subsistence. The quality of
the supervised classification used for deriving LULCC maps was checked via confusion
matrixes, showing an overall accuracy of 86.1%, 89.2%, and 92.5% and corresponding
kappa coefficients of 83.6%, 87.4%, and 91.3%, for the reference years 1994, 2004, and
2018, respectively

The overall efficiency of the SWAT model was evaluated by the coefficient of deter-
mination and the Nash-Sutcliffe parameters, which resulted higher than 0.84 for both the
calibration and validation periods, indicating that the model provided reliable outcomes.
Once calibrated and validated, the model was applied and the outcomes pointed out that
the LULCC observed in the Fincha’a basin caused an increase in surface runoff, more
prominent during the wet months (August–October).

As similar research performed across Ethiopia have pointed out [see review 18], this
study provides important insights on the basin-wide effects of LULCC on the Fincha’a
catchment hydrology, to be used by decision-makers for planning future management
strategies to assure a suitable future of the Fincha’a watershed.
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