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Abstract: The presence of impervious surfaces in catchments interferes with the natural process
of infiltration, which has a marked influence on the hydrological cycle, affecting the base flow
in rivers and increasing the surface runoff and the magnitude of flood flows. Like many Latin
American cities, Loja (located in southern Ecuador) has experienced significant rates of urban growth
in recent years, increasing the impervious surfaces in the catchment where it belongs. The aim of this
study is to analyze the spatiotemporal dynamics of imperviousness in the study area for the period
1989–2020, using the Normalized Difference Impervious Surface Index (NDISI) and the supervised
classification of Landsat images. The effect on flood flows was studied for each timestep using
HEC-HMS hydrological model. Additionally, a future scenario of impervious surfaces was generated
considering the observed spatiotemporal variability, possible explanatory variables, and logistic
regression models. Between 1989 and 2020, there was an increase of 144.12% in impervious surfaces,
which corresponds to the population growth of 282.56% that occurred in the same period. The period
between 2001 and 2013 was the one that presented the most significant increase (1.06 km2/year). A
direct relationship between the increase in impervious surfaces and the increase in flood flows was
observed, reaching a significant variation towards the horizon year that could affect the population,
for which measures to manage the surface runoff is necessary.

Keywords: urban hydrology; impervious surfaces; land use scenarios; urban surface growth; hydro-
logical model; flood flows

1. Introduction

Features such as climate, topography, vegetation, and coverage of a natural watershed
produce a natural water cycle and a given hydrological response. Different factors such
as the impervious surfaces can affect this unique natural hydrological process and cause
adverse effects to the catchment [1].

The impervious surface is usually defined as the collection of anthropogenic landforms
that water cannot directly infiltrate into, including rooftops, roads, and parking lots [2,3].
The urbanization process has significant impacts on the hydrology of a basin; as urban
areas expand, permeable and moisture-holding lands transform into impervious surfaces
such as concrete and asphalt, causing a decrease in infiltration and base flow, as well as
an increase in flood flows and runoff volumes. The storm drainage systems simplify the
natural drainage systems, altering the response of the basin to precipitation events since
shorter concentration and recession times occur [1,4,5]. On the other hand, the dynamics of
impervious surfaces impact urban regional climate by altering the thermal environment
and water quality [3,6].

Several studies have analyzed the effect of urbanization [7–9], land-use changes [10–14],
or impervious cover change [15,16] on Hydrology.

Remote sensing has been extensively utilized for the detection of impervious sur-
faces [17,18]. The approaches have been diverse: index-based methods, classification-based

Land 2022, 11, 250. https://doi.org/10.3390/land11020250 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land11020250
https://doi.org/10.3390/land11020250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-2400-0510
https://doi.org/10.3390/land11020250
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land11020250?type=check_update&version=1


Land 2022, 11, 250 2 of 17

methods, and mixture analysis. The index-based methods include indices such as normal-
ized difference buildup index (NDBI) [19], normalized difference impervious surface index
(NDISI) [20], modified NDISI (MNDISI) [21], biophysical composition index (BCI) [22], and
perpendicular impervious surface index (PISI) [23]. The classification and regression ap-
proaches include maximum likelihood classifier [24], support vector machine [25], artificial
neural networks [26], random forest [27], and object-oriented methods [28]. For the mixture
analysis, spectral mixture analysis (SMA) [29] and temporal mixture analysis (TMA) [30]
are applied.

Urbanization is a worldwide trend. Currently, more than 50% of the world’s popula-
tion lives in urban centers, and more than 500 cities in the world have a population above 1
million inhabitants [5]. The reasons for urban growth are diverse; in Latin American cities,
we could highlight the natural demographic growth, migration from the countryside to
the city in search of better living conditions, changes in the location patterns of economic
activities, and housing, among others.

Several cities in Ecuador have experienced rapid growth, which is evidenced in a
notable increase in the urbanized area in recent years. One of those cities is Loja, capital of
the province of the same name, located south of Ecuador and bordering Peru. This study
analyzes the influence of urban growth on the hydrology of the basin where the city is
located and on the extreme flow events that occur in it. For this, using aerial photographs
and satellite images, a Normalized Difference Impervious Surface Index (NDISI) was
calculated, and a multitemporal analysis of the urban surface variation was carried out.
Then, flood flows for various coverage scenarios were generated using precipitation data
and applying a hydrological model to finally evaluate the effect of these flows over the areas
surrounding the riverbanks in various points of interest. The study of the spatiotemporal
variation of the impervious surfaces using a spectral index and supervised classification
of images, combined with statistical techniques and artificial intelligence to define future
scenarios of impervious surfaces, and the evaluation of their possible impacts through
hydrological modeling, are the newest aspects of the present work.

2. Materials and Methods
2.1. Study Area

The Zamora River (A = 227 km2) is a tributary of the Santiago River and part of
the hydrological system of the Amazon River. The Zamora River basin is located in the
southern Andes of Ecuador, has an average height of 2400 m above sea level, an average
slope of 30%, and an average slope of the main channel of 8.3% [31]. The basin is covered by
vegetation in good condition, mainly composed of grasslands, scrublands, and forests [32].
Its climate is subhumid equatorial temperate, with a mean annual precipitation depth
of 909.1 mm. The Zamora River presents dry periods between May and November and
can present important flows during the rainy season (from December to April) [33]. The
Zamora River, up to its pour point (79◦13′28” W, 3◦55′17” S) has six main tributaries that
make up a network of 102.70 km in length, with the main channel of 22.89 km, which has
stream order three, according to the Horton—Strahler Laws. The city of Loja occupies the
middle and lower portion of the basin. The city has about 200,000 inhabitants and an area
of 43 km2, being the only existing urban area in the Zamora River basin. The growth of the
city in the last 30 years, as well as the construction and improvement of the road network,
has created impervious zones.

The location of the study area is presented in Figure 1.

2.2. Data Collection

Three image sets, acquired from Landsat 5 Thematic Mapper (TM), Landsat 7 En-
hanced Thematic Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager
(OLI)-Thermal Infrared Sensor (TIRS) were collected in the study area [34]. Their acqui-
sition dates, spectral bands, and spatial resolutions are listed in Table 1. Atmospheric
correction was performed to each image using the Atmospheric/Topographic Correction
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for Mountainous Terrain (ATCOR) software developed by the German Aerospace Center,
Wessling, Germany [35]. The Landsat images archived in the U.S. Geological Survey (USGS)
data clearinghouse have been georectified [36]. All images in Table 1 are geometrically
matched to each other.
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Further, historical information on the type and land use of the study area was col-
lected [37], which was used in the hydrological modeling component of this study.

2.3. Analysis of Impervious Surfaces

The Normalized Difference Impervious Surface Index (NDISI) [20,38] is used to en-
hance impervious surfaces and suppress land covers such as soil, sand, and water bodies.

NDISI =
Tb − (MNDWI + NIR + SWIR1)/3
Tb + (MNDWI + NIR + SWIR1)/3

(1)

Tb refers to the brightness temperature of the TIRS1 thermal band. MNDWI represents
the Modified Normalized Difference Water Index (Equation (2)), NIR refers to the pixel
values extracted from the near-infrared band. SWIR1 refers to the pixel values extracted
from the first shortwave infrared band.

MNDWI =
G− SWIR1
G + SWIR1

(2)

G represents the pixel values extracted from the green band.
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Table 1. Satellite images from the three Landsat sensors (TM, ETM+, OLI-TIRS) used in this study.

Satellite Sensor Acquisition Date Resolution (m) Wavelength (µm)

Landsat-5 TM 10 November 1989
30

Band1 (Blue): 0.441–0.514
Band2 (Green): 0.519–0.601
Band3 (Red): 0.631–0.692
Band4 (NIR): 0.772–0.898

Band5 (SWIR-1): 1.547–1.749
120 Band6 (TIR): 10.31–12.36
30 Band7 (SWIR-2): 2.064–2.345

Landsat-7 ETM+ 3 November 2001

30

Band1 (Blue): 0.441–0.514
Band2 (Green): 0.519–0.601
Band3 (Red): 0.631–0.692
Band4 (NIR): 0.772–0.898

Band5 (SWIR-1): 1.547–1.749
60 Band6 (TIR): 10.31–12.36
30 Band7 (SWIR-2): 2.064–2.345
15 Band8 (Pan): 0.515–0.896

Landsat-8 OLI-TIRS
28 November 2013

11 August 2020

30

Band1 (Coastal/Aerosol): 0.435–0.451
Band2 (Blue): 0.452–0.512

Band3 (Green): 0.533–0.590
Band4 (Red): 0.636–0.673
Band5 (NIR): 0.851–0.879

Band6 (SWIR-1): 1.566–1.651
Band7 (SWIR-2): 2.107–2.294

15 Band8 (Pan): 0.503–0.676
30 Band9 (Cirrus): 1.363–1.384

100
Band10 (TIR-1): 10.60–11.19
Band11 (TIR-2): 11.50–12.51

Applying Equation (1), NDISI images were generated for each of the collected images
(Table 1). A manually adjusted threshold was used to extract impervious surface features
from the NDISI images generated. The pixels with values greater than the threshold are
impervious surfaces and were assigned a value of 1, while the pixels with values equal to
or less than the threshold are nonimpervious surfaces and were assigned a value of 0. Thus,
the resultant image is a binary image, only showing the extracted impervious surfaces.

Additionally, the supervised classification of the collected images was carried out
using the maximum likelihood method [39] in order to obtain the urban area (impervious
surface) and its temporal variation and maps of the impervious and nonimpervious surface
for the study area.

The performance of the NDISI and the supervised classification for the detection
of impervious surfaces was evaluated by visual comparison with the images included
in Table 1. Using the results of the technique that offered the most reliable results, the
spatiotemporal analysis was performed, as well as the generation of scenarios towards
the year 2030 and hydrological modeling in order to study the impact of the variation of
impervious surfaces on the hydrology of the basin under study.

2.4. Spatiotemporal Analysis of Impervious Surfaces and Scenario Generation

Once the maps of the impervious and nonimpervious surface were obtained, the
changes that occurred between 1989 and 2001 were analyzed, relating them to the possible
explanatory variables to obtain a predictive model that could be validated by comparison
with the coverage obtained for 2013.

The changes that occurred were studied by applying the methodology proposed
by [40], which allows determining the persistence, gain, loss, and exchanges between the
thematic categories considered in each land occupation map through the analysis of a
cross-tabulation, identifying the transitions that occurred between 1989 and 2001. The
relationships between the observed transitions and their possible explanatory variables
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are called transition submodels. The number of transition submodels will be equal to the
number of transitions that occur in the study area; it is possible to group several transitions
into a single model when it is considered that these are the product of the same causes.
Each transition model includes a certain number of explanatory variables, which can be
selected based on their explanatory potential, calculated by Cramer’s V coefficient, or
by testing various combinations of explanatory variables until the optimal fit between
transitions and explanatory variables is obtained. Cramer’s V values greater than 0.4 are
acceptable [41]. Three explanatory variables were considered: Elevation (using a digital
elevation model—DEM), which influences the presence of different types of vegetation; the
slope, which limits urban growth; and the distance to streets and roads, which motivates
and facilitates urban growth.

The transition submodels were calculated by logistic regression and by means of a
multilayer perceptron neural network (MLP), obtaining the probability of occurrence of
each transition according to the selected explanatory variables. Logistic regression [42]
allows establishing a relationship between a binary dependent variable (transitions) and
the explanatory variables considered, modeling their probability of occurrence according
to the latter.

Neural networks of multilayer perceptrons are formed by a set of simple elements
(neurons or perceptrons) distributed in layers and are connected to the intermediate layer
or layers by means of activation functions. These functions are defined from a series of
weights or weighting factors that are calculated interactively in the learning process of the
network. The objective of this learning is to estimate known results (observed transitions)
from some input data (explanatory variables); to later calculate unknown results from the
rest of the input data. Learning is carried out from all the units that make up the network,
varying the set of weights in successive interactions [39].

The land cover change modeling towards the horizon year (2013) was carried out
applying Markov chains; using the land cover map of the end date (2001) along with the
transition probability matrix previously calculated, to determine the zones are that will
undergo a transition from the end date to the prediction date (2013).

The future land cover map was modeled using a multiobjective land-use allocation
procedure (MOLA) [41,43]. Considering all transitions and using the selected explanatory
variables, a list of host classes (which would lose some area) and a list of demanding classes
(which would gain some area) are created. Loss or gain areas are determined by Markov
chains and through the multiobjective allocation procedure, in which the explanatory
variables determine the most suitable places for each change in occupation. Land from
all host classes is allocated to all demanding classes. The results of each land occupation
reallocation are overlaid to produce the final result [41]

Two maps were generated to predict land cover for the year 2013 based on the mod-
eling of the relationships between the observed changes and the explanatory variables.
These relationships were modeled with logistic regression and neural networks. For the
validation, the map extracted from the 2013 image was considered as a reference, and,
through confusion matrices, the correspondence between the reference map and those
obtained through neural networks and logistic regression was studied. Forecast errors of
land cover were determined for each model proposed, as well as omission and commission
errors that may have occurred.

From the confusion matrix, the global reliability of the classification was calculated as
the relationship between the number of pixels correctly assigned and the total number of
pixels in the image [39]. Complementarily, the fit between the reference map and the maps
generated was calculated using the Kappa index [40]. After analyzing the adjustment, we
proceeded to generate a land cover map towards the year 2030, considering the land cover
maps of 2013 and 2020, the explanatory variables selected for each transition, and applying
the model that presents the best capacities.

The spatiotemporal analysis of impervious surfaces and scenario generation described
was carried out by applying the land change modeler module of TerrSet 2020 [41].
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2.5. Hydrological Modeling

The HEC-HMS model was developed to study the response of the Zamora River basin
to extreme precipitation events, considering the different stages of urban growth in the city
of Loja. The basin topology was developed based on a digital elevation model generated
using a contour map at 1:50,000 scale [44]. This topological model included contributing
sub-basins, junction points in which the contributions of the sub-basins are added, sections
of the river network in which the hydrologic routing of the hydrographs is carried out, and
the outlet point of the basin in which the flow resulting from the rain-runoff simulation is
obtained. The topological model is presented in Figure 2.
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Synthetic storms were generated for return periods of 10, 25, 50, and 100 years, using
intensity equations determined for the city of Loja [45].

ITR = 92.854IdTRt−0.4083 (3)

ITR = 480.74IdTRt−0.8489 (4)

where IdTR is the maximum intensity for a given return period, t is the duration of the
storm in minutes, ITR is the intensity in mmh−1. Equation (1) is valid for durations between
5 and 43 min, Equation (2) is valid for durations between 43 min and 1440 min.

Abstractions were quantified using the curve number (CN) methodology of the U.S.
Soil Conservation Service (USSCS) [4,46] for normal conditions, calculating the CN for each
hydrological response unit obtained according to the intersection of type and land use for
each date considered. The transformation of surface runoff into flow was carried out by
applying the USSCS Unit Hydrograph. For the hydrologic flow routing, the Muskingum-
Cunge method was applied. The concentration and delay times of each sub-basins were
determined using the Kirpich formula [4,46].
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3. Results and Analysis
3.1. Analysis of Impervious Surfaces Using NDISI

Figure 3 shows the temporal variation of the NDISI index. A visual comparison with
the collected images allowed us to determine that the consolidated areas of the city center
are identified in an acceptable way through the NDISI index. The areas surrounding the
city center were consolidated as urban areas over time, and in the process, a transition is
observed from the heterogeneous mixture of impervious and green areas to consolidated
urban areas. The impervious surfaces of the southwestern portion of the city were un-
derestimated in all analyzed images. Land surface emissivity (ε) varies with land cover
on the ground surface. In urban environments, surfaces with vegetation have a higher
thermal retention capacity and, therefore, have greater cooling effects than areas without
vegetation [47], which is reflected in the temporal variation of the NDISI.
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In suburban–rural areas, impervious areas have been identified to the west of the city.
These areas do not correspond to urban areas but to surfaces with bare soil due to fallow
agricultural areas or small areas under construction that have just been cleared. On the
other hand, the selected images were taken between August and November (which are part
of the dry season) to ensure less cloud cover. Therefore, during that period, the vegetation
cover is less vigorous and frequently leaves the soil exposed. In Landsat images, bare
soil is often mistaken for impervious surfaces due to their similar spectral characteristics,
resulting in noisy salt and pepper appearances in supervised image classification [47].
Furthermore, the thermal response of the soil is quite similar to that of the impermeable
surface, which causes spectral confusion between impermeable areas and bare soil when
classifying it [20,48].
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Despite its acceptable performance, it was considered that the NDISI and its temporal
analysis were not completely adequate to study the evolution of the impervious surfaces in
the study area.

3.2. Analysis of Impervious Surfaces by Supervised Classification

Figure 4 shows the impervious surfaces in the study area determined by supervised
classification applying the maximum likelihood criterion. A visual comparison with the
collected images shows an adequate representation of the impervious surfaces and their
spatiotemporal variation, which is why they are selected for the following phases of
the study.
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A summary of the area occupied by the city (impervious surfaces) and its respective
population at each year considered is included in Table 2.

Table 2. Variation of urban area and population in the city of Loja. Period 1989–2020.

Year
Impervious Surface Population

Area (km2) Increase (%) * Annual (km2/year) Total (PPL) Increase (%) * Density (PPL/km2)

1989 17.68 0 0 71,652 0 4052.71
2001 20.18 14.17 0.21 118,532 65.43 5873.74
2013 32.87 85.97 1.06 185,321 158.64 5638.00
2020 43.15 144.12 1.47 274,112 282.56 6352.54

* Reference year: 1989.
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Table 2 includes a summary of the area occupied by the city (impervious surface),
which was determined through the supervised classification, as well as its respective
population at each year considered. For the period between 1989 and 2020, there is an
increase of 144.12% in impervious surfaces, which corresponds to the population growth of
282.56% that occurred in the same period. Furthermore, there is a very significant increase
in the annual variation of the impervious surfaces in the period between 2001 and 2013
(1.06 km2/year), which is linked to the receipt of money remittances sent by a large number
of Ecuadorian citizens who emigrated overseas as of 1999. The population density shows
a significant growth between 1989 and 2001, but in 2013 it reduced probably due to the
mentioned migratory process that Ecuador experienced during the first decade of this
century. By 2020, the population density recovers an increasing trend.

Figure 5 presents the variability of the impervious surfaces in the periods 1989–2001,
2001–2013, and 2013–2020. In the period 1989–2001, growth was observed based on the
consolidation of the areas adjacent to the downtown, with the areas located to the southeast
and north of the city achieving further development. The greatest increase in impervious
surfaces occurred between 2001 and 2013, with the highest incidence in the southwest
of the city, which, at that time, already had basic infrastructure which facilitated urban
development. Something similar was observed in the east of the city, although on a smaller
scale. For its part, in the 2013–2020 period, urban development was directed towards the
west of the city, which, due to its better topographic conditions, has become the ideal place
for the growth of the city.
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3.3. Change Detection

Table 3 presents a summary of the cross-tabulation of data for the period between 1989
and 2001. As shown in the table, there is a predominance of persistence in all covers. There
are 224.97 km2 of stable areas, equivalent to 98.90% of the total study area, and 2.51 km2 of
zones that have undergone changes, corresponding to 1.10% of the total area. There is an
increase in urban areas and a consequent decrease in rural areas that were occupied before
the urban expansion occurred.

Table 3. Cross-tabulation of land cover between 1989 (columns) and 2001 (rows).

Nonimpervious Impervious Total

Nonimpervious 207.30 0 207.30
Impervious 2.51 17.68 20.18

Total 209.80 17.68 227.48

3.4. Explanatory Variables

Table 4 shows the measure of association between the explanatory variables and the
land covers present in the study area. Cramer’s V value fluctuates between 0.1 and 0.3. The
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slope is the variable that has the greatest association with the existing land cover categories
(Table 4); this is because the slope affects urban expansion, as well as land use in rural areas,
such as crops or the presence of natural forests. Another important explanatory variable is
the elevation (DEM), which conditions urban expansion.

Table 4. Creamer’s V values: measure of association between quantitative explanatory variables and
land covers studied.

Nonimpervious Impervious

DEM 0.3832 0.4970
Slope 0.4387 0.6591

Distance to roads 0.3184 0.4344
Distance to rivers 0.0367 0.0236

The distance to roads has an acceptable Cramer’s V, corroborating the initial assump-
tion that the presence of roads encourages urban expansion. The values of Cramer’s V
for distances to rivers are <0.1, probably because there is no strict regulation of urban
expansion in areas near rivers.

3.5. Transitional Submodels

Table 5 shows the transition submodels, their respective variables, and the results of
the calculated logistic regression. The coefficients that affect each explanatory variable
are included in the logistic regression equation and the correlation between variables and
transitions (ROC).

Table 5. Logistic regression results: Modeled transition (transition submodel), correlation (ROC),
explanatory variables, and coefficients of each explanatory variable in the regression equation.

Transition ROC Variables Coefficient

From Nonimpervious
to impervious 0.9508 Intercept 7.8911

DEM −0.0032
Slope −0.1251

Distance to roads −0.5805

Table 6 shows the inverse relationship between the transition from nonimpervious to
impervious surfaces and all the variables considered in the transition model. Chances of
urban expansion are reduced when there is higher elevation, steeper terrain, and longer
distances to roads. The degree of correlation between the transition studied and the
explanatory variables is high, around 95%. Table 6 shows the results of the neural network
application. The learning rate is low, about 1/1000, with a training and validation error of
about 2/10, which is well above the acceptable error (RMS). This demonstrates the limited
performance of neural networks in the present case, even though the accuracy rate is greater
than 90%.

The transition probabilities for the land cover considered are included in Table 7. It
can be seen that the probability of maintaining the same land use predominate, reaching
almost the value of 1 in the case of nonimpervious surface and with values >1 in the case
of impervious surface. As expected, the impervious surface is not likely to change to a
nonimpervious surface, whereas the impervious surface is always the same.
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Table 6. Results of the application of neural networks.

Parameter Value

Neurons input layer 3
Neurons hidden layer 2
Output layer neurons 2

Samples requested by class 3112
Final learning rate 0.0003

Boost factor 0.5
Sigmoid constant 1
Acceptable RMS 0.01

Iterations 10,000
RMS training 0.2595

RMS test 0.2651
Accuracy rate 91.23%
Skill measure 0.8245

Table 7. Probability of transition between land uses.

Nonimpervious Impervious

Nonimpervious 0.9937 0.0063
Impervious 0 1

Table 8 shows the confusion matrix between the map extracted from the 2013 image
and the map generated by neural networks (MLP). Table 9 shows the confusion matrix
between the map extracted from the 2013 image and the map generated by logistic regres-
sion (LogReg). In both tables, the comparison of the maps shows a predominance in the
number of pixels that have the same thematic class. The largest errors occur when the
nonimpervious surface has been modeled as an impervious surface (1497 and 1493 pixels).
The errors in which the impervious surface was modeled as a nonimpervious surface are
lower (289 and 285 pixels). Similarly, commission errors vary between 0.61% and 3.68%,
and the maximum value corresponds to the impervious surface in both tables. The errors
of omission vary between 0.12% and 16.51%, having the highest error by the commission
in the transition to impervious surface

Table 8. Confusion matrix between the map extracted from the 2013 image and the map created
through neural networks (MLP).

2013 Map (Reference)
Nonimpervious Impervious Total Commission Error (%)

Map 2013 (MLP)
Nonimpervious 243,834 1497 245,331 0.61

Impervious 289 7568 7857 3.68
Total 244,123 9065 253,188

Omission error (%) 0.12 16.51

Table 10 shows the values of the general reliability calculated from the confusion ma-
trices included in Tables 7 and 8, as well as the Kappa index and the correlation coefficient
between the reference map of 2013 and the maps generated with logistic regression and
neural networks. The map generated by logistic regression has a total reliability of 99.30%,
a Kappa index of 0.8913, and a correlation coefficient of 0.8938. These values are higher
than those obtained using neural networks by a very narrow margin.
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Table 9. Confusion matrix between the map extracted from the 2013 image and the map created by
logistic regression (LogReg).

2013 Map (Reference)
Nonimpervious Impervious Total Commission Error (%)

Map 2013 (Reg-Log)
Nonimpervious 243,838 1493 245,331 0.61

Impervious 285 7572 7857 3.63
Total 244,123 9065 253,188

Omission error (%) 0.12 16.47

Table 10. Validation parameters between the map extracted from the 2013 image and the maps
created using logistic regression (LogReg) and neural networks (MLP).

2013 MLP 2013 Reg-Log

General reliability (%) 99.29 99.30
Kappa 0.8908 0.8913

R 0.8933 0.8938

3.6. Scenario of Impervious Surfaces to 2030

The scenario calculated for 2030 and its comparison with the existing impervious areas
in 2020 is presented in Figure 6. It can be seen that, in the horizon year, important areas to
the west of the city will be consolidated; this growth will be facilitated by the existence of
access roads, areas with relatively flat relief, as well as the existence of small urban centers.
According to this scenario, the impervious surfaces have an area of 51.53 km2.
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3.7. Hydrological Modeling

The morphological characteristics of the sub-basins are presented in Table 11. It can
be observed that the infiltration parameters (CN) undergo an increase as the urban area
increases in each sub-basin. This increase is relatively small since, for example, in the
Malacatos sub-basin, which has one with the greatest variation in CN, the CN variation
reaches a value of around 3%. The variation is small because the urban area in each of the
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sub-basins is relatively small when compared with their total area. The sub-basins with
the largest urban area (Figure 3) present a higher CN value. The concentration time is
relatively short since the maximum distance that runoff must travel is related to the slope
of the main channel.

Table 11. Characteristics of the sub-basins of the study area.

Sub-Basin
CN

Area (km2) tc (h) tlag (h)
1989 2001 2013 2020

Central 95 95 95 95 4.22 0.44 0.27
Jipiro 65.1 65.4 66.2 67 31.93 0.83 0.5

Malacatos 75.3 75.9 77.1 77.3 60.28 1.64 0.99
Norte 76.2 76.9 77.4 77.9 62.57 1.82 1.09

San Cayetano 75.5 77.3 77.3 77.5 5.80 0.47 0.28
Turunuma 74.4 75 76.3 78 24.15 0.9 0.54

Zamora Huayco 65.8 66 66.5 66.2 38.53 1.04 0.62

The precipitation values for different durations and return periods are indicated in
Table 12. As expected, the precipitation values increase as the return period and dura-
tion increase.

Table 12. Precipitation values associated with each return period.

Duration
(min)

Return Periods (Years)

10 25 50 100

Precipitation (mm)

5 11 12 12.8 15.2
15 21.1 23 24.6 29.2
60 40.9 44.6 47.6 56.5

120 45.4 49.5 52.8 62.7
180 48.3 52.7 56.2 66.7

The storms included in Table 12 applied individually according to the return period,
and the state of urban area expansion of the city of Loja allowed obtaining the flows
included in Table 13. There is a direct relationship between the return period and the flood
flows, as well as between the growth of the urban area and the flood flows for the same
return period.

Table 13. Flood flows (m3/s) for different urbanization states and return periods.

Year Impervious Surface (km2)
Return Period

10 25 50 100

1989 17.68 100.3 142.4 175.6 290.9
2001 20.18 107.9 151 185.6 304.5
2013 32.87 113.3 162.7 194.45 319.63
2020 43.15 140.3 178.12 208.57 328.71
2030 51.53 157.3 196.78 248.14 360.23

The relationship between flow, return periods, and urban growth is presented in
Figure 7, in which a high correlation between the urban area extension and the magnitude
of the flows is observed for all different return periods considered.
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During the study period, the urban area of the city of Loja experienced a considerable
increase, going from 17.68 km2 in 1989 to 43.15 km2 in 2020, an increase of 144.12%. The
total area of the Zamora River basin is 227.48 km2, thus in 2020, the city of Loja covered
only 18.97% of the total basin, while grasslands, natural forests, and shrubs covered the
remaining surface. These land covers can retain surface runoff as they support infiltration,
causing an opposite effect to urbanization. This may explain why the increase in flow is
moderate despite the significant growth of the city.

3.8. Similarities

The behavior observed in the city of Loja has certain similarities with other urban
areas around the world that experienced accelerated growth of impervious areas. Such is
the case of the Alto Atoyac river basin (Oaxaca, southern Mexico), which experienced an
increase in impervious surfaces of the order of 135 km2 in the period between 1979 and
2013 [49]. This affected the recharge areas causing a decrease of 2.65 × 106 m3 of water
infiltration into the subsoil. A similar case was observed in Addis Abab (Ethiopia) in the
period between 1986 and 2016 [50], in which the impervious surfaces increased by 27%,
producing a variation of 4.5 ◦C in the average surface temperature of the soil. The Pearl
River delta in China [51] also experienced a very significant increase in impervious surfaces,
from 390 km2 in 1988 to 4837 km2 in 2013, with the 1994–1999 period being the one with
the fastest growth.

In all the cases mentioned, urban growth is related to a significant increase in the
population that extends from cities to suburban areas, affecting soils that were initially
covered with grasslands, forests, and agricultural areas. Although each case is different, it
is possible to perceive that the increase in impervious surfaces and its effects are present
in urban watersheds around the world; therefore, the proposed methodology to generate
future scenarios of impervious areas can become a valuable management tool.

4. Conclusions

The NDISI satisfactorily discriminated the impervious areas in the consolidated center
of the city, but in the suburban areas, an overestimation of the impervious surfaces was
observed, caused by spectral confusion between impervious surfaces and bare soil (product
of fallow farms, not very vigorous vegetation, and small newly opened construction
areas). On the other hand, the supervised classification of Landsat images presented better
discrimination of impervious areas. Therefore, the latter was elected to carry out the study
of the spatiotemporal dynamics of soil impermeability in the catchment under study.

A methodology has been proposed that allows modeling future growth scenarios of im-
pervious zones by combining the observed spatiotemporal variability, possible explanatory
variables, and logistic regression models.

Slope, elevation, and proximity to highways conditioned urban growth; therefore,
there was the persistence of the different land covers in the study area. The best estimate
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of the change in land cover was found by logistic regression; however, neural networks
performed similarly.

There is a direct relationship between the increase of impervious surfaces and the
magnitude of flood flows produced by an extreme precipitation event. The basins that
experience the greatest growth in impervious surfaces are those that present a greater in-
crease in their flood flows, observing a linear relationship. If the percentage of area covered
by impervious surface use is reduced compared with the areas occupied by vegetation in
good condition, the increase in flood flows will be moderate.

The urbanization process directly influences the hydrological cycle, increasing imper-
vious surfaces, reducing the infiltration capacity, and increasing the magnitude of flood
flows. This must be considered in urban planning.

The increase in impervious surfaces and their effects are present in urban watersheds
around the world; therefore, the proposed methodology to generate future scenarios of
impervious areas can become a valuable management tool.
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