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Abstract: Land-use classification is fundamental for environmental and water resource evaluation
in coastal plain areas. However, comprehensive remote sensing image-based land-use analysis is
challenged by the lack of massive remote sensing images and the massive computing power of
large-scale server systems. In this paper, the spatial-temporal land-use change characteristics of
the Hangzhou Bay area coastal plain are investigated on the Google Earth Engine platform. The
proposed model uses a random forest algorithm to assist the land-use classification. The dataset is
selected from the year 2009 to 2020 and classified with an average classification accuracy of 89% and
Kappa coefficient of 88%. The results show that the land use in the selected region is affected by
urbanization, the balance of cultivated land occupation and compensation, construction of economic
development zone, and other activities. The investigation also shows that in the past 12 years, land
use has changed rapidly, and each land-use type maintains the dynamic balance of occupation and
compensation. Although the overall land-use distribution is stable, the information entropy fluctuates
at a high level, with an average value of 1.15, and the multi-year average value of equilibrium is as
high as 0.83. The driving force of land-use change is analyzed and accounted as demographics and
human population dynamics, social-economic development, urbanization, and coupling effects of
the above-mentioned factors.

Keywords: land use; coastal plain; spatial-temporal change; Google Earth Engine

1. Introduction

Land-use/land-cover (LULC) is usually defined as the human use of land, such as
the economic and cultural activities (e.g., agricultural, residential, industrial, mining, and
recreational uses) that are practiced at a given place. The rising human population and the
associated demand for more land and natural resources are intensifying conflicts between
human beings and wildlife worldwide. Land-use change is the result of the interaction
between human beings and nature and has become one of the main reasons for global
change at present. Land-use/land-cover changes can be made very frequently in both
public and private lands due to very different uses. It seriously affects various fields closely
related to human life, such as the ecological environment, economic development, food
production, and climate change [1–5]. Land-use changes can also result in environmental
changes due to the correlation of human activities and land-cover changes [6,7]. For
example, nearly all waters contain dissolved salts and trace elements, many of which result
from both the land use of human beings and the natural weathering of the Earth’s surface.
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Moreover, for agriculture, drainage waters from irrigated lands and effluent from city
sewage and industrial wastewater can impact water quality. These are both examples that
land use may have an impact on systematic environmental parameters changes.

Land-use/land-cover in public or private land both changes continuously and at many
scales, from regional, national, to international scales. Land-use change also represents the
regional, national, or international transition on human activity-based land-cover change.
Specifically, land use can have specific and cumulative effects on air and water quality,
watershed function, generation of waste, extent and quality of wildlife habitat, climate,
and human health; therefore, land-use/land-cover change is a good indicator for natural,
environmental, and social-economic development evaluation and sustainable development.
Land use is also a secondary indicator for various evaluation and analysis, such as soil
moisture deficit, drought impact on ecosystems, imperviousness and imperviousness
change, vegetation productivity, landscape fragmentation pressure and trends, land take,
land recycling, and densification. The dynamic changes of regional land use can effectively
reflect the characteristics of land resources [8–11]. For example, Drummond et al. [12]
proposed remote sensing data, statistical sampling, and change-detection-based approach
to investigate how land conversion varies spatially and temporally across the east from
1973 to 2000, and how those changes affect regional land-change dynamics in the Eastern
United States. The results show that agricultural land use has continued to decline, and
that this enables forest recovery; an important land-cover transition has occurred, from
a mode of regional forest-cover gain to one of forest-cover loss caused by timber cutting
cycles, urbanization, and other land-use demands. Similarly, Wang et al. [13] proposed a
land change detection method to capture significant land change hotspots over Northern
China during 2001–2013, and further analyzed temporal trends and spatial patterns of
LCLUC based on classification of annual LCLU maps from MODIS satellite imagery. The
results provide the magnitude, trend, and spatial pattern of land-cover/land-use changes
(LCLUC) to understand the mechanisms of LCLUC and assist land-use planning and
conservation. In view of the contradiction between regional economic development and
water environmental protection, the characteristics of the dynamic evolution of regional
land use are analyzed, providing a scientific basis for further land-use planning and
adjustment, and contributing to the formulation and implementation of local economic and
environmental policies. Therefore, understanding the land-use evolution trend in coastal
plains would support future regional planning toward providing disaster mitigation and
appropriate land-use pattern planning. It may also help identify the ecological or disaster
vulnerabilities in advance in coastal plains.

However, the dynamic analysis of spatial and temporal changes of land use cannot
be separated from large-scale and periodic monitoring methods. Geographic information
systems (GIS) and remote sensing (RS) can provide continuous and abundant data, and
have the advantages of dynamic perception, fast operation, and macro analysis, which
have already become the most effective means to obtain land-cover information [14,15].
With the development of scientific research, the demand for high-precision land-use data
with continuous time and space is increasingly urgent. The explosion of geospatial data
fundamentally changed human perception and interaction with the Earth; however, com-
prehensive remote sensing image-based land-use analysis is challenged by the lack of
massive remote sensing images and the massive computing power of large-scale server
systems. Fortunately, Google Earth Engine (GEE) platform has massive remote sensing
data sets and large-scale spatial calculation and analysis functions, which can be used as
an ideal platform to study the temporal and spatial changes of land use.

The fluvial and coastal landforms in the coastal plain have important roles in causing
natural disasters and influence the water resource quality and environmental ecology
evaluation under the expansion of land-use changing in the Hangzhou Bay Area in China.
To improve the spatial-temporal resolution of ground object classification, this paper adopts
the multi-temporal remote sensing data fusion classification and extraction technology
based on the Google Earth Engine cloud platform and selects the Landsat 5 and Landsat



Land 2021, 10, 1149 3 of 31

8 multi-temporal remote sensing image data with a high spectral and spatial resolution
to obtain the dynamic evolution information of land use in the study area from 2009 to
2020. By analyzing the characteristics and influencing factors of land-use evolution in the
past 12 years and discussing the correlation between land-use change and urbanization,
economic development level, and industrial structure adjustment, this paper reveals the
internal relationship between land-use change and social development.

Land-use/land-cover classification is a fundamental process to evaluate the present
and the past land-use trend in targeted regions. There are two major approaches to classify
the remote sensing images: supervised and unsupervised classification, while the latter
also requires substantial input from the analyst. Land-use characterization is traditionally
performed with field surveys or manual photo interpretation; both are time-consuming
and labor-intensive. The accuracy of land-use classification depends on the amount of
effort put in as well as the quality of the ground truth data against which the classification
is judged. In this paper, the spatial-temporal change characteristics of coastal plain land
use are investigated, where the spectral features and texture features of the ground surface
are taken as the input parameters of the classifier to build a model, and the land is divided
into four categories: water body, construction land, forest land, and cultivated land.

The purpose of this study was to analyze the spatial-temporal change characteristics
of coastal plain land use in Hangzhou Bay Area on Google Earth Engine through big data
analytics. Data were collected from various sources in Zhejiang Province, China, including
the Department of Water Resources, Department of Natural Resources, Department of
Marine Fisheries, local firms, meteorology, climatology observation data, and other local
administrative agencies. The proposed model uses a random forest algorithm and sets the
number of decision trees to 500 to assist the land-use classification. Through training the
sample set, the land-use information of the northern plain area of Cixi City, Hangzhou Bay
area, China from the year 2009 to 2020 was extracted, and nine periods of land-use data
were obtained, with an average overall classification accuracy of 89% and Kappa coefficient
of 88%. The results show that the land use in this region is affected by urbanization,
the balance of cultivated land occupation and compensation, construction of economic
development zone, and other activities. The investigation also shows that in the past
12 years, land use has changed rapidly, and each land-use type maintains the dynamic
balance of occupation and compensation. Although the overall land-use distribution is
stable, the information entropy fluctuates at a high level, with an average value of 1.15,
and the multi-year average value of equilibrium is as high as 0.83. The complexity of land
use is relatively high, while the dominance of dominant land types is relatively low. The
driving force of land-use change is analyzed and accounted as demographics and human
population dynamics, social-economic development, urbanization, and coupling effects of
the above-mentioned factors. The result analysis also shows that the overall land use is
disordered, with obvious traces of tidal flat reclamation and development, a high degree of
land resources development, and frequent land-use transformation.

The paper is organized as follows. In Section 2, we describe the remote sensing
data of the research area. In Section 3, we describe the land-use classification based
on a random forest algorithm. We provide the classification results and precision in
Section 4. In Section 5, we provide a comprehensive analysis of spatial-temporal change
characteristics of land use of the researched coastal plain. The related work is presented in
Section 6, and we conclude the paper with some future research directions in Section 7.

2. Study Area and Data Description

Hangzhou Bay area is located in the northeast of Zhejiang Province, bordering the
Qiantang River in the west and the East China Sea in the east. It is a trumpet-shaped
estuary formed by the Qiantang River entering the sea, and it is also a world-famous
estuary known for its strong tide. The north bank of Hangzhou Bay is an erosive coast,
while the south bank is a silting coast. This study area is presented in Figure 1, which is on
the south bank of Hangzhou Bay and belongs to the coastal plain in the north of Cixi City.
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Figure 1. Location of research area.

In the upper-right figure of Figure 1, the white outlined area is the research area where
different color means different land use/land cover; specifically, red means construction
land, green means forests, purple means cultivated land, and gray means water body.

It is adjacent to Zhenhai City, Ningbo in the southeast, Yuyao City in Shaoxing in the
southwest, and protrudes into Hangzhou Bay in an arc shape in the north. Its geographical
coordinates are between 30.2–30.21 north latitude and 121.2–121.38 east longitude, with a
total area of 862 km2, as shown in Figure 1. The coastline starts from the tidal flat junction
of Yuyao City in the west and ends at the tidal flat junction of Cixi City and Zhenhai district
in the east. It is an artificial coastline with a total length of 72.4 km and a first-line seawall
with a total length of 72.4 km.

GEE platform can provide Landsat satellite time-series image data covering the study
area. With its advantages of parallel operation and quick analysis, the time series distribu-
tion map of land-use change in the study area can be extracted. In this paper, 2009-2020 is
selected as the target year of land-use change in the study area, and the minimum cloud
amount image in each target year is selected as the original image, thus increasing the
accuracy of classification.

The data of 2009, 2010, and 2012 were provided by the Landsat-7 satellite, which
carried an Enhanced Thematic Mapper (ETM+) sensor, with eight bands and a scanning
band width of 185 km. The data from 2013 to 2020 were provided by the Landsat-8 satellite,
which is equipped with an OLI (Operational Land Imager) land imager with nine bands
and TIRS (Thermal Infrared Sensor) thermal infrared sensor with two bands. The coverage
of one scene is 185 km wide. According to the different application range of each band
of the sensor, to highlight the features of ground objects and improve the ability of visual
interpretation, this paper selects the Landsat-7 satellite bands five, four, and three and
Landsat-8 satellite bands six, five, and four for color synthesis, which makes it easy to
distinguish the types of objects in the image; therefore, it is beneficial to the extraction of
land-use/cover information. The study area belongs to the coastal plain, which is flat, and
the influence of topographic features is not considered. Auxiliary data include regional
digital maps, river system survey maps, urban planning data, and statistical yearbooks
of the most recent 12 years. Road, water system, and urban planning information are
combined with field survey data analysis, which is mainly used for the correction of
classification results and accuracy verification.

Landsat 7 ETM+ SLC-off data refer to all Landsat 7 images collected after May 31,
2003, when the Scan Line Corrector (SLC) failed. Although these products have data
gaps, they are still useful and maintain the same radiometric and geometric corrections
as data collected prior to the SLC failure. We apply the patching approach from USGS to
preprocess the EMT+ data in our study [16].

3. Research Method

In this study, we collected the social and economic data of the research area from
2009 to 2020 and investigated the driving force of land-use change in the target area
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based on the primary component analysis approach. In order to compare the land-use
change and its trend in different years, we selected 9 parameters from the yearbook of the
municipal government, such as the annual residential population and its proportion in
country and urban areas, regional gross product, gross product of agriculture (primary
industry), gross product of the industrial sector, i.e., the secondary industry, including
mining, manufacturing, electricity, construction, and utility sectors, gross product of service
sector, total electricity usage, and electricity usage of the industrial sector. Then, we used
the 9 parameters to build our driving force model for the research area, integrating the
factors from different dimensions, such as population, economic development, agriculture,
forest industry, construction industry, etc. In the following sections, we describe our
research methodology more specifically.

We demonstrate the flowchart of our methodology for GEE-based LULC classification
and change analysis in Figure 2.
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3.1. Data Acquisition

According to the actual land-use situation in the study area, the land-use types are
divided into four categories: water, construction land, forest land, and cultivated land. The
land-use classification scheme is shown in Table 1.

Table 1. Land-use classification scheme.

ID Land Type Feature

1 Water Natural land waters and land for water
conservancy facilities

2 Construction land Urban and rural residential areas and industrial,
mining, transportation, and other land

3 Forest
Natural forest and plantation with canopy

density more than 15%. It includes timber forest,
economic forest, and shelter forest.

4 Cultivated land Farmland that can be cultivated normally in
ordinary years.
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These four types of first-class features can be distinguished and have obvious charac-
teristics in remote sensing images. The minimum cloud cover image of each target year
in the study area was selected as the data source to establish the sample data set. After
radiation correction, the images were cut and spliced, and then the bands were synthesized.

The sample data set constructed from 2009 to 2020 was selected as the classification
data in the study period—no data meeting the conditions were obtained in 2011, 2013, and
2018. The data in 2009, 2010, and 2012 were Landsat-7 images, and the data in other years
were Landsat-8 images. The image with 0% cloud cover in the first period of that year was
selected as the sample.

Taking Landsat-8 image data in 2020 as an example, firstly, the high-resolution image
provided by GEE was used for visual interpretation, and the sample data of four different
land-use types in the study area were selected. In Google Earth, the selected sample
points were checked and corrected according to the distribution of features in the study
area and the field survey results, and the sample data set of 2020 was established, which
was used as the standard data reference system to establish the sample data set of other
years. The sample data of other years were tested and discriminated according to the
features of features change and prior knowledge in the study area. Among them, there
were 50 samples for water classification, 100 for construction land, 100 for forest land, and
100 for cultivated land. Finally, 80% of the sample data of each period was used as the
training samples of the classifier for classification, and the remaining 20% was used for
accuracy evaluation.

3.2. Feature Sets Construction of Land-Use/Land-Cover Classification

Based on GEE, spectral features and texture features of the ground surface were
extracted as input parameters of the classifier.

In remote sensing images, the spectral features are the spectral distribution and gray
scale of target objects or the brightness ratio between bands. To reduce the amount of
data calculation and improve the calculation speed, it is necessary to make full use of the
spectral characteristics of images. Considering the band characteristics and application
range of the images, as well as the recognition characteristics of ground objects in visible
light, the bands 1, 2, 3, 4, 5, and 7 of Landsat-7 ETM+ images and bands 2, 3, 4, 5, 6, and 7
of Landsat-8 OLI images are selected as the multispectral classification feature data.

Water and vegetation are the two main components of land cover, and the impene-
trable water surface composed of houses, roads, and other buildings is the most direct
embodiment of human influence on the environment. To highlight the information of
water, vegetation, and artificial surface, it is necessary to extract spectral index. In this
paper, an improved modification of the normalized difference water index (MNDWI) is
introduced. Normalized difference vegetation index (NDVI) and normalized difference
built-up index (NDBI) can be used to distinguish water, vegetation, and impervious surface.
Taking Landsat-8 OLI sensor data as an example, the expression of three exponents is
as follows:

MNDWI =
B3− B6
B3 + B6

(1)

NDVI =
B5− B4
B5 + B4

(2)

NDBI =
B6− B5
B6 + B5

(3)

Due to the significant spectral characteristics of water, it has strong absorption in the
infrared band and weak absorption in the visible band, and its spatial geometry and texture
features are easy to identify, so the interpretation of water is relatively simple in many land
types. Based on spectral classification and referring to the research results of the Cixi water
area investigation report over the years, the water body classification results are revised
to improve the accuracy of water body information extraction and ensure the accuracy of
classification results.
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After the water body is identified with high precision, it is necessary to interpret
and separate the building land. NDVI and NDBI are used to distinguish vegetation from
buildings. NDVI is used to describe the growth state and coverage of plants, and the
value range is [−1,1]. The larger the value, the more likely the land belongs to vegetation.
NDBI is often used to interpret buildings, and its value range is also [−1,1]. The larger the
value, the greater the possibility that the plot is a building. The spectral characteristics of
cultivated land, garden land, and forest land are not obvious.

As a regional feature in an image, texture features change with scale, and its extraction
is closely related to the size of the region. The grey-level co-occurrence matrix (GLCM)
reflects the gray-level changes of adjacent pixels in a specific area or two pixels at a certain
distance in an image, which can be used to study the spatial correlation characteristics of
gray level, and then to count texture features. By calculating the gray-level co-occurrence
matrix, many texture features can be obtained to assist remote sensing image classification.
In this paper, the statistical texture method based on the gray-level co-occurrence matrix
is used to calculate, while entropy, contrast, angular second moment and correlation, are
used to extract the image texture features. The classification feature set is shown in Table 2.

Table 2. Classification feature collection.

Feature Data Source Band

Spectral
features

Landsat-7 multi-Spectrum
Image Bands B1, B2, B3, B4, B5, B7

Landsat-8 multi-Spectrum
Image Bands B2, B3, B4, B5, B6, B7

Spectrum Index MNDWI, NDVI, NDBI
Texture
features GLCM Entropy, Contrast, Angular Second

Moment and Correlation,

3.3. Land-Use/Land-Cover Intensity Quantification

In this paper, the main processes involved in the calculation and analysis of land-use
change in the study area are preprocessing and standardization of minimum cloud image
data, the establishment of a classification feature set, classification by random forest algo-
rithm, and accuracy evaluation. Based on GEE, these methods use a supervised classifier
algorithm, Landsat observation data of each target year, and independently compiled
programs to map and evaluate land-use distribution. To analyze the changes more accu-
rately in the land-use distribution in the study area, information entropy, equilibrium, and
dominance are used to evaluate the changes in land-use distribution.

The concept of entropy originates from thermo-physics, and information entropy is
a concept used to measure the amount of information in information theory. The more
orderly a system is, the lower the information entropy is. On the contrary, the more chaotic
a system is, the higher the information entropy is; therefore, information entropy is also
a measure of the degree of system order. The greater the uncertainty of a variable, the
greater the entropy, and the greater the amount of information needed to make it clear.
Information entropy is used to measure the order and complexity of land-use types, that is,
the diversity of landscapes. The calculation formula is as follows:

H = −
n

∑
i=1

piln(pi) (4)

In the above formula, H represents the information entropy value, i represents various
land-use types, n represents the number of land-use types, and pi represents the area
percentage of various land-use types. The smaller the entropy value, the higher the order
degree of land-use distribution, and the higher the entropy value, the lower the order
degree of land-use distribution. When there is only one land-use type in the study area,
the information entropy value is the smallest H = 0. When the proportion of various
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land-use types is equal, H reaches the maximum value, and it is expressed as Hmax = ln(n).
Information entropy also reflects the diversity of land-use types.

Based on information entropy, the concept of equilibrium degree is established to
measure the homogeneity and equilibrium of land-use distribution, and the expression of
equilibrium degree is shown in Equation (5):

J = H/Hmax = −
n

∑
i=1

piln(pi)/ln(n) (5)

In Equation (5), J represents the equilibrium degree, J∈[0,1]. The greater the value of J,
the stronger the equilibrium degree and the higher the complexity of land-use distribution.
When J = 1, land use reaches the highest equilibrium state, and the uniformity of patch
distribution of each land-use type reaches the maximum. Corresponding to it is dominance,
as shown in Equation (6):

I = 1− J (6)

In Equation (6), I represents dominance, which is opposite to equilibrium and reflects
the concentration of land use, i.e., the degree to which one or several dominant land types
dominate the land types in the region.

Patch density represents the number of patches per unit area, and the calculation is
listed as follows:

PN =
N
A

(7)

In Equation (7), n is the total number of patches in the study area, and a is the total
area of the study area in km2.

To compare the differences and changing trends of different land-use types, this study
quotes the dynamic attitude of land use to quantitatively reflect the changing rate of land-
use types through the dynamic attitude of a single land-use type. The dynamic attitude
of land use refers to the change rate of a certain type of land area in a period, and its
expression is listed in Equation (8):

Ki =
Ub −Ua

Ua × T
(8)

In Equation (8), Ki is the dynamic attitude of a land-use type in t period. Ua and Ub are
the areas of a certain land-use type at the beginning and end of the study. T is the research
period, which is the annual change rate of a land-use type when expressed in years.

To further reflect the complexity of landscape spatial structure and the degree of
human disturbance to landscape, it is necessary to calculate the fragmentation index of
different land-use types, that is, the fragmentation degree of the land-use landscape. The
original natural landscape is generally closer to a single, homogeneous, and continuous
whole. However, under natural or human disturbance, the land-use type gradually tends
to be complex, heterogeneous, and discontinuous patch mosaic, and the change of frag-
mentation degree of land use can directly reflect the interference degree of land use. The
formula of land-use fragmentation is as follows:

Ci = Ni/Ai. (9)

In the above formula, Ci is the fragmentation degree of land-use type I, Ni is the patch
number of land-use type I, and Ai is the total area of land-use type i.

Land-use intensity includes the breadth and depth of land use. To reflect the develop-
ment and utilization of land resources by human beings, it is necessary to express land-use
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intensity quantitatively. The comprehensive index of land-use intensity change is used to
describe the amount and rate of land-use change, and its expression is listed as follows:

L = 100×
3

∑
i=1

Ai × Ci (10)

In Equation (10), L is the comprehensive index of land-use intensity, Ai is the I-
level land-use intensity classification index, and Ci is the percentage of the I-level land
classification area.

3.4. Classification Based on Random Forests Algorithm

The main parameters of a random forest classifier based on GEE include the number of
classification trees, the number of variables of each classification tree, the minimum sample
leaves, the input variables of a decision tree, OOB mode, and the random seed variables
used to construct a decision tree. The random forest algorithm uses random sample data to
generate multiple decision trees independently. The best node of each decision tree depends
on the randomly selected subset of prediction variables, and the number of decision trees
depends on the number of prediction variables [17]. When the number of decision trees
increases, the overall accuracy of classification increases. The optimal parameter values
are selected by the selected training samples. After the random forest algorithm runs, the
overall accuracy, producer accuracy, and user accuracy are obtained by a confusion matrix
to verify the classification effect. The pseudo-codes of the proposed algorithm are listed
in Algorithm 1.

The goal of classification is not only to obtain higher overall classification accuracy,
but also to ensure that the minimum missing error and the minimum wrong error are in a
more appropriate range. More sample quantity and sample purity of ground objects are
beneficial to obtain higher classification accuracy. The result of supervised classification
depends on the input training samples. To accurately distinguish the ground objects in
different environments and conditions, many samples are needed as the initial data set to
train the classifier in complex areas.

To ensure the accuracy of classification, a large sample size is needed. In this paper, an
iterative sample selection program is introduced to train the machine learning algorithm.
Firstly, the existing training samples are used to construct the random forest classifier, and
the random forest algorithm is used to classify the selected image set based on the GEE
platform. Then, the classification results are visually evaluated and compared by referring
to the electronic map of the study area and the five-meter-high resolution image in Google
Maps. For the more difficult positions, the training data set is further expanded until the
classification becomes stable. The initial classification count starts from 40 samples, and
the sample size is gradually increased. After each iteration, the classification results are
compared with the sub-meter high-resolution images. If the classification results are not
satisfactory, the training samples are added until the satisfactory classification results are
obtained (the classification accuracy is higher than 85%).
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Algorithm 1 Random-Forests-Based Land-Use Classification

Input: landDataSet: Land-use dataset and image set
totalDecisionTree: number of total decision tree
minSplitThreshold: the minimum split threshold
F: Land-use feature dimension

Output: LUCM: land-use classification model
1: trainSet, testSet = RandomSplit(landDataSet, randomState=10)
2: for i in (1,2, . . . ,totalDecisionTree):
3: Di = Bootstrap(trainSet)// generating training data set Di of each decision tree based on
re-sampling
4: rootNodei = MakeNode(Di) // generating the root node of the ith decision tree root node
5: nodeQueue = Insert(rootNodei) // adding the root node into the node queue
6: while (not Empty(nodeQueue)): // traverse the nodes to guarantee enough growth of the
decision tree.
7: node = Pop(nodeQueue)
8: if ( nodedataSize ≥ minSplitTreshold): // check if the current node need split or not
9: K = FeatureChosen(F) // generating split feature subsets from F dimension land-use
features
10: bestSplitValue = MinSplitVariance(K) // filtering the best split value
11: SplitDataSample(node, bestSplitValue)// partitioning the node data samples
12: le f tNode = MakeNode(nodedataSample < bestSplitValue)
13: rightNode = MakeNode(nodedataSample ≥ bestSplitValue)
14: nodeQueueInsert(le f tNode, rightNode) // add the child nodes into the queue
15: else if
16: node→ lea f Node // nodes stop splitting and generating the leaf node
17: lea f NodeValue = Mean(nodedataSample)
18: end if
19: end while
20: lUCMappend(rootNodei)// add the newly generated decision into the forests
21: end for
22: return LUCM// output the constructed classification model

4. Classification Results and Accuracy

Based on Gee, the random forest algorithm was used to train the sample set by setting
the number of decision trees to 500. The land-use information of the study area from 2009
to 2020 was extracted, and nine periods of land-use data were obtained. The classification
results are shown in Figures 3 and 4.

In GEE, the classification results of each remote sensing image and sample points are
analyzed for the accuracy of the confusion matrix, and the learning accuracy is calculated
to verify the classification effect of the random forest algorithm. Overall accuracy (OA)
and Kappa coefficient of classification results are calculated based on the confusion matrix
to evaluate the reliability of classification results. The accuracy of classification results is
shown in Table 3. The results show that the average overall classification accuracy is 89%,
the Kappa coefficient is 88%, and the classification accuracy is high.

Table 3. Precision of the land-use classification results.

Land Type 2009 2010 2012 2014 2015 2016 2017 2019 2020

Water 96% 96% 94% 96% 91% 95% 92% 92% 94%
Construction

land 86% 86% 84% 87% 83% 85% 83% 84% 85%

Forest 89% 91% 87% 90% 85% 88% 87% 86% 87%
Cultivated

land 91% 90% 88% 92% 85% 89% 88% 87% 90%

OA 91% 91% 88% 91% 86% 89% 88% 87% 89%
Kappa 87% 86% 84% 88% 85% 86% 84% 83% 88%
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Figure 3. The land-use/land-cover contribution of the research area. (2009 to 2017).
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Figure 4. The land-use/land-cover contribution of the research area (2018 to 2020).

It can be seen from Table 3 that the maximum value of the overall classification
accuracy and Kappa coefficient appeared in 2014, and the minimum value appeared
in 2010 and 2015, which is related to the imaging quality of remote sensing images. The
standard deviation of OA and Kappa coefficient is 1.77% and 1.22%, respectively, indicating
that the accuracy of classification results in different periods is relatively stable. From
the classification accuracy of various ground objects, the classification accuracy of water,
cultivated land, and forest land is higher, while the classification accuracy of construction
land is lower. The main reason is that the newly reclaimed land in the northern part of the
study area is shown as a water body when it is flooded, while the surface reflectivity is
high when it is exposed, which is easy to be mistaken for construction land. In addition,
residential areas in some villages and towns are scattered, and mixed pixels are formed on
remote sensing images, which are easy to be confused with cultivated land or forest land,
resulting in missing or wrong points.

5. Analysis of the Temporal and Spatial Characteristics of LULC Change
5.1. Change of Land-Use/Land-Cover Distribution

Based on the interpretation of Landsat ETM +/oli data, nine land-use data were
obtained from 2009 to 2020. The most intuitive performance of land-use change is the
change of different types of land-use areas. By analyzing the change of each type of
area, the trend of land use in this region can be understood. Table 4 shows the statistical
results of various land-use types in the study area. The land-use pattern of the study area
has changed greatly from 2009 to 2020. This is mainly reflected in the rapid growth of
construction land, the decrease in the water body and woodland area in fluctuation, while
the total amount of cultivated land remains stable.
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Table 4. Land-use change from 2009 to 2020.

Year

Land-Use Type

Water Construction Land Forest Cultivated Land

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

2009 128.6 14.7% 214.4 24.5% 110.0 12.6% 420.9 48.2%
2010 73.8 8.4% 246.0 28.2% 52.5 6.0% 501.7 57.4%
2012 116.8 13.4% 279.8 32.0% 75.6 8.7% 401.8 46.0%
2014 82.7 9.5% 315.5 36.1% 90.6 10.4% 385.1 44.1%
2015 97.2 11.1% 256.6 29.4% 83.9 9.6% 436.3 49.9%
2016 130.1 14.9% 282.8 32.4% 127.5 14.6% 333.5 38.2%
2017 40.6 4.6% 229.5 26.3% 116.5 13.3% 487.4 55.8%
2019 34.4 3.9% 326.6 37.4% 59.6 6.8% 453.4 51.9%
2020 107.2 12.3% 315.0 36.0% 39.9 4.6% 411.8 47.1%

The area ratio of various land-use types in the study area from 2009 to 2020 is shown in
Figure 5, and the change trend is shown in Figure 6. The results show that from 2009 to 2020,
the land-use distribution in the study area is relatively stable. Cultivated land accounts
for about 50% of all land-use types, which is the largest and most widely distributed
land-use factor type. During the whole study period, the area of forest land and water
body generally decreased, and the building land showed a sharp expansion. The growth
of economic construction, the increase in population pressure, the expansion of cities and
towns, and the vigorous development of tourism all lead to the increasing demand for
construction land and the expanding area of construction land. The decrease in water area
is mainly due to the rapid economic development along the river, which results in the
squeezing of water area. This has negative effects on ecological environment protection,
flood drainage, and farmland irrigation in the study area.

In this paper, to analyze the changes more accurately in the land-use distribution in
the study area, information entropy, equilibrium, and dominance are used to evaluate the
changes in land-use distribution. The calculation results of land-use information entropy,
equilibrium degree, and dominance degree are shown in Table 5, and the changes are
shown in Figure 7.

Figure 5. The area and proportion of various land-use types in the research area.
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Figure 6. The change trend of land-use type area during 2009-2020.

Table 5. Information entropy, dominance, and equilibrium degree of land use.

2009 2010 2012 2014 2015 2016 2017 2019 2020

Entropy 1.24 1.05 1.20 1.19 1.18 1.30 1.09 1.02 1.12
Equilibrium

degree 0.89 0.76 0.87 0.86 0.85 0.94 0.78 0.73 0.81

degree of
domination 0.11 0.24 0.13 0.14 0.15 0.06 0.22 0.27 0.19

Figure 7. The change of information entropy, equilibrium degree, and dominance degree of land use.

The land-use system in the study area is very complex, which is influenced by the
natural environment, social policy, economy, and human factors. The information entropy
fluctuates at a high level with an average value of 1.15; however, the multi-year average
of the equilibrium degree is as high as 0.83, and the land-use distribution has strong
equilibrium and high complexity. The dominant land class has a low degree of domination
over this region.

The intensity of human activities has a great impact on the structure of regional land
use. The regional development mode, economic development level, industrial structure



Land 2021, 10, 1149 15 of 31

and ecological environment construction are all closely related to the regional land resource
system, which causes the change of land-use information entropy. The land-use system in
the coastal plain has low stability and high complexity. From the change of information
entropy, the anti-interference ability of the land-use system is relatively poor, and the
stability of the land-use system in the process of regional development is relatively low.
At the same time, the equilibrium degree of land use is relatively high, which means
an obvious fluctuation, indicating that the structure of the land-use system is relatively
balanced and land-use conversion is relatively frequent. The dominance of land-use
showed a small upward trend, indicating that the dominance of land-use types as dominant
resources increased, while the dominance of other land types decreased.

The calculation results of patch density in the study area are shown in Figure 8. The
patch density is between 70 pieces/km2 and 110 pieces/km2, showing a relatively broken
state. The patch density in the study area increased continuously from 2009 to 2016,
decreased rapidly from 2016 to 2019, and increased again in 2020. The results showed that
the fragmentation degree of land use increased first, then decreased, and then increased.

The calculation results of the fragmentation degree of each land-use type in the study
area are shown in Figure 9. The land-use types in the study area are highly fragmented
and change obviously year by year. Among them, the fragmentation degree of cultivated
land is the lowest, and the number of patches per square kilometer is maintained at
about 50, among which it will return after reaching the maximum peak in 2016, and
the overall fragmentation degree will increase slightly with time. The degree of forest
land fragmentation is the highest, and it fluctuates greatly with time. Since 2009, water
fragmentation has been increasing continuously, reaching 247 patches per square kilometer
in 2015, then decreasing rapidly in the next two years, and increasing again from 2017 to
2020. Contrary to water and cultivated land, the fragmentation degree of construction
land showed a trend of first decreasing, then increasing and then decreasing, reaching the
maximum value in 2017, and then gradually decreasing.

Figure 8. Changes of patch density in the research area.

By comparison, it was found that the fragmentation degree of water and cultivated
land was close in 2009. It gradually increased, and then decreased after reaching the
maximum in 2015 and 2016. Finally, it began to increase again after 2017. The fragmentation
degree of construction land showed the opposite trend, which was higher at the initial
stage of the study, and then decreased, and rebounded slightly after reaching the minimum
in 2014. The fragmentation degree was still low in 2016 and increased in 2017.
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Figure 9. Fragmentation of different types of land use.

5.2. Change of Land-Use/Land-Cover Intensity

As a kind of natural complex, under the influence of human activities, the original
natural attributes of land are decreasing, and different land-use types represent the char-
acteristics of land-use intensity to a certain extent. According to the research results of
relevant scholars and the characteristics of land use in the study area, this paper divides
the land into three grades according to the maintenance status of social influence factors,
and the selected grading index is shown in Table 6.

Table 6. Land-use degree.

Land-Use Degree City and Town
Settlement Land Agricultural Land Forest, Grass, and

Water Land

Land-use type Construction land Cultivated land Forests and Water
Classification Level 4 3 2

The comprehensive index of land-use intensity in each target year is calculated, and
the results are shown in Table 7. The change of land-use intensity is shown in Figure 10.

It can be seen from Table 6 and Figure 10 that, considering the change range of land-
use intensity index (100–400), the development degree of land resources in the study
area is relatively high during the whole study period, and the land-use intensity index
generally shows an upward trend in fluctuation. The negative growth of land-use intensity
in 2014–2016 was mainly due to the influence of policy factors related to the balance
of cultivated land occupation and compensation, such as “Notice of the General Office
of Zhejiang Provincial People’s Government on Further Strengthening the Management
of Balance of Cultivated Land Occupation and Compensation”. The growth trend of
construction land in the study area was restrained during this period, while the cultivated
land area remained basically stable, making the overall land development and utilization
intensity weakened and declined.

Table 7. The index of land-use intensity in the research area.

Year 2009 2010 2012 2014 2015 2016 2017 2019 2020

Land-use
level index 297.2 313.7 310.0 316.2 308.6 302.9 308.3 326.6 319.2
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Figure 10. The change of land-use intensity index.

To analyze the influence of the change of land-use intensity on the structure and pat-
tern of land use in the basin, based on the previous analysis, a scatter diagram of land-use
intensity and land-use distribution index was made. As shown in Figure 11, land-use in-
tensity has an obvious influence on the pattern. Land-use intensity is negatively correlated
with information entropy value and equilibrium degree, and positively correlated with
dominance degree; however, there is no obvious correlation between land-use intensity
and patch density and fragmentation.

In areas where human activities are dominant, land-use intensity can accurately reflect
the breadth and depth of land use and the interference intensity of human activities on the
land ecosystem. The study area is in the northern plain of Cixi City. For a long historical
period, there have been obvious traces of reclamation and development of tidal flats on a
large scale. With the increasing intensity of land development and utilization, the land-use
distribution of the basin has changed obviously. The decrease in information entropy
and balance means that the diversity of land use is reduced, the land-use types are more
intensive, and individual landscape types gradually occupy a dominant position.

5.3. Direction of Land-Use/Land-Cover Change

To detect the land-use change of each land type in the study area from 2009 to 2020,
remote sensing change detection theory is used to analyze the spatial change characteristics
of land use in this study. Pattern recognition and change information extraction were
carried out by using the earth observation data of two phases, to quantitatively analyze
and determine the characteristics and process of ground object change. Change detection
involves the number and distribution of changes. For images in different periods in the
same area, it is necessary to calculate the types, boundaries, and trends of objects before and
after changes, and then analyze the characteristics and reasons for these dynamic changes.

In this paper, the image change information of the study area from 2009 to 2020 was
extracted based on GEE, and the information was classified and compared. The thematic
classification maps of remote sensing images in front and back phases were used for overlay
analysis, to judge the classification attribute of each pixel in the thematic maps of front
and back phases and count its change information. The method directly obtains the type,
quantity, and position of changes and avoids the data mismatch caused by different sensors
or different acquisition seasons. It can also avoid the influence of time phase difference
and radiation correction on change detection results.

The detection results of land-use change in the study area from 2009 to 2020 showed
that the area of cultivated land, construction land, forest land, and water body accounted
for 47.3%, 36.3%, 4.4%, and 11.9%, respectively, in 2020. The land-use transfer matrix is
shown in Table 8.
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Figure 11. Fitting of the correlation between land-use intensity and entropy, equilibrium degree, and
dominance degree.
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Table 8. Regional land-use transformation matrix from 2009 to 2020 (area unit: km2).

Before
Transforma-

tion

After Transformation
Total Area

in Year 2009Transformation
Area and Ratio

Cultivated
Land

Construction
Land Forest Water

Cultivated
land

Area 261.6 129.5 8.4 20.3 419.8
Out-

transformation
ratio

62.30% 30.90% 2.00% 4.80%

In-
transformation

ratio
64.10% 41.30% 21.90% 19.70%

Construction
land

Area 62.8 122.9 3.3 19.7 208.7
Out-

transformation
ratio

30.10% 58.90% 1.60% 9.50%

In-
transformation

ratio
15.40% 39.20% 8.60% 19.20%

Forest
Area 59.3 23.9 15.7 8 106.9
Out-

transformation
ratio

55.50% 22.30% 14.70% 7.50%

In-
transformation

ratio
14.50% 7.60% 41.00% 7.80%

Water
Area 24.2 37.3 11 54.9 127.3
Out-

transformation
ratio

19.00% 29.30% 8.60% 43.10%

In-
transformation

ratio
5.90% 11.90% 28.50% 53.30%

Total Area in year 2020 407.9 313.5 38.4 102.9 862.7

All kinds of land-use transfers in the region are obvious. In recent 12 years, the area
where the land-use type has not changed accounts for 52.7%, and the mutual conversion
area between cultivated land and construction land is relatively large. The changed land
types are as follows: cultivated land decreased by 2.8%, construction land increased by
50.2%, forest land decreased by 64.1%, and water bodies decreased by 19.2%.

In the cultivated land area in 2020, the proportions of construction land transfer, forest
land transfer, and water area transfer were 15.4%, 14.5%, and 5.9%, respectively. In the
construction land area, the proportions of farmland transfer, forest land transfer, and water
area transfer were 41.3%, 7.6%, and 11.9%, respectively. The forest land area decreased
by 68.5 km2 in 12 years, only 15.7 km2 of the original forest land area remained, and the
cultivated land, construction land, and water body accounted for 21.9%, 8.6%, and 28.5%,
respectively. There were transformations between water body and cultivated land, con-
struction land, and forest land. The existing water body area was 20.3 km2 from cultivated
land, 19.7 km2 from construction land, and 8 km2 from forest land, accounting for 19.7%,
19.2%, and 7.8%, respectively. The area of water body transferring into corresponding
land-use types was 24.2 km2 of cultivated land and 37.3 km2 of construction land was
11.0 km2, the proportion of water to construction land is the largest, and the transfer-out
rate is 29.3%.

Due to the rapid economic growth, the continuous adjustment of industrial struc-
ture in the region, the vigorous development of industry, agriculture, and tourism, the
aggregation and flow of population, and other reasons, the four types of land use have a
mutual conversion, generally showing the trend of farmland, woodland, water transfer to
construction land, and woodland transfer to cultivated land.

Under the background of urbanization, many cultivated lands are occupied by urban
expansion. At the same time, to make up for the loss of these cultivated land, according to
the policy of “balance of occupation and compensation”, newly cultivated land should be
added in the areas with a short reclamation period, and the index of urban construction
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land should be exchanged in proportion; therefore, the total amount of land in this region
remains unchanged but shows frequent mutual conversion among various land-use types.

Cultivated land, construction land, forest land, and water all have a mutual transfor-
mation, but the total area remains basically stable in the fluctuation. Due to a large number
of small rivers, ditches and ponds, and fishery ponds in the region, there is a mutual
conversion between the water area and cultivated land, forest land and construction land,
and the water area has had a downward trend in the past 12 years. The same phenomenon
that occurred for the water body area also occurred in woodland, but the downward trend
of woodland was more obvious, from 106.9 km2 to 38.4 km2. The total increase in land-use
type is only construction land, and the area increased by 104.8 km2, an increase of 50.2%.

5.4. Land-Use/Land-Cover Change Rate

To compare the differences and changing trends of different land-use types, this study
quotes the dynamic attitude of land use to quantitatively reflect the changing rate of
land-use types through the dynamic attitude of a single land-use type.

The calculation results of the annual change rate of four land-use types in the study
area are shown in Table 9; the land-use transformation matrix is listed in Table 10. The
results show that the overall dynamic change of land use was not significant from 2009
to 2020, and the land-use attitude of forest land and construction land was −5.31% and
3.91%, respectively, and the cultivated land and water body decreased slightly; however,
the calculated data year by year show that the land use in the study area has changed
rapidly in the past 12 years, in which water, construction land, cultivated land, and forest
land have increased or decreased in different degrees in each year. The dynamic attitude of
land use shows that the land-use category changes strongly, and the stability is poor.

Table 9. Land-use dynamic index in research area.

Period Water Construction
Land Forest Cultivated Land

2009–2010 −21.31% 7.38% −26.15% 9.59%
2010–2012 19.40% 4.57% 14.71% −6.63%
2012–2014 −9.72% 4.26% 6.61% −1.39%
2014–2015 8.74% −9.34% −3.72% 6.65%
2015–2016 16.95% 5.11% 26.02% −11.78%
2016–2017 −34.38% −9.43% −4.33% 23.07%
2017–2019 −5.14% 14.11% −16.27% −2.32%
2019–2020 106.01% −1.77% −16.51% −4.59%
2009–2020 −1.39% 3.91% −5.31% −0.18%

Table 10. Land-use transition matrix of the research area.

Land Type Cultivated
Land

Construction
Land Forest Water Total Area in

2009
Period 2009 to 2010

Cultivated
land 310.71 94.56 9.97 4.71 419.96

Construction
land 75.40 125.00 4.99 3.51 208.89

Forest 64.41 11.46 28.86 2.35 107.08
Water 50.51 9.01 5.94 62.05 127.51

Total area in
2010 501.03 240.03 49.76 72.62 863.44
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Table 10. Cont.

Land Type Cultivated
Land

Construction
Land Forest Water Total Area in

2010
Period 2010 to 2012

Cultivated
land 292.58 123.71 46.70 38.01 501.01

Construction
land 80.23 130.36 5.86 23.56 240.01

Forest 24.44 5.02 15.74 4.55 49.75
Water 6.39 16.37 1.38 48.46 72.61

Total area in
2012 403.65 275.46 69.68 114.58 863.37

Land Type Cultivated
Land

Construction
Land Forest Water Total Area in

2012
Period 2012 to 2014

Cultivated
land 240.46 97.24 49.37 16.44 403.52

Construction
land 86.06 160.10 15.92 13.15 275.23

Forest 42.20 8.26 14.30 4.83 69.59
Water 13.53 50.08 5.57 45.16 114.33

Total area in
2014 382.26 315.67 85.15 79.59 862.67

Land Type Cultivated
Land

Construction
Land Forest Water Total Area in

2014
Period 2014 to 2015

Cultivated
land 260.08 63.26 43.52 15.37 382.22

Construction
land 98.07 165.59 13.64 38.32 315.62

Forest 56.71 13.25 13.51 1.67 85.14
Water 22.87 11.08 8.13 37.48 79.57

Total area in
2015 437.74 253.17 78.79 92.85 862.55

Land Type Cultivated
Land

Construction
Land Forest Water Total Area in

2015
Period 2015 to 2016

Cultivated
land 210.99 104.60 78.70 43.48 437.77

Construction
land 67.06 139.22 9.39 37.51 253.19

Forest 31.13 10.76 32.14 4.79 78.81
Water 20.81 28.13 3.11 40.86 92.90

Total area in
2016 329.99 282.70 123.34 126.64 862.67

Land Type Cultivated
Land

Construction
Land Forest Water Total Area in

2016
Period 2016 to 2017

Cultivated
land 222.48 60.66 46.11 0.75 330.00

Construction
land 148.49 127.79 5.18 1.24 282.71

Forest 62.07 8.10 53.09 0.10 123.35
Water 54.83 25.08 8.75 38.01 126.66

Total area in
2017 487.86 221.63 113.14 40.09 862.72
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Table 10. Cont.

Land Type Cultivated
Land

Construction
Land Forest Water Total Area in

2017
Period 2017 to 2019

Cultivated
land 299.18 163.22 23.03 2.42 487.85

Construction
land 69.64 146.86 4.15 0.97 221.62

Forest 72.26 11.34 28.72 0.80 113.13
Water 10.58 0.71 0.04 28.76 40.09

Total area in
2019 451.67 322.13 55.94 32.95 862.69

Land type Cultivated
Land

Construction
Land Forest Water Total Area in

2019
Period 2019 to 2020

Cultivated
land 272.91 106.41 20.95 51.40 451.66

Construction
land 103.83 200.63 1.47 16.20 322.12

Forest 30.26 5.18 15.95 4.54 55.94
Water 0.88 1.27 0.02 30.77 32.94

Total area in
2020 407.88 313.49 38.39 102.91 862.67

According to the land-use transfer matrix, the change lines of land-use transfer in and
out were drawn. According to the land-use transfer matrix, we draw the change line of
land use in and out of the study area. Figure 12 shows the destination of cultivated land
reduction and the source of expansion in the most recent 12 years. The results showed that
38% of cultivated land was transferred to other land types on average every year, which
was mainly converted into construction land. The construction land occupied 102 km2

of cultivated land on average every year, accounting for 24% of cultivated land area and
62% of the total transferred area. In addition, 40 km2 of cultivated land is converted into
forest land and 22 km2 into water bodies every year. Cultivated land has been invaded
and expanded outward, with an average of 91 km2 of construction land being restored
to cultivated land every year, accounting for 21% of the cultivated land area. In addition,
many forest land and water bodies are reclaimed as cultivated land every year, accounting
for 11% and 5% of the cultivated land area, respectively.

Figure 12. Changes of cultivated land in the studied area.

Figure 13 shows the destination of construction land and the source of expansion
in the most recent 12 years. The results show that the construction land is transferred
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out frequently, with an average of 44% of the area transferred out into other land types
every year, mainly into cultivated land, and the area converted from construction land
into cultivated land accounts for 79% of the total transferred-out area, which makes up
for the occupation of cultivated land to a great extent and keeps the cultivated land area
basically balanced. In addition, an average of 7.6 km2 of construction land is converted
into forest land and 17 km2 into water bodies every year. When the construction land
expands outward, it will also occupy forest land and water, accounting for 3% and 6% of
the construction land area, respectively.

Figure 13. Changes of construction land in the studied area.

Figure 14 shows the change of forest land. Cultivated land is the main source of forest
land transfer and expansion. On average, 56% of forest land is converted into cultivated
land every year, and 52% of forest land is transferred from cultivated land every year. It
can be seen from Figure 14 that the peak time difference between forest land and cultivated
land is no more than two years, and the dynamic balance is maintained during the change.

Figure 14. Changes of forest land in the studied area.

Figure 15 shows the change of the water body area. The results show that 52% of the
water area is transferred to other land types on average every year, mainly into cultivated
land and construction land. Cultivated land and construction land occupy 22.6 km2 and
17.7 km2, respectively, on average every year, accounting for 47% of the water area and
91% of the total transferred water area. In addition, an average of 21.6 km2 of cultivated
land and 16.8 km2 of construction land are converted into water bodies every year. The
balance between occupation and compensation was basically maintained.
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Figure 15. Changes of water land area in the studied area.

5.5. The Driving Force of Land-Use/Land-Cover Change

The driving forces of land-use transition and its magnitude depended on the type of
land use. To determine the driving forces of land-use change in the study area, quantitative
and qualitative analyses were applied. To assist the driving force analysis, we collected
relevant social-economic data, including population, economy, and environmental survey
statistics [18–23].

Since 2009, the land use in the study area has undergone dramatic changes. The
impacts of urbanization, the balance of cultivated land occupation and compensation, and
the construction of economic development zones are all reflected in the land-use changes
in the study area.

(1) From 2009 to 2020, the land-use distribution in the study area was relatively stable.
Among various land-use types, cultivated land accounted for about 50%, which was
the largest and most widely distributed land-use factor type. During the whole study
period, the area of forest land and water body generally decreased, and the building
land showed a sharp expansion trend.

(2) The land-use system in the study area is very complex, which is affected by the
natural environment, social policy, economic and cultural factors, and the information
entropy fluctuates at a high level with an average value of 1.15. The multi-year
average of equilibrium degree is as high as 0.83. The balance and complexity of
land-use distribution are strong, and the dominance of dominant land types in the
region is low. In the process of regional development, the stability of the land-use
system is low, and the anti-interference ability is relatively poor. At the same time,
the structure of the land-use system is relatively balanced, and land-use conversion is
relatively frequent.

(3) The landscape patch density in the study area showed a trend of first increasing, then
decreasing and then increasing, and the overall land use was relatively fragmented.
Among them, arable land has the lowest degree of fragmentation. After reaching
the maximum peak in 2016, the overall degree of fragmentation increased slightly.
Woodland has the highest degree of fragmentation and fluctuates greatly over time.
The water fragmentation first increased, then decreased and then increased, and the
construction land showed the opposite trend.

(4) The trace of beach reclamation and development in the study area is obvious, the
degree of land resources development is high, and the intensity of land-use rises
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in fluctuation. With the increasing intensity of land development and utilization,
the land-use distribution in the basin has changed obviously. Land-use diversity
decreases, land-use types become more intensive, and individual landscape types
gradually occupy a dominant position.

(5) The total amount of regional land remains unchanged, but there are frequent mutual
conversions among various land types. The area where land-use types have not
changed in the past 12 years only accounts for 52.7%. The main types of land that
have changed are listed as follows: arable land has decreased by 2.8%, construction
land has increased by 50.2%, forest land has decreased by 64.1%, and water bodies
have decreased by 19.2%.

(6) From 2009 to 2020, the overall dynamics of land use have not changed much, but
year-by-year calculation data show that the land-use change rate in the study area has
been rapid in the past 12 years. On average, 38% of the cultivated land is transferred
out to other land types each year, of which 62% is converted to construction land.
At the same time, an average of 44% of the construction land is transferred to other
land types each year, of which 79% is converted to cultivated land. The main sources
of transfer and expansion of forest land and water bodies are cultivated land and
construction land, and each land type maintains a dynamic balance of occupancy and
compensation as it fluctuates and grows.

The change of land-use function directly reflects the influence and disturbance of the
development of human social and economic activities on the evolution of the terrestrial
ecosystem of the Earth. At the same time, land use is also a bridge connecting human
beings with the natural ecological environment in their production activities. Changes in
land-use function can characterize the energy circulation and material flow between the
Earth’s atmosphere, soil, biosphere, lithosphere, and hydrosphere.

We chose the nine parameters to build our driving force model for the research
area, integrating the factors from different dimensions, such as population, economic
development, agriculture, forest industry, construction industry, etc.

The driving force of the land-use change can be summarized as follows:

(1) Demographics and human population dynamics, including population growth and
migration. The annual residential population of Cixi city grew from 1.86 million to
2.23 million, indicating a 19.9% population growth. Meanwhile, the urban popula-
tion grew from 0.183 million to 0.744 million; the rural population decreased from
0.852 million to 0.318 million. The growth of the urban population also results in the
transition from forest land and cultivated land to construction land, and the transi-
tion from forest land to cultivated land; therefore, the intensity of population and
economic growth are the main driving forces of the land-use change in the study area.

(2) Economic development. The gross domestic product of the research area grew from
62.5 billion RMB to 200.8 billion RMB, representing a 2.21X growth from year 2009 to
year 2020. The Cixi municipal government reorganized the industrial sector structure,
coordinated and optimized the development of agriculture, industry, and service sec-
tors, which ultimately increased the gross domestic products of Cixi city significantly.
Although the gross product of the agriculture sector of the research area increased
dramatically from the year 2009 to the year 2020, the agricultural contribution in the
economy of Cixi city decreased due to the human population transition from agricul-
ture to the industry sector. Moreover, the increase in the industry sector demands
more and more construction lands from other sectors.

(3) Urbanization. In the last two decades, China has been undergoing unprecedented
economic growth, massive rural-to-urban migration, and large-scale policy-driven
ecological restoration. Eastern China is one of the most vibrant areas in terms of
economic growth and human activities. The selected research area in this paper
went through a fast urbanization process in the last 12 years, while large numbers
of people become permanently concentrated in cities from rural areas. The city area
expanded dramatically, and the construction lands occupied the agricultural and
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forest land. Moreover, the urbanization process also demands more land to provide
public infrastructures such as roads and residential regions, which also made an
important impact on land-use change. Urbanization, as an important socioeconomic
factor, plays a vital role in promoting land-use transition. Although the interaction
relationship between urbanization and land-use transition, from the perspective of
population urbanization, economic urbanization, and social urbanization, is complex,
the level of land-use morphologies from the perspective of dominant and recessive
morphologies of land-use is a meaningful and good indicator for environmental
evaluation. From our analysis, the relationship between urbanization and the land-
use transition is not a simple linear relationship but tends to be complex with the
process of urbanization, and reasonable urbanization and land-use morphologies will
promote further benign coupling in the system.

(4) The coupling effects of all kinds of human activities. Natural population transition,
economic growth, and industry sector change are typical human activities, and we
cannot separate one dimension from another to account for the driving force of land-
use change in the target area. Specifically, the land-use change of one region is affected
by the coupling effects of such kinds of human activities.

The driving force of land-use/land-cover change varied greatly with space, time, and
land-use type. For example, socioeconomic development was the main driving force for
the built area expansion, and geographical differentiation was the dominant factor in the
conversion of cultivated land, forest land, and grassland. The driving forces of land-use
types presented in this paper can help develop strategies for sustainable development in
coastal plains in China and may also pose as a reference in other countries or regions. These
findings would provide decision support for policymakers to formulate future sustainable
land-use policies.

6. Related Work

Human beings cannot live without well-managed, multi-functional lands. Land is
usually defined as a physical entity in terms of its geography and spatial nature, which
contains natural resources such as soil, minerals, water, and biota. These components on
the land provide a variety of essentials to the maintenance of life-support systems and
the productive capacity of the environment. Land is the terrestrial foundation of society,
and it is the platform for infrastructure and for residential, commercial, and industrial
areas, and is a source of economic growth; however, with the increasing human activities,
including industrialization, urbanization, and agriculturalization, the impact of land-use
systems on global climate change has become increasingly significant and an increasing
concern for both government and the nature. Moreover, the increasing share of the planet’s
land area is in some way modified by human activities, leading to unsustainable changes
in our landscapes. Both macro and micro-level ecological evolution and interaction can
have an impact on the land-use process [24]. At the same time, land use in specific areas
changes due to the change of climate, human migration, and land transition. In some
regions, climate change and severe weather events, such as floods and drought, stress land
resources. In extreme cases, such changes might lead to unhealthy and degraded lands.

Machine learning techniques have provided excellent results in applications ranging
from parameter estimation to image classification and anomaly detection. In recent years,
machine-learning-based approaches were proposed to assist the land-use classification
in multiple scale levels. Deep learning is used for the object-based classification of high-
resolution remote sensing images to improve classification accuracy. For example, Zhang
et al. [25] proposed joint deep learning (JDL) for land cover and land-use classification,
which incorporated patch-based convolutional neural networks (CNNs) and pixel-based
MLP with joint reinforcement and mutual complementarity; they used a Markov process
through iterative updating for joint distributions between land cover and land use.

The conventional pixel-based land-cover classification methods label each pixel inde-
pendently by considering only a pixel’s spectral properties. These purely spectral-based
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techniques may be applicable to many medium and coarse-scale remote sensing analyses.
However, with the advances in sensor technologies, remote sensing images have higher
resolution, which leads to the problem that, in some cases, the pixels are smaller than the
objects to be classified. Zou et al. [26] proposed a spatialized classification approach for
hyperspatial imagery, which uses pixels within a fixed window as predictors in a classifier
and can classify different types of vegetation; however, this method is only designed for
mapping vegetation growth forms such as trees, shrubs, and herbs in a forested ecosystem
in the Sierra Nevada Mountains.

Marcos et al. [27] proposed a CNN architecture called Rotation Equivariant Vector
Field Network (RotEqNet) to encode rotation equivariance in the network itself. They use
rotating convolutions as building blocks and only pass the values corresponding to the
maximally activating orientation throughout the CNN network in the form of orientation
encoding vector fields. The proposed RotEqNet treats rotated versions of the same object
with the same filter bank and therefore achieved state-of-the-art performances even when
using very small architectures trained from scratch. The proposed approach can be used
for land-cover mapping from sub-decimeter resolution remote images.

However, land-use classification is an inadequate process due to a lack of data, es-
pecially for undeveloped nations. Researchers combined data from multiple sources for
land-use classification. Srivastava et al. [28] proposed a CNN model to predict land use at
the object level from multi-modal data from aerial and ground views: overhead imagery
from Google Maps and ensembles of ground-based pictures (side-views) per urban-object
from Google Street View (GSV). They used an end-to-end trainable model, which uses
OpenStreetMap annotations as labels. The model can accommodate a variable number of
GSV pictures for the ground-based branch and can also function in the absence of ground
pictures at prediction time. The proposed approach is only suitable for land-use map
updates in cities, not for rural areas, forests, water, etc.

The complexity and heterogeneity of land-use characteristics lead to the gap be-
tween the inferable low-level image features and high-level semantic function represen-
tation [29,30]. Markov random field, object-based image analysis (OBIA), pixel-based
CNN, object-based CNN, multiple-scale CNN, and joint deep learning were proposed
for land-use classification. To improve the land-use classification accuracy of irregular
segments output by segmentation methods according to the corresponding ground objects,
Pan et al. [29] proposed a simplified object-based deep neural network (SO-DNN) for very-
high-resolution remote sensing image classification, which uses a new segment category
label inference method as the classification model instead of a traditional CNN.

The present literature concentrates on the concept, definition, and classification of land
use for the collection of environment statistics; however, the data collection process suffered
due to a lack of resources and non-availability of statistical concepts, definitions, and
classification. To handle satellite image data and other Earth observation data, Google Earth
Engine (GEE), a cloud computing platform, was jointly developed by Google, Carnegie
Mellon University, and the US Geological Survey. The public data set of the platform stores
the complete image data of Landsat, Sentinel, MODIS, and other Earth observation satellites,
and also includes climate prediction, land cover, and other geographic, environmental, and
socioeconomic data sets [31]. The main functions of GEE can be realized by calling API
provided in JavaScript and Python. Users can write programs according to their needs to
realize remote sensing data processing and geospatial analysis. They can also reorganize
existing algorithms and write more complex analysis programs. Meanwhile, the algorithms
in GEE are constantly updated and enhanced [32–34].

Compared with the traditional remote sensing data processing and geospatial analysis
methods, GEE can easily access massive data sets and have the ability of large-scale
spatial calculation and analysis, which greatly improves the efficiency of geospatial data
calculation and analysis. Considering that the Google Earth Engine platform can carry
out interactive analysis and corresponding visualization and can have both fast data
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acquisition and efficient calculation and analysis, the research on land-use monitoring and
spatial-temporal change analysis in the study area is based on the GEE platform [35–37].

Random forests is a machine learning algorithm, which is a classifier with multiple
decision trees. Random forest classifier achieves the purpose of classifying data sets by con-
structing many unrelated random decision trees, and leading and aggregating the decision
trees through a prediction model. Compared with the maximum likelihood method, single
decision tree, and single-layer neural network algorithm, the random forest algorithm has
higher accuracy in processing high-dimensional data [38]. The random forest classifier is
more robust than a single decision tree, and compared with other advanced classifiers, such
as support vector machine (SVM), the random forest algorithm is easier to apply [39,40].
The random forest algorithm establishes a decision tree by searching the random subspace
of a given feature set and sets the optimal splitting node by minimizing the correlation
between the decision trees [41]. The random forest classifier can quantitatively set the
contribution rate of each variable to the classification output to evaluate the importance
of each variable. At the same time, the onboard random forest algorithm evaluates the
internal accuracy through OOB (out-of-bag) technology, which takes about one-third of the
data as an independent classification accuracy evaluation data set to cross-verify the relia-
bility and accuracy of the classifier. Based on the superior performance of random forest
algorithm, the mapping and classification of land-use information based on the random
forest algorithm have been gradually started at home and abroad [38,42]. In this paper, our
proposed model uses a random forest algorithm to assist the land-use classification and
the classification accuracy is higher than 85%.

Tidal flats (non-vegetated area), along with coastal vegetation area, constitute the
coastal wetlands (intertidal zone) between high and low water lines, and play an important
role in wildlife, biodiversity, and biogeochemical cycles; therefore, land-use classification
and analysis are fundamental for environmental and water resources evaluation in coastal
plain areas; however, accurate annual maps of coastal tidal flats over the last few decades
are unavailable, and their spatio-temporal changes in China are unknown. Wang et al. [43]
analyzed all the available Landsat TM/ETM+/OLI imagery (~44,528 images) using the
Google Earth Engine (GEE) cloud computing platform and proposed a decision tree al-
gorithm to generate annual frequency maps of open surface water body and vegetation
to produce annual maps of coastal tidal flats in eastern China from 1986 to 2016 at 30 m
spatial resolution.

Tseng et al. [44] used Landsat-4/-5/-7/-8 Thematic Mapper (TM)/Enhanced TM
Plus/Operational Land Imager imageries to reconstruct the topography of a tidal flat, to
unveil its formation and temporal changes since the 1980s. They classified water areas
by applying a modified normalized difference water index to each Landsat image and
normalized the chances of water exposure to create an inundation probability map. After
building DEM at the intertidal zone, a water level-area curve is established, and the
accuracy of DEM is validated by sea level (SL) at the timing of each Landsat snapshot.

Since there is no simple method exists for mapping tidal flats over large (>1000 km)
extents, and consequently, their global status and distribution remain poorly understood.
Existing mapping methods are restricted to small areas with known tidal regimes because
tidal flats are only fully exposed for a brief period around low tide. Murray et al. [45]
proposed a method for mapping tidal flats over very large areas and demonstrated its
utility by mapping the tidal flats of China, the Democratic People’s Republic of Korea,
and the Republic of Korea. They generated tide height predictions at the acquisition time
of all Landsat Archive images of the study area using a validated regional tide model,
selected suitable images acquired in the upper and lower 10% of the tidal range, converted
high and low tide images to a land and water class image derived from the normalized
difference water index (NDWI) and, subtracted the high tide classified image from the low
tide classified image, resulting in the delineation of the tidal flat.
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7. Conclusions

Land is the most precious resource for human life and sustainable development,
which provides food, economic development environment, and healthy ecosystems for all
organisms on Earth. Human activities have a significant impact on land use and its change
from time to time. In this paper, the spatial-temporal land-use change characteristics of
the coastal plains in Hangzhou Bay Area, China, were investigated. The driving force of
land-use change was analyzed by investigating factors such as demographics and human
population dynamics, social-economic development, urbanization, and coupling effects
of the above-mentioned factors. The results presented in this paper can provide useful
indicators and insights for environmental ecology evaluation and decision-making in
coastal plain areas.

The objective of this study was to classify land-use and land-cover status and to
identify land-use changes, especially the land-use distribution, land-use intensity, land-
use change rate, and its driving force of the coastal plains in Hangzhou Bay Area in the
past 12 years from 2009 to 2020. Satellite imageries and medium-scale Landsat data were
used to extract information on land use and land-use changes. A random-forest-based
land-use/land-cover classification system was established. Based on the fast, efficient,
and parallel online computing function of GEE, this study uses multi-temporal Landsat
series image data to classify and calculate the land-use characteristics of the study area in
the most recent 12 years. Based on GIS technology, the change characteristics and spatial
differences of land-use distribution and intensity were discussed, and the direction and
rate of land-use change were analyzed. The impact of human activities on landscape is
mainly reflected in agricultural production and urban construction activities.

Since the beginning of the 21st century, China’s large-scale tidal flat land development
has promoted the rapid development of the regional economy. The newly added land
is mainly used for urbanization, industrialization, and port construction. The land-use
mode of the coastal tidal flat has gradually changed from a natural state to an artificial
mode, and the transformation rate is accelerating. While accelerating the development of
ports and cities and the industrialization of coastal areas, coastal tidal flats also bring many
land-based pollutants, and the water environment is not optimistic.

The results presented in this paper can provide useful indicators and insights for
environmental ecology evaluation and decision-making in coastal plain areas. Ensuring the
rational development and utilization of land resources is a necessary condition for realizing
the sustainable development of the economy, society, ecological environment, and natural
resources. With the rapid development of China’s economy and society and the vigorous
promotion of urbanization, the population density of coastal plain has been increasing
continuously, and a series of problems such as ecological environment destruction and
water shortages have emerged. A reasonable analysis of the response relationship between
land-use function change and related ecological environment factors is of great significance
for rational and efficient land-use planning.
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