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Abstract: Wide access to large volumes of urban big data and artificial intelligence (AI)-based tools
allow performing new analyses that were previously impossible due to the lack of data or their high
aggregation. This paper aims to assess the possibilities of the use of urban big data analytics based
on AI-related tools to support the design and planning of cities. To this end, the author introduces
a conceptual framework to assess the influence of the emergence of these tools on the design and
planning of the cities in the context of urban change. In this paper, the implications of the application
of artificial-intelligence-based tools and geo-localised big data, both in solving specific research
problems in the field of urban planning and design as well as on planning practice, are discussed.
The paper is concluded with both cognitive conclusions and recommendations for planning practice.
It is directed towards urban planners interested in the emerging urban big data analytics based on
AI-related tools and towards urban theorists working on new methods of describing urban change.
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1. Introduction

Large volumes, velocities, varieties, and veracities of geo-referenced data, actively
and passively produced by users, bring more comprehensive insights into depicting socio-
economic environments [1]. With the widening access to big data and their increasing
reliability for studying current urban processes, new possibilities for analysing and shaping
contemporary urban environments have appeared [2]. Emerging AI-based tools allow
designing spatial policies enabling agile adaptation to urban change [3]. This paper aims
to investigate the possibilities provided by AI-based tools and urban big data to support
the design and planning of the cities, by seeking answers to the following questions:

• What is the potential of using urban big data analytics based on AI-related tools in the
planning and design of cities?

• How can AI-based tools help in shaping policies to support urban change?

Existing studies show various applications of AI-based tools in different sectors of
planning. Wu and Silva [4] review its role in predicting land-use dynamics; Abduljabbar
et al. [5] focus on transport studies, while Yigitcanlar et al. [6] analyse applications of those
tools in the context of sustainability. Other reviews focus on specific areas; for example,
Raimbault [7] focuses on artificial life, while Kandt and Batty [8] focus on big data. Allam
and Dhunny [9] identify the strengths and limitations of AI in the urban context but focus
mainly on its role in building smart cities. Thus, there rarely exist studies that focus on
both urban big data analytics and AI-based tools in an urban context, which asks for a
comprehensive framework to assess, based on existing studies, the impact of the use of
urban big data analytics using AI-related tools to support the design and planning of
cities. In order to bridge this gap, a conceptual framework to assess the influence of the
emergence of AI-based tools and urban big data on the design and planning of cities in the
context of urban change was made. The result of this framework is a typology of the use of
AI and big data to support urban change. The paper determines the implications of the
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application of AI-based tools and geo-localised big data on both solving specific research
problems in the field of city design and planning, as well as on planning practice.

The paper is divided into six main sections. The introduction, presenting research
questions, is followed by the description of previous works enabling definition of the gap
in the existing literature, which this paper addresses. The background section presents
a literature review with strong focuses on big data analytics and AI-based tools. The
third section includes the methodology applied in this paper. It is followed by analyses
of data sources and types of AI-based tools used in urban analytics. In the same section,
various fields of use of AI-based tools and urban big data are discussed and assessed in
terms of the impact of AI and urban big data analyses on the design and planning of
the cities. In the Results Section, the main findings are discussed through the lens of the
research questions and the state-of-the-art presented at the beginning of this study. It
allows for the identification of six major fields where these tools can support the planning
process. Finally, cognitive conclusions, recommendations for planning practice, and future
application trends defining the main points for big data and AI-based analysis to better
reach policymakers and urban stakeholders are formulated and followed by directions for
further research.

2. Background: Urban Change and the Opportunity to Use Big Data Analytics and
AI-Based Tools

The availability of urban big data offers new opportunities for the development of
many aspects of urban living. This availability of data showcases that it can be useful in
making informed decisions for the optimal usage of resources [9], while new technologies
such as the Internet of Things, artificial intelligence, and machine learning can greatly
contribute to this process, allowing researchers and planners to conduct more in-depth and
accurate urban analyses [10].

After the industrial revolution, humankind entered the Anthropocene [11], as human
activities are having increasing impacts on the environment on all scales. At the same time,
human settlements and cities are becoming more complex than ever before. This complexity
escaped the attention of researchers until the 1960s, when the science of cities started to
flourish [12]. Further, the 1990s brought numerous applications of complexity theories
to urban planning [13–15]. In a city, human behaviour is impacted by different factors,
such as the urban microclimate, morphology, connectivity, and accessibility of public and
commercial facilities. To model this complexity, current cities require the introduction of
new forms of planning [16,17] based on profoundly critical engagement with cities, analysis
of the interrelationships between human activity and urban space, as well as intellectual
and ethical guideposts for transformative actions [18]. As urban space is a dynamic
system, composed of human and commercial activity, flows of energy and matter, and their
interactions [19], we can no longer analyse the urban environment as a static space built
of structures and roads. At the same time, in recent years, one can observe an increasing
amount of big data mining applications in urban studies and planning practices [20–22].
Urban big data mining—i.e., extrapolating patterns and obtaining new knowledge from
existing data sources—allows new types of data to be used to improve system performance
and to take full advantage of its real-time nature [23]. At the same time, these new insights
can also be an advantage for urban planning analyses. In this paper, the author argues that
big data and AI-based tools applied in the planning of cities can describe this complexity
and help successfully manage urban change. This can be achieved by providing methods
to model (including using big data analytics based on AI-related tools) and conditions to
manage urban processes which are influenced by urban dynamics and the heterogeneity of
the urban space. Due to its specificity, big data analyses can better support the preparation
of urban strategies and plans that answer the abovementioned challenges, which often
need to be studied in between the formal statutory scales of government [24].

Additionally, data-driven city planning based on urban big data analysis, planned and
managed in real time can support those changes. Urban big data [25], also called geo-big
data [26], allows for new types of more detailed analyses, which can influence the design
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of cities and support the creation of data-based policies, plans, and projects. Real-time data
mining and pattern detection using high-frequency data can now be carried out on a large
scale [8]. Development of and access to AI-based tools allow for fuller use of the potential
of big data from different sources by both conducting analyses that were previously
impossible, such as object detection and categorisations in data-scarce environments (e.g., in
the study of urban informalities [27] or mapping cultural heritage [28]) but also advancing
existing type of analyses (e.g., simulations of urban growth, which allow the study of the
complexity of those processes [29,30]). Allam and Dhunny [9] argue that the processing
of big data through AI can increase the liveability of urban space and help to plan more
connected, efficient, and economically viable cities, which is why it is relevant to study the
role of both big data analytics and AI-based tools together.

Various urban research scholars argue that big data analytics supported by AI-based
tools promise benefits in terms of real-time prediction, adaptation, higher energy efficiency,
higher quality of life, and accessibility [8,31–33]. Data-driven technologies, such as artificial
intelligence, suggest ways to establish a new generation of GIS systems, as they enable
the building of frameworks connecting multiple data sources [2]. AI-based tools are
applied in the studies which require accurate predictions with a high spatiotemporal
resolution, such as urban traffic surveillance systems [34] and real-time pedestrian flow
analysis [35]. Hao et al. [36] argue that big data analytics using AI-based tools could
allow for regional perspectives to be modelled at the individual level, to move from static
total amounts to dynamic flows, and to reflect the fine-grained scale of regional spatial
changes. This approach, with the help of cellular automata and multi-agent systems,
was used by Rienow et al. [37] for forecasting urban growth. The emergence of advanced
machine learning methods can also provide unprecedented opportunities to model complex
processes in shaping the cities of today [38]. Amiri et al. [39] apply machine learning to
household transportation energy consumption, while Byon and Liang [40] focus on real-
time transportation mode detection. Moreover, numerous studies [38,41,42] confirm that,
in various prediction tasks, machine learning models can provide higher accuracy and
efficiency than classic statistics. Deep learning, with its artificial neural network algorithms,
is often combined with cellular automata, e.g., for spatiotemporal modelling of urban
growth [30], or with fuzzy logic, e.g., for urban water consumption estimations [43].

The conducted review shows that the types of AI-based tools that are most widely
used in urban planning are those from the evolutionary computing and spatial DNA
group: mostly artificial neural network [4,44,45] both of the convolutional [27,46] and
recurrent [47] types but also unsupervised machine learning, mainly self-organising maps
(SOMs) [48,49]. The next most numerous group contains examples of the Knowledge-based
intelligent systems group, where the most important tools are fuzzy logic [29,50] and rough
sets [50]. Studies by Varia [51] and Beura and Bhuyan [52] use a genetic algorithm to model
the dynamic flow of both cars and bikes. Additionally, artificial life—namely, cellular
automata [30,53,54] and agent-based models [55,56], are widely used in studies of urban
growth.

3. Methodology

The aim of the paper, i.e., to investigate the possibilities provided by AI-based tools
and urban big data to support the design and planning of cities, was addressed by the
creation of the conceptual framework to assess the influence of the emergence of these
tools on the design and planning. This framework was developed based on an integrative
systematic review of the current literature on the use of big data and AI in urban design
and planning, which allows for the identification of the relevant criteria for evaluation of
the impact of AI-based tools on the design of cities—namely, accessibility and reliability
of data, as well as adaptability and replicability of those tools. The synthesis of the recent
studies justifies the introduction of classification of six main areas of use of urban big data
analytics based on AI-related tools. Further exploratory research analysing the current
studies and applications in those categories aiming to support urban change, followed by
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analyses of the most significant criteria of their evaluation—range of the analyses, type of
AI-based tools and data, impact on design and planning, strengths and limitations—were
conducted.

This study is based on a systematic review described by Cook, Mulrow, and Haynes [57],
aiming to adopt a replicable, scientific process to minimise bias through an exhaustive
literature search and by providing an audit trail of procedures and conclusions [48]. Integrative
reviews, as the broadest type of research review method, allow for the simultaneous inclusion
of experimental and non-experimental research to fully understand the phenomenon of
concern [58]. It also allows for combining evidence from the theoretical and empirical literature.
A similar type of review was conducted by Hao et al. [36]; however, it was limited only
to Chinese studies and concerned only the use of big data, while this study focuses on
the worldwide use of AI-based tools for big data analytics. This integrative systematic
literature review was based on the following steps presented by Whittemore and Knafl [59]:
(1) identification of the problem, (2) literature search, (3) data evaluation, (4) data analysis,
and (5) presentation, though the methodology was adjusted to the different field of study.

Identification of the problem was based on seeking an answer to the research ques-
tions that were formulated in the introduction. For literature research, the author analysed
research papers on the application of big data analytics and AI-based tools in urban
planning and design. The included papers were sourced from the Web of Science Core Col-
lection using the keywords ‘ARTIFICIAL INTELLIGENCE’ and ‘URBAN/CITY/CITIES’ to
construct the initial corpus of literature. Those keywords were sought in the titles, the key-
words of the papers, and the abstracts. The second literature query was conducted using
the terms ‘BIG DATA’ and ‘URBAN/CITY/CITIES’ as keywords; thus, as it included many
unrelated searches, while the most important sources appear on both of the abovemen-
tioned searches, the latter search was abundant. Books and book chapters were excluded
from the query. After this search, only papers from the urban studies, regional urban
planning, geography, architecture, transportation, and environmental studies categories
were included. The resulting database that consists of 134 papers was imported into the
Mendeley® software. Further, 54 papers in the seed corpus not fitting the scope were
manually removed, e.g., including studies of the use of AI in construction or innovation
policy evaluations. This analysis of the abstracts narrowed the study to 82 papers.

In the data evaluation phase, this core literature was analysed from multiple perspec-
tives. Due to the diverse representation of primary sources, they were coded according
to various criteria relevant to this review: year of publication, research centre, type of
paper (theoretical, review, and experimental), type of data, and AI-based tools that were
used. This allowed for the identification of publications related to, among others, the
most renowned data centres such as Media Lab MIT, Senseable City Lab MIT, Centre for
Advanced Spatial Analysis UCL, Future Cities Laboratory, and Urban Big Data Centre. The
final sample for this integrative review included empirical studies (64), theoretical papers
(4), and reviews (14). Only 9.7% of the papers were published before 2010. The main types
of data used are mobile phone data, volunteered geographic information data (including
social media data), search engine data, point of interest data, GPS data, sensor data, e.g.,
urban sensors, drones, and satellites, data from both governmental and civic equipment,
and new sources of large volume governmental data.

Data analysis started with the identification of opportunities and barriers to foster or
prevent the use of big data and AI in emerging urban practices. Strengths and limitations of
the use of different types of urban big data analytics based on AI-based tools were identified
in both the review papers and the experimental studies from the literature corpus. This
analysis was conducted through the lenses of accessibility and reliability of data, as well as
adaptability and replicability of AI-related tools.

With the aid of qualitative content analysis of the literature corpus, the review results
were presented in the more systematic and comparable form of a typology identifying
the major fields of use of urban big data analytics based on AI-based tools. In this step,
all experimental studies were coded according to the defined six major fields of use. A
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synthesis in the form of typology was developed to comprehensively portray the impact
of AI-based tools and urban big data analytics on the design and planning of cities. The
typology was based on the work of Hao et al. [36] but further developed based on the
conducted literature review. Further analyses helped to define the of structure the results
tables and to categorise the impacts on the design and planning, strengths, and limitations
of each field of use of urban big data analytics based on AI-based tools. At the end of
the paper, the main findings are discussed through the lens of the research questions
introduced at the beginning of this study: the author identified six major fields where
these tools can support the planning process to assess the potential of using urban big
data analytics based on AI-related tools in the planning and design of cities and the role of
AI-based tools in shaping policies to support urban change. Finally, cognitive conclusions
and recommendations for planning practice—defining the main points for big data and
AI-based analysis to better reach policymakers and urban stakeholders—were formulated.

4. Urban Big Data Analytics with AI-Based Tools in the Design and Planning of Cities

Recent years mark a rapid expansion of urban studies and planning practices using
urban big data and AI-based tools. At the same time, as it is still an emerging field, the
impact on the design and planning of cities needs to be further assessed. To this end, based
on the introduced assessment framework, the author proposed a typology of the use of big
data and AI-based tools in urban planning with regard to their aim and range, types of
AI-based tools and data being used, impact on design and planning, as well as strengths
and limitations.

4.1. Classification of Data Sources Supporting AI-Based Urban Analysis

Before introducing a framework to analyse urban processes using big data analytics,
the full recognition and classification of the data sources are needed [2]. There are various
typologies of data sources that can be defined as big data [8,36,60]. Their frequency and
sample size are important features, so in this paper, the author defined, following a study
by Hao et al. [36], big data as both high-frequency and low-frequency data with large
sample sizes. The author proposed a typology of urban big data based on the work of
Thakuriah et al. [60], who argue that big data can be both structured and unstructured data
generated naturally as a part of transactional, operational, planning, and social activities in
the following categories:

• Sensor systems gathered data (infrastructure-based or moving object sensors)—
environmental, water, transportation, building management sensor systems; con-
nected systems; Internet of Things; drone, satellite, and LiDAR data;

• User-generated content (‘social’ or ‘human’ sensors)—participatory sensing systems,
citizen science projects, points of interest (POI), volunteered geographic information
(VGI), web use, e.g., search engine data, mobile phone data (MPD), GPS log data from
handheld GPS devices, online social networks, and other socially generated data;

• Administrative (governmental) data (open and confidential microdata)—open ad-
ministrative data on taxes and revenue, payments and registrations; confidential
personal microdata on employment, health, welfare payments, education records,
detailed digital land use data, parcel data, and road network data;

• Private-sector data (customer and transactions records)—store cards and business records,
smart card data (SCD), fleet management systems, GPS data from floating cars (Taxis),
data from application forms; usage data from utilities, and financial institutions;

• Historical urban data, arts and humanities collections—repositories of text, images,
sound recordings, linguistic data, film, art, and material culture, and digital objects,
and other media;

• Hybrid data (linked and synthetic data)—linked data including survey—sensor or
census—administrative records.

A large number of reviewed studies use social media data to study the opinions of
city dwellers [61,62]. These data provide quite precise geo-location and allows researchers
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to conduct urban analyses where no other data sources are available [27]. New sources of
large volume governmental data are used in the majority of cases for analyses of urban
growth dynamics [29], environmental conditions [63], and traffic studies [51]. GPS data
from floating cars [44], and handheld devices [40] are used in various types of analyses of
the flows of people and vehicles. The strengths and limitations of those types of data are
described below in Section 4.4.

New sources of data, which have emerged as a result of technological, institutional,
social, and business innovations, substantially increase the opportunities for urban re-
searchers and practitioners. Traditional temporal data are often gathered at a one-year
scale, while analyses using traditional spatial data often ignore temporal variations, lacking
dynamic elasticity or offering a predominantly fragmented picture of a given phenomenon.
Those problems could be overcome with the use of new types of urban data of high
spatiotemporal refinement such as mobile phone data or GPS data. Additionally, tra-
ditional individual attributive data gathered in questionnaires and interviews focus on
socio-economic features such as gender or occupation and are not useful to reflect attributes
such as preferences or emotions of individuals.

At the same time, new ways of accessing existing sources of data, and innovations in the
linkage of data belonging to different owners and domains, which are leading to new connected
data systems [60], are of equal importance in the development of this field. The conducted
review shows that the need for data integration starts already on the level of a single data source,
which often needs to be transformed before a consistent database is created and is even more
pronounced in more complex models, which link data of different types and owners.

4.2. Types of AI-Based Tools Used in Urban Planning

Wu et al. [40] propose a classification of AI-based tools used in urban planning, which
divides them into the following four groups according to their application and properties:

• Artificial life—cellular automata, agent-based model, swarm intelligence;
• Intelligent stochastic simulation models—the most important of which are genetic

algorithms and simulated annealing;
• Evolutionary computing and spatial DNA— the most important of which are artifi-

cial neural networks (convolutional and recurrent) and spatial DNA;
• Knowledge-based intelligent systems—fuzzy logic, expert systems, heuristics, and

reasoning systems.

Artificial intelligence-based tools—namely, artificial neural networks and genetic
algorithms or their combinations, are gaining ground for use in the main types of micro-
dynamic models such as the microsimulation model, cellular automata, and agent-based
microsimulation model [36]. In order to avoid the limitations of the different types of
tools, various studies combine two or more of those, such as ANN algorithms with cellular
automata for the modelling of urban growth [30] or with fuzzy logic for the risk-based
asset management of water piping networks [64].

4.3. Use of Urban Big Data Analytics Based on AI-Related Tools

The use of big data rises technological and methodological challenges, as well as com-
plexities regarding the scientific paradigms and planning trends. In the context of the design
and planning of cities, based on the conducted literature review, one can define six major
fields of use of AI-based tools and urban big data, as described in Table 1: (1) analyses of
regional linkages and polycentric spatial structure; (2) urban spatial structure and dynamic; (3)
urban flows; (4) urban morphology and digital urban image; (5) the behaviour and opinions
of urban dwellers; (6) urban health, microclimate, and environment. While there are various
ways to organise big data analyses for urban research and applications, the grouping here
is primarily informed by both the subject and type of analyses, but other factors such as the
methods of generation and access to data, together with its strengths and limitations, were also
considered. This typology is not mutually exclusive; for example, analyses of spatial mobility
patterns might be used to study urban dynamics and the behaviour of urban dwellers.
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Table 1. Impact of IA algorithm-based tools in the design and planning of cities.

Fields of Use Aim and Range Research Studies Types of AI-Based Tools Impact on Design and Planning

Regional linkages and
polycentric spatial structure
analyses

Analyses of flows of people, goods,
capital, and information among regions
and cities; various kinds of economic,
social, and spatial linkages among cities;
urban boundaries and spatial expansion
simulation; performance of spatial
structures at regional/urban scale

[29,35,50,65,66]

Knowledge-based intelligent
systems–(Fuzzy Logic, Rough Sets);
Evolutionary computing and spatial
DNA–(Artificial Neural Networks);
Artificial life–(Cellular Automata,
Agent-Based Models)

• Can reflect complex features, e.g., mobility, ambiguity,
and spatiotemporal dynamics

• Support evolution from the urban hierarchy to
modelling urban networks;

• Allow the description of urban flows from the
individual level, reflecting the fine-scale of regional
changes

• Allow assessing the spatiotemporal evolution of urban
networks

Urban spatial structure and
dynamic analyses

Analysing the spatial structure and
‘pulse of the city’; study of functional
structure based on citizens activities;
spatial mobility patterns; recognition of
spatial characteristic of commercial
centres and public spaces; Point of
Interest analysis applied to advanced
land-use identification and urban
structure analysis

[27,30,53,54,56,65,67–72]

Knowledge-based intelligent
systems–(Fuzzy Logic, Rough Sets);
Evolutionary computing and spatial
DNA–(unsupervised machine
learning–SOM, Artificial Neural
Networks); Artificial life–(Cellular
Automata, Agent-Based Models)

• High-frequency data allow for the study of the growing
dynamics and liquidity of the spatial structure of cities

• Allow for refinement of spatiotemporal interactions
• Can help planning in a data-scarce environment
• Could lay a foundation for optimisation of urban land

classification standards

Urban flows analyses

Urban traffic analyses and determination
of the capacity of transport networks;
analyses of transportation connectivity;
analysis of jobs-housing balance and
commuting corridors; energy planning
models

[36,40,44–46,52,67,73–77]

Intelligent stochastic simulation
models–(Genetic Algorithms);
Evolutionary computing and spatial
DNA–(Artificial Neural Networks,
reinforced learning)

• Analyses of patterns embedded in the network of MPD
interaction and smartphone users’ movements can
support transport system optimisation and spatial
structure improvements

• Due to its spatial accuracy, can also support spatial
planning and transport organisation at the meso- and
community-planning scale

Urban morphology analyses

Analyses of the change of urban form
and evaluation of land-use planning;
landscape analyses; study the process of
formation and transformation of human
settlements; digital expression of city
image; evaluation of urban form;
evaluation of liveability of urban space,
e.g., based on urban point of interest
data

[24,78–83]

Knowledge-based intelligent
systems–(Rough Sets);
Intelligent stochastic simulation
models–(Genetic Algorithms);
Evolutionary computing and spatial
DNA–(unsupervised machine
learning–self-organising maps, Artificial
Neural Networks);

• allow for the evaluation of public spaces and creation of
typologies based on large samples

• urban image as a kind of human-based data can help to
reveal the cityscape at the pedestrian level and assist
enhancement of the urban landscape

• can reduce the need for extensive fieldwork: interviews,
neighbourhood tours, and expert consultation
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Table 1. Cont.

Fields of Use Aim and Range Research Studies Types of AI-Based Tools Impact on Design and Planning

Analyses of the behaviour and
opinion of urban dwellers

Study of the spatial pattern of behaviour
of individuals, visualisation of social
networks; recognition and simulation of
individual mobility; simulation of the
behaviour characteristics of both
residents and visitors as well as their
trajectories; analysis of sentiments

[35,55,61,62,84–87]

Knowledge-based intelligent
systems—(fuzzy logic); evolutionary
computing and spatial DNA; machine
learning artificial neural networks;
artificial life (cellular automata)

• Reflect dynamic attributes at the spatiotemporal scale:
preference, emotions, and satisfaction of individuals

• Allow for new types of analyses based on specific
behavioural patterns and as such can provide more
reasonable and accurate explanations for evolution
mechanisms of complex systems

Urban health, microclimate,
and environment analyses

Analyses of the resilience of urban
structures; analyses of urban
microclimate and urban heat islands;
analyses of major environmental threats,
e.g., flooding, heat or air quality;
participatory sensing of urban space

[42,47,63,64,88–96]

Knowledge-based intelligent
systems–(Fuzzy Logic); Intelligent
stochastic simulation models–(Genetic
Algorithms); Evolutionary computing
and spatial DNA–(reinforced machine
learning, Artificial Neural Networks)

• By the inclusion of user-generated content, and data
from participatory action research, more detailed
analyses of the resilience of urban structures can be
supported

• Can help to measure ecological behaviour and support
urban planning practices that promote such behaviour

• If based on regular image acquisitions, can be especially
valuable to track temporal changes
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4.4. Impact of AI and Urban Big Data Analysis

Those analyses mainly measure individual behaviour data at different spatiotemporal
scales using spatial, temporal, and individual attributive data. To assess the impact of those
technologies, it is vital to define different scales of intervention of new AI and urban big
data analysis starting from local fine-grained analyses of urban spaces such as street and
plaza (possible due to geolocation) through the neighbourhood, and up to the city or even
regional scale (allowing to study functional connections).

Regional linkages and polycentric spatial structure analyses can help to reflect com-
plex features such as mobility and ambiguity and to illustrate spatiotemporal dynamics.
They can support evolution from the urban hierarchy analyses to modelling urban net-
works, from static total amounts to dynamic flows, by allowing the description of those
flows from the individual level and reflecting the fine-scale of regional changes. Analyses
of this kind assess the spatiotemporal evolution of urban networks; they are not limited to
administrative unit boundaries but allow for analysing functional areas.

Urban spatial structure and dynamic analyses using data with high-frequency allow
for the study of the growing dynamic and liquidity of the spatial structure of cities and,
at the same time, allow for a refinement of spatiotemporal interactions such as individual
user trajectories. New data sources can help planning in a data-scarce environment, where
traditional data sources are not available, and lay a foundation for optimisation of urban
land classification standards.

Urban flows analyses allow the study of patterns embedded in the network of MPD
interaction and mobile phone holders’ movements and, due to their massive volume and
high frequency of data, can support transport system optimisation and spatial structure im-
provements. Their spatial accuracy can provide support to spatial planning and transport
organisation at the meso- and community-planning scales.

Analyses of urban morphology can reduce the need for extensive fieldwork, e.g.,
interviews, neighbourhood tours, and expert consultation, as analyses of large volumes of
data (e.g., images, with AI algorithms) allow for the evaluation of public spaces and the
creation of typologies based on very large samples. Urban image as a kind of human-based
data can reveal the cityscape at the pedestrian level and assist the enhancement of the
urban landscape.

Analyses of the behaviour and opinion of urban dwellers could help in reflecting
fixed features, e.g., age, gender, occupation, but also other attributes that are dynamic at the
spatiotemporal scale: preference, emotion, and satisfaction of individuals. Such analyses
allow the study of specific behavioural patterns using, e.g., agent-based microsimulation
models. They could provide more reasonable and accurate explanations for evolution
mechanisms of complex systems and help to identify concerns, emotions, and preferences
among citizens, particularly in response to the changing conditions such as urban operation
disruptions and policy changes.

Urban health, microclimate, and environment analyses, through the extension of
traditional data sources to include user-generated content and data from participatory
action research, can support the transition into more resilient urban structures. Analyses of
this kind measure ecological behaviour and support urban planning practices that enhance
such behaviour. As sensor systems are now likely to be wirelessly connected, mobile, and
significantly more embedded and distributed, when those analyses rely on sensor data
from regular image acquisitions, they can serve as a valuable source of information for
tracking temporal changes.

The new tools have significant strengths (see Table 1); conducted review supports
Allam and Dhunny’s [9] claim that the primary advantage of AI in big data analysis is that
it supports the heterogeneity and commonality principles which are at the core of big data
analytics [56,73]. They enable planners and design practitioners to understand the place
from afar. If the studies are performed with scientific rigour combined with traditional
planning analysis and validated by those, e.g., using triangulation, such analyses can enrich
the results obtained from fieldwork such as interviews, neighbourhood tours, and expert
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consultation [78,97]. Mobile phone data or social media data can cover a relatively large
area and, due to the volume of the sample, build up a relatively comprehensive picture.
Studies are not limited to the administrative unit in which data are traditionally gathered.
Many posts contain geographic coordinates, allowing researchers to geotag the samples
with high precision [21]. New data sources, due to their high volume and frequency, help
to reflect complex features such as mobility, ambiguity, and spatiotemporal dynamics.
Additionally, classic techniques such as regression analysis, mathematical programming,
and input–output analysis do not perform that well in modelling the complex, dynamic
and nonlinear factors inherent in urban systems or subsystems [47,85,88,89]. AI-based tools
make it possible to answer some of the challenges that emerge in urban modelling, shifting
it from macro to micro, from static to dynamic, from linear to nonlinear, from structure to
process, from space to space–time [98].

Big data and AI-based tools have significant potential for developing new types of
analysis; however, there are also important limitations of each type of analysis, which need
to be identified in order to assess their effectiveness. The assessment includes identification
of the challenges that appear while implementing AI-based tools in spatial analyses,
including the aspect of the reliability and accessibility of the data, followed by evaluation
of the usability of those tools to support data-driven urban planning (details in Table 2). Big
data can add to the complexity of data reliance [9]. Bari [99] stresses that the availability of
big data poses various challenges including scaling, spanning, preparation, analysis, and
storage bottlenecks. Another important aspect is the limited access to some sources of big
data, e.g., social media data, due to personal security purposes or the unstructured nature
of the data gathered [24]. To respond to a lack of integration of data limits its usability,
Neves et al. [100] propose the introduction of an open data policy, which could foster new
types of studies and have the potential to enhance innovations. At the same time, such
policies need to be assessed through the lenses of confidentiality and ethics. Solving the
problem of the unstructured nature of data and their integration regarding all four phases
of acquisition, storage, calculation, and distribution calls for the emergence of urban data
platforms.

Moreover, sceptics of social media data contend that activities in the virtual world may
not reflect real life, e.g., Rost et al. [101], arguing that social media users tend to represent
the population groups that are young, technology savvy, and male. Distortion can also be
caused by political campaigns and large public events. This bias requires careful filtration
of volunteered geographic information, including social media data, and is the problem
that needs to be solved for big data applications. In the current literature, there are two
main solutions for this problem: (1) combining big data with traditional data sources,
e.g., small data used for model construction, and big data are applied to simulate and
verify the established model ([102], as cited in [36]); (2) verifying the reliability of big data
with recognised theories and models [36,97,103]. As far as AI-based analytics tools are
concerned, while big data call for large sample size [104], one has to take into consideration
possible problems of noise accumulation, spurious correlations, measurement errors, and
incidental endogeneity, which may impact the results or at least prologue the time of the
studies [9].
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Table 2. Use of urban big data in design and planning of cities.

Fields of Use Main Types of Big Data Strengths Limitations

Regional linkages and polycentric spatial
structure analyses

Mobile phone data, volunteered
geographic information data (incl. social
media data), search engine data, new
sources of large volume governmental
data

High spatiotemporal precision; large sample size; mass
coverage; no need for extra equipment; for volunteered
geographic information and search engine data: relatively easy
to obtain; for new sources of large volume governmental data:
relatively cheap, potentially less intrusive, but comprehensive

Possible information bias; for volunteered geographic
information and search engine data: the threat of duplicate
and invalid information, uncertain source; for mobile phone
data: failing to obtain individual attributes, missing
information may not be compensated

Urban spatial structure and dynamic
analyses

Mobile phone data, handheld GPS
devices data, point of interest data; new
sources of large volume governmental
data; volunteered geographic information
data (incl. social media data)

High spatiotemporal precision; allow for obtaining overall
picture; for mobile phone data and volunteered geographic
information: no need for extra equipment; for mobile phone
data: large sample size; for handheld GPS devices: collected in
real time

Failing to obtain individual attributes (for mobile phone data:
missing information may not be compensated, for handheld
GPS devices: may be partly supplemented by surveys and
interviews; for handheld GPS devices: relatively small sample
size and the need of equipment; for MPD: information bias

Urban flows analyses
Mobile phone data; gps data from
floating cars; volunteered geographic
information data (incl. social media data)

high spatiotemporal precision; for GPS from float cars:
collected in real time; for mobile phone data: no need for extra
equipment, large sample size

information bias (for GPS data smaller than social media data);
for gps from floating car data: does not show all trips, smaller
sample size, instability; for mobile phone data: missing
information may not be compensated, failing to obtain
individual attributes

Urban morphology analyses

Social media data; new sources of large
volume governmental data; point of
interest data; volunteered geographic
information

Due to their geolocation, allow fine-grained analyses; high
degree of automation; large samples securing higher
objectivity; for social media data: relatively easily accessible;
high spatiotemporal precision

Information bias (virtual world activities may not reflect real
life); for new sources of large volume governmental data:
databases are often in different formats or even unstructured;
for social media data: the need for capacity to analyse
voluminous data such as images; for POI: relatively difficult to
collect in real time

Analyses of the behaviour and opinion of
urban dwellers

Social media data; volunteered
geographic information; mobile phone
data

For volunteered geographic information: allows for obtaining
individual attributive information through text information
mining, such as preference, emotion, motivation, and
satisfaction of individuals; for social media data: can cover a
relatively large area and due to the volume of the sample; for
mobile phone data: helps to model detailed individual
attributes

Information bias; even if it can ease the amount of fieldwork, it
is still time consuming—both in terms of the procedure and
data preparation standards; for volunteered geographic
information: smaller sample size than, e.g., mobile phone data;
refinement of individual attributive data lacks high precision

Urban health, microclimate, and
environment analyses

sensor data, e.g., urban sensors, drones,
and satellites, from both governmental
and civic equipment;
new sources of large volume
governmental data

Realise refinement of individual attributive data; enable
conducting simulations of traditional, data-scarce
environments; if archived over long periods, can be used to
study environmental changes; possibility to collect massive
amounts of high temporal- and high spatial resolution data

Need for specific and, in some cases, costly equipment;
requirement of regular maintenance (if used over a long
period); very diverse access and data governance conditions,
as sensor systems might be government or privately owned;
while frequently covering long time frames, seldom have
large-scale spatial coverage
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5. Results

Although the use of big data and AI-based tools in urban planning is still in the
development phase, the current research shows numerous applications of those instruments
in various fields of planning. While assessing the potential of using urban big data
analytics based on AI-related tools to support the planning and design of cities, based
on this literature review, the author identified six major fields where these tools can support
the planning process, which include the following:

• Large-scale urban modelling—the use of urban big data analytics AI-based tools such
as artificial neural networks allows analyses to be conducted using very large volumes
of data both in terms of the number of observations and their size (e.g., interpretation
of images). One can observe the increasing popularity of complex systems approaches
using individual attributive data, e.g., agent-based models [37];

• High velocity and frequency—create conditions to capture urban processes such as
rapid urbanisation without waiting for the periodic publication of data from official
administrative sources but to conduct nearly real-time observation, which helps to
define urban change [35,50,73];

• Functional, often a fluid definition of the study area—the boundaries between re-
gions and areas are often blurred, and the emergence of ‘soft spaces’ prevents analyses
that are limited to administrator boundaries from capturing different phenomena such
as mobility or common labour markets. Urban big data can support various strategies
prepared for ‘soft spaces’ in between the formal, statutory scales of government [66],
from area masterplans to multiregional growth strategies [24];

• High granularity—Big data have functions beyond enabling quantitative analyses
of urban morphology of higher accuracy and granularity, as the data are often geo
coded [6,61]. They permit in-depth analyses but also provide a wider perspective to
reveal the dynamics behind complex urban processes and structural patterns.

• Collaboratively Sensing the City—User-generated content, especially volunteered
geographic information, is becoming an important source of information for urban par-
ticipatory practice to gather information, generate ideas, and even generate solutions
to the diagnosed problems [62,68];

• Empirical Urban Research—use of big data and AI allows for widening the scope of
possible analyses to find a way to measure, and as result make an evidence-based
decision, such phenomena as spatial quality and urban image [55,65]. It helps to
effectively combine quantitative studies with a qualitative approach, and even to
quantify behaviours, sentiments, or happiness [97].

The studies introduced in this paper confirm that urban big data and AI-based tools
can help in shaping urban policies to support urban change. Indeed, the spectrum of
possible analyses is broadened, and methods previously associated with other disciplines
can now be used to analyse and improve the built environment, e.g., quantifying urban
elements (e.g., cars, trees) through image detection can be a tool to assess and further
improve the quality of the public realm. Additionally, the use of new data sources such
as points of interest, volunteered geographic information, mobile phone data, and GPS
Log data enables researchers to conduct much deeper studies of, e.g., the ‘pulse of the
city’. The linkage of existing data sources such as mobile phone data with social media
data can further broaden the scope of analyses. Data-based urbanism allows for dynamic
resource management of urban assets and infrastructure, to support the planning of more
resilient urban structures and social inclusion in mobility. As some sources of big data
are collected in real time and not limited to the boundaries of administrative units, there
is the possibility to introduce a new approach to planning metropolitan areas based on
functional connections, as analyses do not need to be limited to statistical office data, which
are released twice a year and aggregated to administrative units. Additionally, obtaining
geo-coded data allows for fine-grained analyses of the built environment, which, in turn,
enables better identification of users’ needs. Urban big data and AI-based tools support
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the creation of plans that, instead of introducing the final vision, show possible scenarios
of development and evaluations that allow the assessment of and design for urban change.

The conducted literature mapping confirms that big data analytics based on AI-related
tools applied in the planning of cities can, in many cases better, describe the complexity
of a city’s functional and spatial structure and help successfully manage urban change,
because AI-based tools allow for more precise research of urban dynamics, which is a base
to analyse the city as flows of people, goods and energy, not as a planned static structure.
Geo-located data allow the study of the heterogeneity of space and provides fine-grained
urban analyses specific enough to show how urban change was accomplished. AI-based
tools for big data analytics allow for a higher degree of refinement and more accurate
empirical studies. They can increase the accuracy and precision of traditional spatial
planning analyses but can also assist in dynamic, even real-time evaluation. Additionally,
the frequency of data plays a significant role in defining the possible use of their different
types. A particular tension of the opposed temporalities between high-frequency data and
the long-term structural urban challenges can be observed, as the strategic value of big
data for cities helps to bridge fundamentally different temporal scales of urban dynamics:
the short-term scale of fast dynamics and the long-term, of much slower dynamics of
traditional urban planning and policy [8]. Those features bring big data analytics much
closer to the notions of urban change and the complexity of city structures. Therefore, big
data analytics based on AI-related tools can support traditional planning techniques, which
are based mostly on static data and often ignore temporal variations.

At the same time, even though the technologies associated with artificial intelligence
and big data have the potential to render numerous positives to the urban fabric, they
should not be blindly adopted. Technology needs to be integrated into the societal fab-
ric [9] and be developed to answer the needs of urban dwellers. Moreover, given the
representation bias of social media data, mobile phone data, and volunteered geographic
information, these techniques cannot substitute for classic urban analyses. In order to
enable a holistic approach to design and planning, there is a need to integrate those data
sources and combine them with other more traditional methods of urban assessment. At
the same time, there are still various concerns about big data analytics based on AI-related
tools connected, for example, with the accessibility to and accuracy of big data, as well
as the limitations of different types of AI-based tools which do not permit this kind of
analytics to fully replace traditional urban planning analyses. In terms of technological
change, the application of big data in design and planning may greatly support traditional
planning methods and provide conditions for innovation; however, due to its limitations,
it can only enrich but in no way replace traditional urban studies.

6. Discussion
6.1. Cognitive Conclusions

The analyses of urban systems are theoretically underpinned by economic, social,
behavioural, biological, and physical principles that allow for the simulation of complex
interactions, flows, movements, and diffusion patterns, while the emerging field of data
science often relies on a strictly empirical approach without reference to the social, psy-
chological, economic, and regional planning theories [60] that frame urban research. At
the intersection of those two approaches, the use of urban big data and AI-based tools
allows for analyses of detected patterns, knowledge discovery, empirical explanation, and
hypothesis generation regarding urban phenomena and trends. As this study confirms [64],
to make this happen, there is a need to retrieve and extract information from unstructured
or very voluminous streams of data, and further to reconfigure and structure big data
through data preparation techniques for it to meet the input requirements of existing or
emerging urban modelling approaches.

Kandt and Batty [8] stress the importance of the theoretical underpinning of big data
analyses, as the room for discretion in the interpretation of big data and AI analyses is
much larger than in, e.g., survey data. Thus, theoretical reasoning and contextualisation
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play a much greater yet even more elusive role in the practice of big data analytics [8].
The reviewed papers [97,103] confirm the importance of the cognitive processes that
are involved in interpreting the patterns found in big data. Additionally, promoting
open science aspects and deeper integration between disciplines [104] may ensure higher
recognition of the potential use of big data and AI-based research in urban planning.

6.2. Recommendations for the Planning Practice and Future Application Trends

The emergence of big data raises a range of concerns in line with issues regarding
confidentiality and ethics [9], and this study confirms [6] that these concerns are also
present while using these tools in the field of urban planning. As user-generated content
is often gathered without the consent of its subjects, it is vital to introduce regulations
that will protect their privacy and safety, while in this case, the contributors are even not
conscious if and how the data are used, volunteered geographic information is gathered in a
contributory, collaborative, or co-creative process [105]. Using sensors or social media, and
other socially generated information resulting from their participation in social, economic,
or civic activities, citizens are turning from being passive subjects of survey and research
studies to being active generators of information [60]. De Mauro et al. [106] stress the impact
of the advancement of big data analytics on society, and other reviews [29,30] support this
claim, as such analytics can shift the way we analyse the information that is used as a
base of the data-driven transformation of urban space. At the same time, technological
factors need to be weighed with respect to societal integration and the focus on liveability,
as technology needs to be used to improve urban life in terms of both performance and
efficiency.

On the other hand, open data initiatives have the potential to enhance innova-
tions [107]. A conducted review [24] confirms Gurstein’s [108] claim that if wisely adopted,
such initiatives can address the needs of the disadvantaged groups. At the same time,
open data initiatives, although they present many opportunities, can face challenges for
a number of reasons including privacy legislation and limitations in data quality that
prohibit their publication or limited user-friendliness [109]. Another important aspect is
the introduction of urban data platforms which could provide seamless integration of data
acquisition, storage, calculation, and distribution. On the conditions identified above, big
data and AI-based tools can support the current urban design and planning of cities and
regions.

In view of the study conducted, we can identify possible application trends for the use
of urban big data analytics based on AI-based tools in urban design and planning. With
the increase in the processing and computational power and wider access to pre-trained
ANN algorithms, deep learning models could become a more mainstream tool for urban
analytics. Additionally, cloud-based services, which allow easier access to data, in some
cases, at a fraction of the cost and availability of computer system resources, especially
the data storage and computing power, can enhance this trend. One can expect that the
technologies currently applied in other fields may have the potential to become more
widely used in urban planning; thus, we are likely to observe a greater variety of types
of AI-based tools used in urban analytics. This may concern, for example, reinforcement
learning models which can be used for optimal decision making in complex environments,
even though till now the majority of models in evolutionary computing used in urban
planning are applications of unsupervised and supervised learning. We can expect further
development of digital-twins technologies and their increasing role in urban management
as well as urban planning; thus, using predictive models for interdependency modelling
based on accurate input data can improve longer-term scenario planning. AI-based tools
will not solve urban planning problems by themselves; however, emerging technologies
can be integrated into existing information systems and, as such, provide more intelligent
and effective solutions to urban problems.

While taking into consideration already risen concerns about security and safety of
data, we can also predict that the issue of ethical responsibility and regulation will be even
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more pronounced and new networks, protocols, and systems for increased security will
be introduced. At the same time, the majority of current models focus on single sector
domains such as transport or pollution which call for an introduction of integrated tools
that interlink different urban layers through the sharing of data and introduction of models
allowing for higher interoperability of the systems.

6.3. Contribution and Future Directions of Studies

The proposed framework can be of help for both planning practitioners interested
in AI-based tools for urban big data analytics and for urban theorists working on new
methods of assessing urban change, as it identifies the main areas of their use in recent
studies. This paper provides a conceptual contribution that discusses the role of urban
big data analytics based on AI-based tools in modelling urban change. While analysing
the uses of urban big data and AI-based tools, this study, by showing general trends,
strengths and limitations, can form a base for future comparative studies between regions
and cities showing what the main barriers are impeding the use of those kinds of tools
in the regional context. Access to the data varies between countries or even cities; thus,
it is worth conducting studies that take into consideration regional specificities in the
possibilities of the use of big data. Such a study can help to identify the variety of both
different approaches and especially place-specific policies connected with data acquisition,
storage, management, and distribution.

The next vital aspect is to study the potential to use urban big data analytics based on
AI-related tools to model the resilience of urban structures and support the regenerative
design and planning of cities, which could be an important direction of future studies.
Intelligent systems can add to the optimisation of the use of resources in the urban envi-
ronment but in order to do so, there is a need to identify ecologically sounded indicators
which allows for continuous monitoring of the built environment, allowing to tap into the
potential of big data analytics based on AI-related tools.

As the majority of revised papers focus on sectoral solutions or analyses, there is
a need to assess the potential of AI-based tools to support decision making in chosen
sectors such as energy or transport but also to deal with more complex issues such as
the above-mentioned resilience or well-being of urban dwellers. Such an approach could
surely help to assess the usability and reliability of urban big data analytics and AI-related
tools for multidisciplinary research and urban planning practice, as AI can be an important
tool to model the dynamics and heterogeneity of urban space, which, in turn, helps to
model urban change.
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