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Abstract: Landscape patterns are a result of the combined action of natural and social factors. 

Quantifying the relationships between landscape pattern changes, soil erosion, and sediment yield 

in river basins can provide regulators with a foundation for decision-making. Many studies have 

investigated how land-use changes and the resulting landscape patterns affect soil erosion in river 

basins. However, studies examining the effects of terrain, rainfall, soil erodibility, and vegetation 

cover factors on soil erosion and sediment yield from a landscape pattern perspective remain lim-

ited. In this paper, the upper Ganjiang Basin was used as the study area, and the amount of soil 

erosion and the amount of sediment yield in this basin were first simulated using a hydrological 

model. The simulated values were then validated. On this basis, new landscape metrics were es-

tablished through the addition of factors from the revised universal soil loss equation to the 

land-use pattern. Five combinations of landscape metrics were chosen, and the interactions be-

tween the landscape metrics in each combination and their effects on soil erosion and sediment 

yield in the river basin were examined. The results showed that there were highly similar correla-

tions between the area metrics, between the fragmentation metrics, between the spatial structure 

metrics, and between the evenness metrics across all the combinations, while the correlations be-

tween the shape metrics in Combination 1 (only land use in each year) differed notably from those 

in the other combinations. The new landscape indicator established based on Combination 4, 

which integrated the land-use pattern and the terrain, soil erodibility, and rainfall erosivity factors, 

were the most significantly correlated with the soil erosion and sediment yield of the river basin. 

Finally, partial least-squares regression models for the soil erosion and sediment yield of the river 

basin were established based on the five landscape metrics with the highest variable importance in 

projection scores selected from Combination 4. The results of this study provide a simple approach 

for quantitatively assessing soil erosion in other river basins for which detailed observation data 

are lacking. 
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1. Introduction 

As a comprehensive reflection of the ecological-environmental system in a region, 

the landscape pattern is a spatial arrangement of different landscape mosaics that results 
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from the interaction of multiple natural and human factors [1,2]. Changes in the spatial 

distribution of the landscape pattern can affect the water cycle and therefore soil erosion 

and sediment yield in a region [3,4]. Hence, studying the response of the water and 

sediment processes to landscape pattern changes in a river basin from a landscape ecol-

ogy perspective can to some extent reveal the effects of changes in natural conditions and 

human activity on the water and sediment in the river basin [5–7]. Land use—an im-

portant component of a landscape—primarily acts on the vegetation landscape pattern 

and processes such as hydrological flow. The spatial land-use pattern has notable im-

pacts on runoff, soil erosion, and sediment yield at different scales [8]. Hence, many 

studies have focused on the correlations between land-use-derived landscape metrics 

and the amount of soil erosion and the amount of sediment yield [9–16]. Partial 

least-squares regression (PLSR) is a new technique that combines principal component 

analysis (PCA) and multiple linear regression (MLR). PLSR is an important tool for 

quantitatively studying the relationships between landscape metrics and soil erosion and 

sediment yield in river basins [9,17,18]. 

Soil erosion and sediment yield in a river basin are comprehensive processes. In the 

investigation of factors related to soil erosion and sediment yield in a river basin, it may 

be insufficient to consider only the landscape metrics that are specific to the land use 

because this neglects the effects of factors such as terrain, soil, and rainfall on the hydro-

logical processes in the river basin. Therefore, several models have been developed to 

assess soil erosion and sediment yield, among which the revised universal soil loss 

equation (RUSLE) has been extensively used worldwide to estimate soil erosion at the 

watershed scale due to its simple structure, easy-to-acquire parameters, simple calcula-

tions, and consideration of the main factors affecting soil erosion, as well as its ability to 

predict erosion more accurately [19–23]. It has been widely used in the estimation of soil 

erosion at the basin scale worldwide. Hence, in this study, the slope gradient and aspect 

(LS), the rainfall erosivity (R), the soil erodibility (K), and the vegetation cover (C) factors 

in the RUSLE were combined with the land use to establish new landscape patch units, 

whose relationships with soil erosion and sediment yield in a river basin were then 

quantified. The results of this study provide a new approach to exploring and developing 

quantitative relationships between landscape metrics and soil erosion and sediment yield 

in river basins. 

The upper Ganjiang Basin once suffered from severe soil erosion problems [24]. 

Considerable efforts (e.g., afforestation, as well as water and soil conservation facility 

construction) made to mitigate soil erosion in this region since the 1980s have signifi-

cantly changed its natural and social conditions and notably reduced soil erosion and the 

amount of sediment transported into the river [25]. These conditions provide an excellent 

case for conducting this study, which has the following main objectives: (1) to establish a 

soil and water assessment tool (SWAT) model for the upper Ganjiang Basin, as well as 

correct and validate it based on measured monthly runoff and sediment discharge data; 

(2) to design multiple combinations of landscape metrics and compare the correlations 

between these metrics at different sub-river basins and between these landscape metrics 

and the soil erosion and sediment yield in the different combinations; and (3) to quantify 

the correlations between the landscape metrics selected from the combination with the 

strongest correlations and the soil erosion and sediment yield in the river basin based on 

PLSR models. 

2. Materials and Methods 

2.1. Study Area 

The upper Ganjiang Basin is located between 113°30′ E–116°40′ E and 24°26′ N–

27°07′ N (Figure 1). The basin experiences a subtropical monsoonal humid climate with 

an annual precipitation of 1400–2000 mm, which shows obvious interannual variation 

and uneven distribution throughout the year. The flood season is from April to Septem-
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ber of each year. The precipitation during this period accounts for 65% to 70% of the total 

annual precipitation. The average temperature throughout the year is 17–26 °C. The rocks 

composing the stratigraphy of the upper Ganjiang Basin mainly include sedimentary, 

magmatic, and metamorphic rocks. Granite is a typical representative of magmatic rocks 

in the basin. The main soil type is Acrisols, which is an acidic soil that is rich in iron and 

aluminum oxides and which forms in humid climates [26]. The terrain in this area is 

dominated by low mountains and hills [27]. 

 

Figure 1. The position of the upper Ganjiang Basin. 

2.2. SWAT Model Simulations 

The SWAT model has been widely used in studies in different parts of the world 

[28–33]. It provides a simulation of the hydrology and associated material transport 

transformations in a watershed by integrating the watershed topography, soils, land-use, 

weather, and land-management practices [32]. The meteorological data involved in the 

construction of the SWAT model were collected from 32 meteorological (rainfall) stations 

around the upper Ganjiang Basin from 1975 to 2010. Daily precipitation, maxi-

mum/minimum temperature, relative humidity, and wind speed data for 12 meteoro-

logical stations were collected from the China Meteorological Data Service Center 

(http://data.cma.cn (accessed on 11 April 2019). Daily precipitation data for 30 rainfall 

stations were collected from the Jiangxi Hydrology Bureau (Figure 1). The ASTER GDEM 
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dataset (30 m × 30 m) was supplied by the Geospatial Data Cloud site, Computer Net-

work Information Center, Chinese Academy of Sciences (http://www.gscloud.cn ac-

cessed on 7 April 2017). The 1980, 1995, and 2010 land-use data (30 m × 30 m) were ob-

tained from the Resource and Environment Data Cloud Platform, Chinese Academy of 

Sciences (http://www.resdc.cn accessed on 19 September 2016) (Figure 2). Based on the 

input data requirements of the SWAT model, the three periods of land-use data were re-

classified by merging similar land-use types. The reclassified land-use types included 

paddy, upland, forest, shrubland, open forest, garden, grassland, and construction land 

(Figure 2). The Harmonized World Soil Database (HWSD_v121) in SWAT format (1 km × 

1 km) was obtained from the Water Weather Energy Ecosystem Technology and Data 

website, 2w2e GmbH (https://www.2w2e.com/ accessed on 16 December 2018). Monthly 

flow data for the four hydrological stations at Hanlinqiao, Xiashan, Julongtan, and Ba-

shang were obtained from the Jiangxi Provincial Hydrological Bureau (Figure 1). 

The sequential uncertainty fitting (SUFI-2) method in the SWAT Calibration and 

Uncertainty Program (CUP) was used for model calibration and validation using the 

P-factor and R-factor to measure the effects of model rate-setting and uncertainty analysis 

[30,34]. The P-factor represents the percentage of observed data enveloped by the mod-

eling result, the 95 PPU (95% prediction uncertainty), and the R-factor represents the 

mean width of the 95 PPU interval divided by the standard deviation of the measured 

data. In general, the closer the P-factor is to 1 and the closer the R-factor is to 0, the closer 

the simulation is to the true value. The uncertainty of the simulation is considered ac-

ceptable when the P-factor > 0.5 and R-factor < 1.5; when the P-factor > 0.7 and R-factor < 

1, the uncertainty of the simulation is low [30]. The coefficient of determination (R2) and 

the Nash–Sutcliffe coefficient (NS) were used in this paper to evaluate the applicability of 

the SWAT model. R2 indicates the consistency of the trends between the simulated and 

measured values. A value closer to 1 means that the simulated values are more consistent 

with the measured values. R2 > 0.6 is usually used as a criterion for the degree of correla-

tion between measured and simulated values. NS indicates the degree of the deviation of 

the measured value from the simulated value. The closer the value is to 1, the smaller the 

deviation between the simulated and measured values. When NS ≤ 0.36, the simulation is 

considered to be unsatisfactory. When 0.36 < NS < 0.75, the simulation is considered to be 

good. When NS ≥ 0.75, the simulation is considered to be excellent [35]. 

 

Figure 2. Land-use distribution in the upper Ganjiang Basin, 1980, 1995, and 2010. 
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2.3. Partial Least-Squares Regression 

PLSR is a robust multiple regression technique that can be used to establish regres-

sion models when there are significant multiple correlations between the independent 

variables. By combining the features of PCA and MLR, the PLSR technique can produce 

modeling analyses with higher reliability and integrity [36]. In this study, the landscape 

metrics were treated as independent variables, while the soil erosion and sediment yield 

in each sub-river basin were set as dependent variables. To establish models with both 

high predictive performance and high stability, a suitable combination of components is 

generally arrived at for each PLSR model through cross-validation to achieve an optimal 

balance between the explained variability in the response (R2) and the predictive ability 

of the model (Q2). It is generally considered that a model with a cumulative Q2 (Q2cum) 

greater than 0.5 has a high predictive ability. The root mean square error of 

cross-validation (RMSECV) can be used to determine the difference between predicted 

and observed values. The importance of a predictor variable to the independent and 

dependent variables is given by the variable importance in projection (VIP) score. Terms 

with high VIP scores are the most strongly correlated with the dependent (explained) 

variables. See references for the detailed correlation algorithm and theory [18,36]. In this 

study, SIMCA-P software was used to establish PLSR models, and SPSS 20 was used to 

evaluate the correlations between the landscape metrics and between each landscape 

metric and the soil erosion and sediment yield in each sub-river basin. 

2.4. Design of Combinations 

In this study, the land use in each year was combined with the LS factor, the K fac-

tor, the C factor for each year, and/or the R factor in the RUSLE to form new landscape 

patch units. Then, the landscape metrics were calculated. Based on the SWAT-calculated 

and validated soil erosion and sediment yield data for each sub-river basin, the correla-

tions between the landscape metrics and between each landscape metric and soil erosion 

and sediment yield in different combinations were compared. On this basis, the combi-

nation with the strongest correlations was selected to quantify the correlations between 

the landscape metrics and soil erosion and sediment yield. The following combinations 

were designed to calculate the landscape metrics. 

Combination 1: land use in each year. 

Combination 2: land use in each year + LS + K. 

Combination 3: combination 2 + C. 

Combination 4: combination 2 + R. 

Combination 5: combination 2 + C + R. 

Here, the land-use data that were used to establish the SWAT model were used for 

analysis. See the literature [37] for the data sources and calculation methods for the LS, K, 

C, and R factors, which were derived from existing research results. 

Of the above-mentioned factors in the RUSLE, the LS and K factors were unlikely to 

have changed significantly over the time period selected for analysis in this study and 

thus were considered to have remained relatively unchanged, whereas the C and R fac-

tors varied with time. Therefore, Combination 1 was calculated as the conventional 

landscape metric. From this, Combination 2 was established by adding the fixed LS and 

K factors to Combination 1, while Combination 3, Combination 4, and Combination 5 

were established by adding the C factor, the R factor, and both C and R to Combination 2, 

respectively, with the goal of distinguishing the possible correlations between the land-

scape metrics that arose from the respective addition of the fixed and dynamic factors 

and the soil erosion and sediment yield in the river basin. 

To comprehensively reflect the landscape pattern features of the river basin and to 

reduce redundant information, 17 landscape-scale metrics (i.e., the patch density (PD), 

the largest patch index (LPI), the mean patch area (AREA_MN), the edge density (ED), 

the mean nearest-neighbor distance (ENN_MN), the landscape shape index (LSI), the 
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mean shape index (SHAPE_MN), the mean perimeter–area ratio (PARA_MN), the pe-

rimeter–area fractal dimension (PAFRAC), the contagion index (CONTAG), the inter-

spersion and juxtaposition index (IJI), the division index (DIVISION), the splitting index 

(SPLIT), the aggregation index (AI), Shannon’s diversity index (SHDI), Simpson’s diver-

sity index (SIDI), and Shannon’s evenness index (SHEI)) were selected based on previous 

research and were calculated by FRAGSTATS 4.2. See relevant references [38,39] for the 

calculation methods and ecological meanings of these landscape metrics. 

3. Results 

3.1. Model Calibration and Validation 

Due to the uncertainty of the SWAT model parameters, if the simulation is carried 

out over an extremely long time series, the effect of long-term changes in land-use pat-

terns on the hydrological process will be eliminated, generating pseudoparameters that 

will affect the accuracy of the simulation results [35]. At the same time, since the data that 

can be collected were limited, we can only perform simulations and validations for the 

time period 1980–2010. Therefore, this study conducted scenario simulations for three 

separate time periods—1980, 1995, and 2010—and the calibration and validation periods 

were as close to 1980, 1995, and 2010 as possible. Specifically, (1) for the land-use scenario 

in 1980, the periods 1977–1979, 1980–1982, and 1983–1985 were set as the warm-up, cali-

bration, and validation periods, respectively; (2) for the land-use scenario in 1995, the 

periods 1990–1992, 1993–1995, and 1996–1998 were set as the warm-up, calibration, and 

validation periods; and (3) for the land-use scenario in 2010, the periods 2002–2004, 2005–

2007, and 2008–2010 were set as the warm-up, calibration, and validation periods. 

Based on previous findings, 16 runoff sensitivity [27] and 5 sediment discharge sen-

sitivity parameters (Table 1) were determined and selected in this study to further cali-

brate the model for each sub-river basin. Then, based on the monthly runoff and sedi-

ment discharge data measured at four hydrological stations (i.e., the Hanlinqiao, 

Xiashan, Bashang, and Julongtan stations) in the periods 1980–1985 (P1980s), 1993–1998 

(P1995s), and 2005–2010 (P2010s), the sequential uncertainty fitting 2 (SUFI-2) algorithm in 

the SWAT calibration uncertainty program was used to analyze the uncertainty of the 

output of the SWAT model at each relevant sub-river basin, as well as to calibrate and 

validate the SWAT model. The results showed the following. 

Table 1. The parameters for model calibration and validation and their maximum theoretical 

range. 

Parameter Description 
Maximum  

Theoretical Range 

PRF Peak rate adjustment factor for sediment routing 0–2 

CH_COV Channel cover factor −0.001–1 

CH_EROD Channel erodibility factor −0.05–0.6 

SPCON 
Linear parameters for calculating the channel sediment 

routing 
0.0001–0.01 

SPEXP 
Exponent parameter for calculating the channel sediment 

routing 
1–2 

The SWAT model was well-calibrated for the runoff at all four hydrological stations 

[27]. There was a very low degree of uncertainty in the simulated sediment at each of the 

four hydrological stations (Table 2). In both the calibration and validation periods, the R2 

values for the four hydrological stations in the three historical scenarios were greater 

than 0.6, suggesting a strong correlation between the trends of the simulated and meas-

ured values. The Nash–Sutcliffe (NS) coefficient was above 0.5 for the Hanlinqiao and 

Xiashan stations for each period, indicating that the quality of the simulated values 
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ranged from good to excellent. The NS coefficient was above 0.36 for the Julongtan sta-

tion in P1980s and P1995s, indicating that the simulated values were acceptable. However, the 

NS coefficient was low for the Julongtan station in the calibration period of P2010s. For the 

Bashang station, the NS coefficient ranged from 0.73 to 0.89 in P1980s and from 0.72 to 0.73 

in the calibration periods of both P1995s and P2010s, suggesting that the simulated values 

were good. However, the simulated values for the Bashang station in the validation pe-

riods were unsatisfactory. Overall, the performance of the SWAT model in simulating the 

runoff and sediment in the upper Ganjiang Basin in each period varied. The SWAT 

model displayed good performance in simulating runoff, whereas its simulation accu-

racy for sediment in some sub-river basins in the validation periods of P1995s and P2010s was 

low. Nevertheless, the trends of the simulated values generated by the SWAT model 

were close to those of the measured values. Hence, the SWAT model could be used for 

further analysis. 

Table 2. Results of uncertainty analyses and evaluations of the sediment simulations under three historical scenari-

os—1980, 1995, and 2010—at each hydrological station. 

Station Land-Use Scenario Calibration &Validation P-Factor R-Factor R2 NS 

Hanlinqiao 

1980 
Calibration (1980–1982) 0.54 0.45 0.87 0.54 

Validation (1983–1985) —— —— 0.82 0.59 

1995 
Calibration (1993–1995) 0.78 0.9 0.73 0.7 

Validation (1996–1998) —— —— 0.76 0.61 

2010 
Calibration (2005–2007) 0.89 0.77 0.85 0.8 

Validation (2008–2010) —— —— 0.92 0.75 

Xiashan 

1980 
Calibration (1980–1982) 0.82 0.86 0.93 0.9 

Validation (1983–1985) —— —— 0.87 0.86 

1995 
Calibration (1993–1995) 0.92 0.97 0.86 0.79 

Validation (1996–1998) —— —— 0.92 0.64 

2010 
Calibration (2005–2007) 0.99 0.97 0.92 0.71 

Validation (2008–2010) —— —— 0.93 0.7 

Julongtan 

1980 
Calibration (1980–1982) 0.61 1.08 0.85 0.77 

Validation (1983–1985) —— —— 0.83 0.62 

1995 
Calibration (1993–1995) 0.89 1.07 0.85 0.81 

Validation (1996–1998) —— —— 0.86 0.38 

2010 
Calibration (2005–2007) 0.76 1.88 0.65 0.61 

Validation (2008–2010) —— —— 0.81 −7.11 

Bashang 

1980 
Calibration (1980–1982) 0.97 1.01 0.91 0.89 

Validation (1983–1985) —— —— 0.76 0.73 

1995 
Calibration (1993–1995) 0.83 1.76 0.76 0.73 

Validation (1996–1998) —— —— 0.84 −3.73 

2010 
Calibration (2005–2007) 0.99 1.2 0.8 0.72 

Validation (2008–2010) —— —— 0.77 −3.97 

3.2. Analysis of Land Use, Soil Erosion, and Sediment Yield Changes 

A comparison of the land-use types in the upper Ganjiang Basin at the three time 

points showed no significant change in the proportion of the total land area used for each 

land-use type (Table 3, Figure 2). Specifically, paddy fields, dry lands, forests, shrub-

lands, open forests, other wooded lands, grasslands, water bodies, and construction 

lands accounted for 11.53–11.66%, 6.5–6.77%, 2.25–53.72%, 3.36–3.92%, 15.63–17.80%, 

0.32–1%, 5.79–6.02%, 0.89–0.92%, and 0.88–1.16% of the total land area, respectively. 
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Table 3. Land-use changes in the upper Ganjiang Basin, 1980, 1995, and 2010. 

 1980 (km2) 1995 (km2) 2010 (km2) 

Paddy 3889 3847 3883 

Upland 2184 2170 2258 

Forest 17,429 17,498 17,919 

Shrubland 1241 1306 1120 

Open forest 5936 5795 5213 

Garden 118 106 335 

Grassland 1965 2009 1931 

Water body 298 291 306 

Built-up land 292 331 388 

Bare land 3 2 2 

However, a horizontal comparison of the area of each land-use type among the three 

time points reveals some notable changes. The area of paddy fields was 1.08% smaller in 

1995 than in 1980 but recovered in 2010 to 99.85% of the reference level. The area of dry 

lands was 0.64% smaller in 1995 than in 1980 but recovered rapidly and surpassed the 

reference level by 3.39% in 2010. The area of forests increased: it was 0.40% and 2.81% 

larger in 1995 and 2010 than in 1980, respectively. The area of shrublands was 5.24% 

larger in 1995 than in 1980, after which it decreased rapidly to 9.75% smaller in 2010 than 

in 1980. The area of open forests continuously decreased: it was 2.38% and 12.18% lower 

in 1995 and 2010 than in 1980, respectively. The area of other wooded lands first de-

creased and then increased at an extremely high rate. Specifically, compared to 1980, the 

area of other wooded lands was 10.17% smaller in 1995 but was 183.90% larger in 2010. 

Of all the land-use types, the area of other wooded lands increased by the greatest per-

centage and thus warrants close attention. The area of grasslands first increased and then 

decreased. The area of water bodies first decreased and then increased with a narrow 

range with ±7 km2 over 30 years. Construction lands are another land-use type that mer-

its attention. Compared to 1980, the area of construction lands was 13.36% larger in 1995, 

and this number increased to 32.88% in 2010. 

An observation of the spatial distribution maps of the soil erosion and sediment 

yield in the river basin during the three periods reveals a notable decline in both the soil 

erosion and sediment yield (Figures 3 and 4). The average soil erosion modulus de-

creased from 92.63 t/ha/yr in P1980s to 72.92 t/ha/yr in P1995s and further to 37.88 t/ha/yr in 

P2010s, translating to a rate of decrease of 21.28% and 59.11%, respectively. The average 

sediment yield decreased from 36.23 t/ha/yr in P1980s to 26.61 t/ha/yr in P1995s and to 12.70 

t/ha/yr in P2010s, translating to a rate of decrease of 26.55% and 64.95%, respectively (Table 

4). 
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Figure 3. Soil erosion distribution of each sub-basin for the years 1980s, 1995s, and 2010s (t/ha/yr). 

 

Figure 4. Sediment yield distribution of each sub-basin for the years 1980s, 1995s, and 2010s 

(t/ha/yr). 

Table 4. Statistical analysis of the soil erosion and sediment yield for the upper Ganjiang Basin for 

the years 1980s, 1995s, and 2010s (t/ha/yr). 

 
Soil Erosion Sediment Yield 

P1980s P1995s P2010s P1980s P1995s P2010s 

Maximum 605.67 493.05 467.54 204.49 106.65 58.01 

Minimum 13.8 7.85 5.34 0.68 0.78 0.60 

Average 92.63 72.92 37.88 36.23 26.61 12.7 

Standard 

Deviation 
78.06 69.46 56.02 43.26 29.83 14.18 



Land 2021, 10, 990 10 of 19 
 

The distribution patterns of the soil erosion in different years were similar. An 

analysis of the distribution maps of the soil erosion and sediment yield in conjunction 

with the regional terrain and land-use maps shows the following. Generally, the soil 

erosion was higher in hilly areas with fragmented terrain and smaller in river valleys 

with flat terrain. The soil erosion was higher in areas where uplands and construction 

lands accounted for more of the sub-river basin and lower in areas where forests and 

grasslands accounted for more of the sub-river basin. In addition, the sediment yield was 

correspondingly high in the high-soil erosion areas. However, except for the upper 

reaches of each tributary, the sediment yield was notably low in the valleys through 

which the Ganjiang runs. This phenomenon also reflects the role of flat terrain in inter-

cepting sediment produced by soil erosion. 

3.3. Correlation Analysis of Landscape Metrics in Different Combinations 

As shown in Figure 5, overall, similar correlations were found between the param-

eters across the five combinations, although with some individual differences. Compar-

ing all the combinations, similar correlations were found between the area metrics (i.e., 

PD, LPI, and AREA_MN). Specifically, PD was negatively correlated with LPI and AR-

EA_MN, while there was a positive correlation between AREA_MN and LPI. For the 

fragmentation metrics (i.e., ED and ENN_MN), a negative correlation was found be-

tween them in Combination 1, Combination 3, and Combination 5, while no significant 

correlation was found between them in Combination 1 or Combination 4. For the shape 

metrics (i.e., LSI, SHAPE_MN, PARA_MN, and PAFRAC), their correlations differed 

considerably from combination to combination. Specifically, in Combination 1, LSI was 

positively correlated with PAFRAC and PARA_MN and was nonsignificantly correlated 

with SHAPE_MN; SHAPE_MN was significantly positively and negatively correlated 

with PAFRAC and PARA_MN, respectively; and PARA_MN was negatively correlated 

with PAFRAC. In Combination 2–Combination 5, similar correlations were found be-

tween the shape metrics. LSI was negatively correlated with SHAPE_MN and PAFRAC 

in Combination 2–Combination 5. LSI was similarly negatively correlated with PA-

RA_MN in Combination 2 and Combination 4 but was nonsignificantly correlated with 

this metric in Combination 3 and Combination 5. Moreover, in Combination 2–

Combination 5, SHAPE_MN was negatively correlated with PARA_MN and PAFRAC, 

while PARA_MN was positively correlated with PAFRAC. For the spatial structure 

metrics (i.e., CONTAG, IJI, DIVISION, SPLIT, and AI), in each combination, CONTAG 

was negatively correlated with IJI, DIVISION, and SPLIT and was positively correlated 

with AI. In each combination, IJI was negatively correlated with AI and was positively 

correlated with DIVISION and SPLIT, although the correlation between IJI and DIVI-

SION was nonsignificant in Combination 2 and Combination 4. For the evenness metrics 

(i.e., SHDI, SIDI, and SHEI), positive correlations were found between them in each 

combination. 
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Figure 5. Correlation matrix of landscape metrics under five different combinations. 

3.4. Correlation Analysis of the Soil Erosion and Landscape Metrics in Different Combinations 

The correlations between the soil erosion and landscape metrics differed signifi-

cantly from period to period and from combination to combination (Table 5). In Combi-

nation 1, soil erosion in P1995s was positively correlated with PD, IJI, SHDI, SIDI, and SHEI 

and was negatively correlated with LPI and CONTAG, while the soil erosion in P2010s was 

positively correlated with IJI, and SHEI was negatively correlated with CONTAG and 

was nonsignificantly correlated with the other metrics. In Combination 2, the soil erosion 

in P1980s was negatively correlated with PD and ED and was positively correlated with 

AREA_MN and SHAPE_MN. The soil erosion in P1995s was positively correlated with 

PAFRAC and AI and was negatively correlated with PD, ED, DIVISION, and SIDI. The 

soil erosion in P2010s was positively correlated with AREA_MN, SHAPE_MN, PAFRAC, 

CONTAG, and AI; was negatively correlated with PD, ED, LSI, SHDI, and SIDI; and was 

nonsignificantly correlated with the other metrics. In Combination 3, the soil erosion in 

P1995s was positively correlated with LPI, AREA_MN, SHAPE_MN, and AI and was neg-

atively correlated with PD, ED, ENN_MN, LSI, DIVISION, SHDI, and SIDI. The soil ero-

sion in P2010s was positively correlated with SHAPE_MN and PAFRAC, was negatively 

correlated with SHDI and SIDI, and was nonsignificantly correlated with the other met-

rics. In Combination 4, the soil erosion in P1980s was positively correlated with AR-

EA_MN, SHAPE_MN, and AI and was negatively correlated with PD and ED. The soil 

erosion in P1995s was positively correlated with LPI, AREA_MN, SHAPE_MN, and AI and 

was negatively correlated with PD, ED, and DIVISION. The soil erosion in P2010s was 

positively correlated with AREA_MN, SHAPE_MN, PAFRAC, and AI; was negatively 

correlated with PD, ED, LSI, and DIVISION; and was nonsignificantly correlated with the 

other metrics. In Combination 5, the soil erosion in P1980s was only positively correlated 

with SHAPE_MN. The soil erosion in P1995s was positively correlated with LPI, AR-

EA_MN, SHAPE_MN, and AI and negatively correlated with PD, ED, ENN_MN, LSI, 

DIVISION, and SIDI. The soil erosion in P2010s was positively correlated with SHAPE_MN 

and PAFRAC, was negatively correlated with ENN_MN, and was nonsignificantly cor-

related with the other metrics. 
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A comparison of the correlations between the soil erosion and each landscape metric 

in the five combinations shows that Combination 4 contained the most parameters sig-

nificantly correlated with soil erosion at the 0.05 level, followed by Combination 2, 

Combination 3, and Combination 5 (Combination 3 = Combination 5), and Combination 

1. Thus, the landscape metrics in Combination 4 were more strongly correlated with soil 

erosion in the sub-river basins. 

Table 5. The correlation between landscape metrics and soil erosion under five different combinations. 

 
Combination 1 Combination 2 Combination 3 Combination 4 Combination 5 

P1980s P1995s P2010s P1980s P1995s P2010s P1980s P1995s P2010s P1980s P1995s P2010s P1980s P1995s P2010s 

PD 0.084 0.261 * 0.099 −0.270 * −0.338 ** −0.343 ** −0.162 −0.269 * −0.150 −0.285 * −0.357 ** −0.356 ** −0.159 −0.269 * −0.152 

LPI −0.130 −0.023 * −0.180 0.111 0.225 0.146 0.189 0.392 ** 0.200 0.177 0.308 ** 0.197 0.167 0.395 ** 0.212 

AREA_MN −0.090 −0.200 −0.117 0.379 ** 0.406 ** 0.410 ** 0.187 0.390 ** 0.154 0.388 ** 0.421 ** 0.418 ** 0.184 0.389 ** 0.159 

ED 0.109 0.204 0.083 −0.276 * −0.338 ** −0.335 ** −0.141 −0.316 ** −0.092 −0.303 ** −0.370 ** −0.354 ** −0.137 −0.316 ** −0.094 

ENN_MN −0.131 −0.145 −0.152 0.130 0.143 0.100 −0.119 −0.248 * −0.218 0.080 0.139 −0.009 −0.150 −0.244 * −0.258 * 

LSI −0.096 −0.166 −0.130 −0.182 −0.283 * −0.232 * −0.159 −0.269 * −0.187 −0.185 −0.285 * −0.233 * −0.158 −0.269 * −0.187 

SHAPE_MN −0.053 −0.098 −0.139 0.322 ** 0.373 ** 0.386 ** 0.268 * 0.345 ** 0.333 ** 0.319 ** 0.378 ** 0.390 ** 0.276 * 0.341 ** 0.343 ** 

PARA_MN −0.209 −0.128 −0.135 0.082 0.052 0.153 0.153 0.146 0.203 0.111 0.044 0.117 0.160 0.141 0.188 

PAFRAC 0.003 −0.052 −0.061 0.174 0.237 * 0.264 * 0.199 0.220 0.275 * 0.175 0.212 0.259 * 0.206 0.220 0.270 * 

CONTAG −0.161 −0.252 * −0.230 * 0.126 0.172 0.229 * 0.153 0.178 0.144 0.152 0.202 0.195 0.175 0.179 0.100 

IJI 0.161 0.248 * 0.248 * −0.017 −0.032 −0.100 −0.134 −0.042 −0.196 −0.030 −0.029 −0.065 −0.170 −0.042 −0.169 

DIVISION 0.112 0.199 0.165 −0.214 −0.289 * −0.224 −0.216 −0.387 ** −0.218 −0.237 * −0.325 ** −0.247 * −0.208 −0.383 ** −0.229 

SPLIT 0.095 0.200 0.145 0.027 −0.060 −0.083 −0.053 −0.143 −0.127 −0.069 −0.139 −0.128 −0.039 −0.140 −0.129 

AI −0.112 −0.201 −0.081 0.280 * 0.357 ** 0.334 ** 0.143 0.330 ** 0.092 0.314 ** 0.391 ** 0.358 ** 0.147 0.335 ** 0.100 

SHDI 0.152 0.247 * 0.195 −0.139 −0.221 −0.240 * −0.167 −0.261 * −0.230 * −0.074 −0.196 −0.146 −0.097 −0.228 −0.141 

SIDI 0.161 0.246 * 0.203 −0.193 −0.262 * −0.285 * −0.225 −0.355 ** −0.271 * −0.161 −0.272 * −0.170 −0.195 −0.354 ** −0.176 

SHEI 0.157 0.247 * 0.233 * −0.041 −0.084 −0.155 −0.093 −0.100 −0.120 −0.036 −0.099 −0.063 −0.074 −0.097 −0.022 

** and * indicate significant correlations at the 0.01 and 0.05 levels (two-tailed), respectively. 

3.5. Correlation Analysis of Sediment Yield and the Landscape Metrics in Different Combinations 

Similarly, the relations between sediment yield and the landscape metrics differed 

significantly from period to period and from combination to combination (Table 6). In 

Combination 1, the sediment yield in P1980s was positively correlated with LPI and 

CONTAG and was negatively correlated with ED, DIVISION, SPLIT, SHDI, SIDI, and 

SHEI. The sediment yield in P1995s was positively correlated with LPI, PARA_MN, and 

CONTAG and was negatively correlated with IJI, DIVISION, SPLIT, SHDI, SIDI, and 

SHEI. The sediment yield in P2010s was correlated with the landscape metrics in the same 

way as the sediment yield in P1995s. In Combination 2, the sediment yield in P1980s was 

positively correlated with PD, ED, ENN_MN, LSI, IJI, SPLIT, SHDI, SIDI, and SHEI and 

was negatively correlated with AREA_MN, SHAPE_MN, PARA_MN, PAFRAC, CON-

TAG, and AI. The relations between the sediment yield in each of P1995s and P2010s and the 

landscape metrics were similar those between the sediment yield in P1980s and the land-

scape metrics. In Combination 3, the sediment yield in each of P1980s and P2010s was posi-

tively correlated with ENN_MN, SHDI, and SIDI and was negatively correlated with 

SHAPE_MN, PARA_MN, and PAFRAC. The sediment yield in P1995s was correlated with 

more landscape metrics: positively with PD, ED, ENN_MN, LSI, IJI, SPLIT, SHDI, SIDI, 

and SHEI (similar to the sediment yield in P1995s in Combination 2) and negatively with 

LPI, AREA_MN, SHAPE_MN, PAFRAC, CONTAG, and AI. In Combination 4, the 

sediment yield in each of the three periods was correlated with more landscape metrics 

in mostly similar ways: positively with PD, ED, ENN_MN, LSI, IJI, DIVISION, SPLIT, 

SHDI, SIDI, and SHEI and negatively with LPI, AREA_MN, SHAPE_MN, PARA_MN, 

PAFRAC, CONTAG, and AI. In Combination 5, the sediment yield in P1980s was posi-

tively correlated with ENN_MN and SIDI and was negatively correlated with 

SHAPE_MN, PARA_MN, and PAFRAC. The sediment yield in P2010s was positively cor-

related with ENN_MN, IJI, SHDI and SIDI and was negatively correlated with LPI, 

SHAPE_MN, PARA_MN, and PAFRAC. The sediment yield in P1995s was correlated with 
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the landscape metrics in ways similar to those in Combination 3. Overall, the correlations 

between sediment yield and each landscape metric in Combination 1 were mostly oppo-

site to those in other combinations. For example, sediment yield was negatively corre-

lated with the evenness metrics (i.e., SHDI, SIDI, and SHEI) in Combination 1 but was 

positively correlated with these metrics in the other combinations. Similar phenomena 

were observed for the area, fragmentation, shape, and spatial structure metrics. Thus, 

across all the combinations, there were highly similar correlations between the area met-

rics, between the evenness metrics, between the spatial structure metrics, and between 

the evenness metrics, while the correlations between the shape metrics in Combination 1 

differed considerably from those in other combinations. 

Table 6. The correlation between landscape metrics and sediment yield under five different combinations. 

 
Combination 1 Combination 2 Combination 3 Combination 4 Combination 5 

P1980s P1995s P2010s P1980s P1995s P1980s P1995s P2010s P1980s P1995s P1980s P1995s P2010s P1980s P1995s 

PD −0.174 −0.154 −0.135 0.400 ** 0.415 ** 0.422 ** −0.044 0.330 ** 0.011 0.398 ** 0.412 ** 0.425 ** −0.045 0.328 ** 0.008 

LPI 0.463 ** 0.498 ** 0.518 ** −0.227 −0.262 * −0.213 −0.227 −0.269 * −0.240 * −0.242 * −0.277 * −0.267 * −0.218 −0.263 * −0.241 * 

AREA_MN 0.163 0.162 0.140 −0.345 ** −0.361 ** −0.353 ** 0.004 −0.315 ** −0.043 −0.348 ** −0.363 ** −0.357 ** 0.005 −0.313 ** −0.038 

ED −0.255 * −0.183 −0.154 0.368 ** 0.400 ** 0.391 ** −0.091 0.308 ** −0.040 0.374 ** 0.404 ** 0.403 ** −0.091 0.307 ** −0.042 

ENN_MN 0.049 0.077 0.020 0.256 * 0.170 0.206 0.450 ** 0.350 ** 0.424 ** 0.267 * 0.157 0.190 0.467 ** 0.351 ** 0.414 ** 

LSI 0.048 0.138 0.090 0.236 * 0.303 ** 0.239 * 0.141 0.278 * 0.142 0.234 * 0.301 ** 0.239 * 0.141 0.278 * 0.142 

SHAPE_MN −0.100 −0.054 −0.046 −0.429 ** −0.399 ** −0.415 ** −0.358 ** −0.410 ** −0.366 ** −0.423 ** −0.400 ** −0.418 ** −0.354 ** −0.403 ** −0.365 ** 

PARA_MN 0.104 0.264 * 0.229 * −0.315 ** −0.242 * −0.248 * −0.338 ** −0.116 −0.318 ** −0.318 ** −0.269 * −0.275 * −0.338 ** −0.122 −0.322 ** 

PAFRAC 0.101 0.030 0.039 −0.434 ** −0.377 ** −0.405 ** −0.432 ** −0.288 * −0.420 ** −0.436 ** −0.367 ** −0.399 ** −0.434 ** −0.287 * −0.419 ** 

CONTAG 0.333 ** 0.344 ** 0.324 ** −0.392 ** −0.421 ** −0.426 ** −0.027 −0.318 ** −0.110 −0.383 ** −0.431 ** −0.449 ** −0.024 −0.322 ** −0.090 

IJI −0.206 −0.274 * −0.256 * 0.334 ** 0.325 ** 0.366 ** 0.209 0.273 * 0.263 * 0.329 ** 0.316 ** 0.363 ** 0.210 0.271 * 0.254 * 

DIVISION −0.450 ** −0.466 ** −0.494 ** 0.221 0.237 * 0.211 0.189 0.209 0.197 0.222 0.241 * 0.229 * 0.186 0.205 0.195 

SPLIT −0.420 ** −0.445 ** −0.455 ** 0.259 * 0.296 * 0.273 * 0.163 0.236 * 0.204 0.213 0.232 * 0.238 * 0.155 0.238 * 0.215 

AI 0.263 * 0.193 0.166 −0.365 ** −0.402 ** −0.388 ** 0.083 −0.306 ** 0.034 −0.375 ** −0.404 ** −0.395 ** 0.079 −0.306 ** 0.038 

SHDI −0.310 ** −0.311 ** −0.314 ** 0.402 ** 0.428 ** 0.408 ** 0.275 * 0.436 ** 0.300 ** 0.310 ** 0.410 ** 0.394 ** 0.210 0.418 ** 0.303 ** 

SIDI −0.312 ** −0.313 ** −0.310 ** 0.361 ** 0.386 ** 0.357 ** 0.263 * 0.378 ** 0.284 * 0.330 ** 0.384 ** 0.372 ** 0.251 * 0.373 ** 0.283 * 

SHEI −0.325 ** −0.347 ** −0.329 ** 0.365 ** 0.398 ** 0.392 ** 0.089 0.327 ** 0.157 0.325 ** 0.413 ** 0.408 ** 0.067 0.342 ** 0.165 

** and * indicate significant correlations at the 0.01 and 0.05 levels (two−tailed), respectively. 

A comparison of the correlations between sediment yield and each landscape metric 

in the five combinations shows that Combination 4 and Combination 2 both contained 

the most parameters significantly correlated with sediment yield at the 0.05 level, fol-

lowed by Combination 1 and Combination 5 and Combination 3 (Combination 5 = Com-

bination 3). Combination 4 contained the most parameters significantly correlated with 

sediment yield at the 0.01 level, followed by Combination 2 and Combination 3 (Com-

bination 2 = Combination 3) and then Combination 5 and Combination 1 (Combination 5 

= Combination 1). It can be concluded that the landscape metrics in Combination 4 were 

the most strongly correlated with sediment yield in the sub-river basins. 

3.6. Quantification of the Correlations between Soil Erosion or Sediment Yield and Landscape 

Metrics 

Since stronger correlations were found between the landscape metrics in Combina-

tion 4 and soil erosion and sediment yield, Combination 4 was selected in this study to 

establish PLSR models between the landscape metrics and the soil erosion and sediment 

yield of the sub-river basins within the upper Ganjiang Basin from the 1980s–2010s (Table 

7). Q2 is the ratio of the variances of the dependent variables (i.e., soil erosion and sedi-

ment yield) that can be explained by all the components of the PLSR models. The Q2 

values for all the PLSR models were above 0.5 except that for the soil erosion in P2010s, 

whose Q2 value was only 0.292, suggesting that the dependent variables could be well 

explained. Therefore, all the established PLSR models were robust. 

Of the PLSR models for soil erosion, the PLSR model containing the first component 

for P1980s explained 28% of the variance in soil erosion. The addition of the second com-
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ponent increased the explanatory ability of the PLSR model to 59.1%. From there, the 

addition of the third component and then the fourth component increased the explana-

tory ability of the PLSR model to 63% and 64.2%, respectively. Further adding compo-

nents did not substantially increase the explanatory ability of the PLSR model for the 

dependent variable. In total, the PLSR models for P1995s and P2010s explained 61% and 

41.2% of the variance in soil erosion, respectively. 

Of the PLSR models for sediment yield, the PLSR model containing the first com-

ponent for P1980s explained 33.7% of the variance in sediment yield. The addition of the 

second component increased the explanatory ability of the PLSR model to 45.1%. From 

there, the addition of the third component and then the fourth component increased the 

explanatory ability of the PLSR model to 53.8% and 55.8%, respectively. Further adding 

components did not substantially increase the explanatory ability of the PLSR model for 

the dependent variable. In total, the PLSR models for P1995s and P2010s explained 57.9% and 

57.1% of the variance in sediment yield, respectively. The minimum RMSECV for each 

PLSR model corresponded to the maximum Q2, suggesting that the model was optimal. 

Table 7. Summary of the PLSR models of soil erosion and sediment yield under Combination 4. 

Response  

Variable Y 
Year R2 Q2 Component 

% of Explained  

Variability in Y 

Cumulative Explained  

Variability in Y (%) 
Q2cum 

RMSECV 

(t/ha/yr) 

Soil erosion 

1980s 0.59 0.57 1 28.00 28.00 0.26 98.88 

   2 31.00 59.10 0.57 74.98 

   3 3.89 63.00 0.58 75.13 

   4 1.24 64.20 0.53 78.67 

1995s 0.60 0.55 1 21.30 21.30 0.20 88.54 

   2 31.90 53.20 0.51 69.14 

   3 6.48 59.70 0.55 66.98 

   4 1.28 61.00 0.52 68.92 

2010s 0.39 0.29 1 11.40 11.40 0.11 62.79 

   2 20.60 31.90 0.29 55.92 

   3 7.32 39.30 0.29 55.98 

   4 1.92 41.20 0.25 57.36 

Sediment yield 

1980s 0.56 0.49 1 33.70 33.70 0.30 47.85 

   2 11.40 45.10 0.41 43.60 

   3 8.71 53.80 0.48 40.77 

   4 1.95 55.80 0.49 40.51 

1995s 0.58 0.52 1 36.30 36.30 0.31 33.45 

   2 12.40 48.60 0.44 30.10 

   3 7.39 56.00 0.51 28.09 

   4 1.88 57.90 0.52 27.75 

2010s 0.57 0.51 1 37.00 37.00 0.33 15.75 

   2 11.90 48.90 0.45 14.25 

   3 6.57 55.50 0.51 13.44 

   4 1.66 57.10 0.51 13.31 

Redundant variables may reduce the statistical significance of a PLSR model, so it is 

necessary to further evaluate the importance of each landscape metric to generate opti-

mal PLSR models. The relative importance of an LR metric can be measured by its VIP 

score. The key metrics affecting the soil erosion and sediment yield in P1980s, P1995s, and 

P2010s were highly similar (Table 8). SPLIT, PARA_MN, ENN_MN, ED, and LSI were the 

landscape metrics with the highest VIP scores. The VIP scores of SPLIT and PARA_MN 

for soil erosion and sediment yield in all the periods were greater than 1. The VIP scores 

of ENN_MN were greater than 1 for the soil erosion in P1980s and P1995s and the sediment 

yield in P1980s and were close to 1 in the other combinations. The VIP scores of ED were 

greater than 1 for the soil erosion and sediment yield in P2010s and were close to 1 in the 
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other combinations. The VIP scores of LSI were greater than 1 for the soil erosion and 

sediment yield in P1995s and the soil erosion in P2010s and were close to 1 in the other com-

binations. These findings show that these five landscape metrics play main roles in con-

trolling soil erosion and sediment yield in the river basin and thus can be used as the 

main metrics for establishing optimal PLSR models for each stage. 

A PLSR analysis in the study area in all three study periods yielded the following 

quantitative relationships between soil erosion (QSE) and sediment yield (QSY) in the river 

basin and the landscape metrics: 

QSE = −10.016XED − 0.155XLSI + 0.203XPARA_MN + 0.390XENN_MN + 0.005XSPLIT (1) 

QSY = 0.385XED + 0.060XLSI − 0.194XPARA_MN + 0.315XENN_MN − 0.001XSPLIT (2) 

The Q2 values for soil erosion and sediment yield are 0.51 and 0.47, respectively, 

suggesting that the models have good predictive ability and robustness. 

Table 8. The VIP of landscape metrics for soil erosion and sediment yield under Combination 4. 

 
Soil Erosion Sediment Yield 

1980s 1995s 2010s 1980s 1995s 2010s 

SPLIT 20.745 20.528 20.315 30.116 30.181 30.230 

PARA_MN 20.555 20.603 20.539 10.894 10.873 10.863 

ENN_MN 10.046 10.149 0.998 10.126 0.903 0.890 

ED 0.915 0.983 10.320 0.995 0.981 10.018 

LSI 0.794 10.037 10.291 0.990 10.072 0.883 

PD 0.442 0.510 0.757 0.580 0.549 0.589 

AI 0.301 0.327 0.347 0.218 0.223 0.224 

CONTAG 0.208 0.220 0.214 0.179 0.200 0.191 

IJI 0.192 0.199 0.190 0.205 0.211 0.207 

LPI 0.074 0.130 0.116 0.095 0.100 0.098 

AREA_MN 0.025 0.027 0.041 0.019 0.018 0.019 

SHDI 0.016 0.017 0.021 0.019 0.024 0.023 

PAFRAC 0.005 0.005 0.005 0.003 0.003 0.003 

SHAPE_M

N 
0.005 0.005 0.005 0.003 0.003 0.003 

DIVISION 0.004 0.004 0.004 0.003 0.003 0.003 

SIDI 0.003 0.004 0.003 0.003 0.003 0.003 

SHEI 0.002 0.003 0.003 0.002 0.003 0.003 

4. Discussion 

Of all the land-use types in the upper Ganjiang Basin in the 1980s–2010s, other 

wooded lands increased in area by the greatest percentage, followed by construction 

lands, dry lands, forests, and water bodies, while open forests shrank by the greatest 

percentage, followed by shrublands. This phenomenon may have been a result of eco-

nomic development and human activity in the region [25]. Economic development led to 

a considerable increase in the urban construction land area. Large-scale prevention and 

control measures have been implemented to prevent severe soil erosion since the 1990s. 

Extensive cultivation of pioneer tree species (e.g., Pinus massoniana) for water and soil 

conservation in areas with low vegetation coverage resulted in a rapid increase in the 

local area of local shrublands. Later, some of these lands underwent succession and be-

came forests with high coverage, some were turned into urban construction lands, and 

some were developed into economic forests (e.g., navel orange orchards and tea planta-



Land 2021, 10, 990 16 of 19 
 

tions), leading to a rapid expansion of other wooded lands. In contrast, there was a con-

tinuous decrease in open forests. Similarly, the evolution and succession of open forests 

resulted in notable increases in the areas of economic forests and construction lands. The 

expansion of dry lands may have been a result of the discontinuation of farming in some 

orchards and farmlands due to the migration of local farmers to urban areas for work. 

The increase in the area of water bodies may have only been related to the interannual 

variation in rainfall. The overall significant decreases in soil erosion and sediment yield 

in the river basin reflect the considerable importance attached by the local authorities to 

water and soil conservation as well as the marked results of the soil erosion control 

measures. 

The inherent defects of the SWAT model prevent it from accurately simulating 

long-term soil erosion conditions [31]. In addition, the soil erosion module used in the 

SWAT model is an empirical model, whereas the actual factors affecting soil erosion and 

sediment yield and their processes are much more complex than model simulations. As a 

result, the SWAT model may not be able to yield simulations completely consistent with 

the actual situation. But this is a common, objective problem facing model simulations 

and is not within the scope of this study. Under current circumstances, collecting soil 

erosion measurements at a river basin scale is an exceedingly difficult task. It is easier to 

measure the runoff and sediment discharge in a river at the outlet of the river basin. 

Therefore, in the presence of limited data, the powerful simulation and calibration tools 

of the SWAT model can be employed to effectively evaluate soil erosion conditions 

within a river basin and to provide a basis for formulating relevant policies [9]. 

It is suggested that there are three types of landscape structures: patches, corridors, 

and matrix [1]. The landscape matrix is the largest and most connected type of landscape 

element in the landscape, and as such, it can potentially have a great influence on the 

dynamics of the species in the landscape [9]. However, constrained by the characteristics 

of the landscape matrix and the complexity of ecological processes, reliance on the land-

scape matrix is often criticized for failing to accurately reflect landscape characteristics 

and their ecological relevance [40]. How to link landscape metrics to specific ecological 

processes or develop new landscape indicators is one of the current challenges in land-

scape ecology research [15]. Many scholars have conducted active explorations for this 

purpose. For example, the gradient paradigm is combined with the landscape pattern 

index to analyze the landscape pattern characteristics of sample strips or local areas [41]. 

The directional infiltration index (DLI) is used to characterize the ability of landscape 

cover to hold back water and soil [3]. These studies have incorporated some theoretical 

paradigms and landscape patterns into landscape metrics, which have given new dy-

namics to landscape pattern analysis. However, due to the complexity of ecological pro-

cesses, the multiplicity of influencing factors and their variability at any spatial and 

temporal scales, these new metrics still face many doubts and difficulties in the analysis 

of pattern–process interrelationships. Therefore, this study presents a new landscape in-

dicator and explores the relationship between landscape metrics and soil erosion and 

sediment yield at larger scales. The results show that compared to land use alone, the 

addition of the LS, K, R, and C factors significantly altered the landscape pattern in the 

river basin but did not lead to significant changes in the correlations between most of the 

landscape metrics, which reflects their relatively deterministic mathematical relations 

[42]. 

A comparison of the five combinations of landscape metrics shows that the land-

scape metrics in Combination 2 were more significantly correlated with the soil erosion 

and sediment yield in the river basin than those in Combination 1, suggesting that the 

addition of the relatively fixed LS and K factors can effectively improve the explanatory 

ability of the landscape metrics for soil erosion and sediment yield. An analysis of Com-

bination 3 and Combination 4, which in addition to the Combination 2 factors had dy-

namically varying C and R factors, respectively, shows that adding the R factor caused 

the correlations between the landscape metrics and the soil erosion and sediment yield to 
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further increase to their highest levels, which also reflects the importance of R to the soil 

erosion and sediment yield process. In contrast, the addition of C weakened the correla-

tions. This may be because the land use itself reflects certain vegetation cover conditions, 

while adding C, which varies relatively significantly at seasonal and annual scales, re-

sults in a certain degree of information redundancy, thereby interfering with the ability 

of the PLSR model to explain and predict soil erosion and sediment yield. This explana-

tion is corroborated by the similarly weak correlations between each landscape metric of 

Combination 5 and soil erosion and sediment yield. 

The results of this study showed that the landscape pattern had a significant influ-

ence on the soil erosion and sediment yield in the upper Ganjiang Basin. The PLSR model 

was able to identify the main landscape metrics controlling soil erosion and sediment 

yield in each sub-basin of the upper Ganjiang Basin. All landscape metrics can be ob-

tained relatively easily through land-use maps, DEM, etc. Therefore, in the absence of 

sufficient actual monitoring data, soil erosion and sediment yield in the basin can still be 

predicted with reasonable accuracy through the new landscape indicator. However, the 

quantitative relationships of the new landscape indicator with soil erosion and sediment 

yield in the basin that we established in this study have limitations. These quantitative 

relationships may be applicable only to the study area and the periods involved in this 

study and are not universal. There are doubts about the ecological correlations of land-

scape metrics [43,44]. In addition, landscape metrics are unable to reflect soil erosion and 

sediment yield processes [45]. While statistically significant correlations were found 

between the landscape metrics and between these metrics and soil erosion and sediment 

yield, relevant principles and mechanisms of action remain unclear and require further 

exploration. 

5. Conclusions 

This paper presents a case study of the upper Ganjiang Basin. Five combinations of 

landscape metrics were chosen for analysis. Through simulations using a hydrological 

model and PLSR, the correlations between the landscape metrics and between the land-

scape metrics and the soil erosion and sediment yield of the river basin were investigat-

ed. The main conclusions are drawn as follows: 

(1) In the 1980s–2010s, the areas of other wooded lands and construction lands in the 

upper Ganjiang Basin increased to large degrees, which was related to economic 

factors such as urban expansion, afforestation, and extensive development of eco-

nomic forests. This period also saw considerable decreases in the soil erosion and 

sediment yield of the river basin, reflecting the great importance attached by the 

local authorities to water and soil conservation efforts that effectively restored the 

ecological environment. 

(2) Five combinations were established through the addition of the relatively fixed soil 

erosion factors (i.e., the LS and K factors) and/or one or both of the dynamically 

varying C and R factors to the land-use. The correlations between the landscape 

metrics in each combination were calculated. When we compared the correlations 

between the landscape metrics across the five combinations, highly similar correla-

tions were found between the area metrics, between the fragmentation metrics, 

between the spatial structure metrics, and between the evenness metrics in the dif-

ferent combinations. However, the correlations between the shape metrics in Com-

bination 1 differed considerably from those in the other combinations. 

(3) Comparison of the correlations between the landscape metrics in different combi-

nations and the soil erosion and sediment yield of the river basin showed that the 

landscape metrics in Combination 4, which combined the land-use and the LS, K, 

and R factors, were the most significantly correlated with soil erosion and sediment 

yield. The correlations between the landscape metrics with the highest VIP scores in 

Combination 4 and the soil erosion and sediment yield in the river basin were 
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quantified. This study explores a new indicator for the correlations between land-

scape metrics and soil erosion and sediment yield and provides decision-makers 

with a new quantification method for evaluating these correlations and formulating 

water and soil conservation policies. While we attempted to explain why the land-

scape indicator in Combination 4 were the most significantly correlated with the soil 

erosion and sediment yield in the river basin, further research is needed to deter-

mine the relevant internal principles and mechanisms of action from a landscape 

pattern perspective. 
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