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Abstract: Evapotranspiration (ET), as a key eco-hydrological parameter, plays an important role in
understanding sustainable ecosystem development. Each plant category has a unique functional trait
on transpiration and photosynthesis, with ET implying that water cycle and energy transformation is
linked with vegetation type. Changes in surface vegetation directly alter biophysical land surface
properties, hence affecting energy and ET transfer. With the rapid increase in land surface changes,
there is a need to further understand and quantify the effects of vegetation change on ET, especially
over the vulnerable water-cycle region in the arid and semi-arid regions of Northwest China. We
adopted the GlobalLand30 land cover and MOD16A2 in 2010 and 2020 to investigate, discuss the
spatio-temporal characteristics of annual and seasonal ET of cultivated land, grassland, and forests in
Northwest China, and quantify the impact on vegetation changes with absolute and relative changes
from different climatic subecoregions on ET. Our results show the following: (1) Forest ET was
generally the highest at 688 mm, followed by cultivated land and grassland with 200–400 mm in
arid climatic subecoregions. (2) Returning cultivated land to forests and cultivated land expansion
potentially enhances ET by 90–110 mm/10a, with the relative rate of change increasing by 22.1% and
45.8%, respectively, away from unchanged vegetation within identical subecoregions. (3) The ET of
most investigated areas gains the highest value in summer, followed by spring, autumn, and winter.
This study provides reference for sustainable ecosystem development and the reasonable utilization
of limited water resources in Northwest China.

Keywords: evapotranspiration; vegetation change; water resources; variation; Northwest China

1. Introduction

Evapotranspiration (ET) is defined as the transpiration of vegetation, and evapora-
tion from vegetation surfaces, soil, and water [1]. It is a crucial bond of soil–vegetation–
atmosphere interactions, and is a key link of surface energy carbon and water cycles [2].
ET plays an important role in the process of energy distribution, and determines the dis-
tribution of latent and sensible heat fluxes [3–5]. In a water cycle, approximately 60% of
precipitation is returned to the atmosphere in the form of ET, and a larger proportion of
water resources is returned to the atmosphere in arid and semi-arid regions with intense
ET capacity. Precipitation and ET greatly determine the growth and even survival of veg-
etation [6]. Carbon dioxide concentrations have continued to rise in recent years, which
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causes global warming and could then exacerbate ET, and above-ground biomass is key to
regional carbon and water cycles [7–9]. In most countries, carbon neutrality is achieved by
expanding the area of forests to absorb carbon dioxide [10–12]. This improves the water
vapor content in the atmosphere and increases global precipitation, thus promoting the
water cycle. Therefore, the quantitative description of surface ET is greatly significant for
global energy, carbon, and water cycles.

The ET model was studied from the perspective of interaction processes and mech-
anisms. With the rapid development of remote-sensing technologies, ET products at the
regional or global scale are gradually becoming possible, which has attracted the attention
of researchers. This has achieved some progress with inversion methods and products of
satellite-based ET. Data-driven empirical regression, machine-learning, and data-fusion
methods were used to invert ET products [13]. Different researchers and institutions pub-
lished ET-related data products, including global products, such as MOD16A2 [13–16],
GLASS [17] and MPI [18], and regional ET products such as those of the Heihe River
Basin [19,20], the Northern China and Haihe River Basin [20]. One of the most widely used
is global terrestrial ET product MOD16A2, jointly released by the United States National
Aeronautics and Space Administration (NASA) and the University of Montana Numerical
Terradynamic Simulation Group (NTSG). He et al. [21] analyzed the spatio-temporal varia-
tion characteristics of ET in China on the basis of MOD16A2. Thus, there is the opportunity
to quantitatively analyze ET.

Many ET products provide opportunities for studying ET, but land cover is one of the
most important factors to determine the magnitude of ET. In Northwest China, in order to
improve the ecological environment, and prevent desertification in arid and semi-arid re-
gions, the Chinese government launched ecological programs, such as the Great Green Wall
Program (1978–present), Grain for Green Program (1999–present), Grassland Ecological
Protection Program (2000–present), and Beijing–Tianjin Sandstorm Source Control Project
(2002–present). These programs have greatly contributed to revegetation in arid and semi-
arid regions, for example, cultivated land was converted into forest in the Loess Plateau of
Northwest China [22]. The policy of cultivated land protection plays an important role in
maintaining the balance of total cultivated land and solving the problem of Chinese food
security. The center of new increased cultivated land moved to Northwest China [23,24]. In
short, vegetation has significantly changed in Northwest China in the past decade, which
in turn affects ET.

In recent years, the response from ET has achieved progress in land cover changes.
Previous studies explored the responses of ET to land cover changes in typical regions, such
as the Heihe River Basin and Loess Plateau. Land cover changes affected the water balance,
including the impact on precipitation, ET, and runoff, and ET decreased after the conversion
of grass into bare land in the Heihe River Basin [25]. Water consumed in crop expansion
in the Heihe River Basin could be used to recover nearly ten times as much as the area of
the degraded desert grassland ecosystem [26], and this increased ET largely intensified
the water crisis in Northwest China. Vegetation restoration plays an important role in
regulating water resources; the Loess Plateau is an important revegetation area [27,28].
Vegetation restoration has led to a significant reduction in land surface albedo, increased
radiative forcing, and increased ET [29], and the cooling effect of ET counteracts the
warming effect of albedo and alleviates the trend of global warming to some extent [30–32].
Thus, several studies have focused on the ET response to vegetation changes in Northwest
China in the past ten years.

Due to differences in the physiological processes of different vegetation types, changes
in vegetation had a certain influence on ET in Northwest China. Water resources are
scarce in Northwest China, and water is the main limiting factor of vegetation growth that
could then affect ET. Vegetation growth had obvious seasonal differences [33,34]. It is still
insufficient to quantitatively describe inter-annual and seasonal variations in ET values after
vegetation changes in Northwest China. Considering the spatio-temporal resolution and
the coverage of ET products, we selected the MOD16A2 product to better capture seasonal
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ET changes. We investigated the ET characteristics of the typical vegetation of grassland,
cultivated land, and forests, and the effects of vegetation changes on inter-annual and
seasonal ET in different subecoregions of Northwest China. This can provide reference for
the carbon balance [35], and in response to climate change and water-resource management.
It is greatly significant to the sustainable development of ecological environment protection.

2. Materials and Methods
2.1. Study Area

Northwest China is a typical arid and semi-arid region with sandy soil in China. The
average annual precipitation is below 350 mm, with a large temperature difference between
day and night, and long days of sunshine, which is conducive to the accumulation of
photosynthetic substances in vegetation and accompanied by a large amount of water
returning to the atmosphere in the form of ET. Northwest China administratively comprises
Xinjiang, Gansu, Qinghai, Ningxia, and Shaanxi (Figure 1, review no. GS(2019)1822).
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Figure 1. Study area of Northwest China.

There are alternate basins with the Xinjiang mountains, with oasis agriculture scattered
between the mountains and basins. The Altai Mountains are located in the north of
Xinjiang, the Tianshan Mountains are located in the middle of Xinjiang, and the Kunlun
Mountains are located in the south of Xinjiang. The Junggar and Tarim basins are between
the mountains, with the characteristics of three mountains sandwiched between two
basins. Benefiting from mountain glacier and snow melting, Xinjiang has formed a unique
agricultural oasis climate area in Northwest China. The topography of Gansu is complex
and diverse, with mountains, plateaus, plains, valleys, and the Gobi Desert. The Hexi
Corridor is the famous Gobi agricultural oasis development region. Agricultural irrigation
is required in Xinjiang and Gansu. Qinghai is the birthplace of China’s three major rivers,
the Yangtze, Yellow, and Lancang Rivers, and plays an important role in hydro-ecology
in China; a variety of drought- and cold-resistant grasses grow in Qinghai. The south of
Ningxia is dominated by flowing water erosion, while the northern part is dominated by
droughts, and mountains, hills, and alluvial plains formed by the Yellow River. Shaanxi is
the main part of the Loess Plateau, which is a typical vegetation ecological restoration area,
and the key area of afforestation and re-turning cultivated land to forest and grassland
since the beginning of the 21st century.
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2.2. Study Data
2.2.1. Land Cover and Preprocessing

In this study, we used a global land cover dataset product (GlobalLand30) with a spatial
resolution of 30 m [36–38]; inputs for GlobalLand30 are mainly 30 m multispectral images,
including multispectral images of the Landsat and the Chinese Environmental Disaster
Alleviation Satellite (HJ-1). This developed three phases of data for 2000, 2010, and 2020 on
the basis of the method of hierarchical extraction. The spatial resolution of GlobalLand30 is
30 × 30 m, including cultivated land, forest, grassland, shrub-land, wetland, water bodies,
tundra, artificial surfaces, bare land, permanent snow, and ice. “Cultivated land” is defined
as land used, for example, for agriculture, horticulture, and gardens, including paddy fields,
irrigated and dry cultivated land vegetation, and fruit gardens. “Forest” is defined as land
covered with trees, with vegetation cover over 30%, including deciduous and needle leaf
forests, and sparse woodland with 10–30% cover. “Grassland” is defined as land covered
by natural grass with cover over 10%. Classification accuracy for cultivated land, forests,
and grassland was 83.06%, 88.99% and 76.85%, respectively.

Considering all available data, we downloaded the 2010 and 2020 datasets from the
Global Geographic Information Public Product (http://www.globeland30.org/, accessed on
30 December 2020). By manual visual interpretation comparison with high-resolution
Google Earth images, the classification of land cover was accurate. We mainly analyzed
changes in cultivated land, forests, and grassland in the past ten years.

2.2.2. Evapotranspiration and Preprocessing

Global terrestrial ET product MOD16A2 was produced by NASA in 2011. The MOD16A2
algorithm is based on the Penman–Monteith equation (see Equation (1)), which used daily me-
teorological reanalysis dataset GMAO or MERRA GMAO, MCD43B2/MCD43B3, and MOD15
A2 (FPAR/LAI). The 8-day MOD16A2 was validated with ET measured at eddy flux towers;
the correlation coefficient was approximately 0.85 [13–16]. The MOD16A2 algorithm takes
into account soil surface evaporation, canopy interception, and water evaporation and
vegetation, and reflects the heterogeneity of deserts and oases underlying surface wells.
The MOD16A2 product contains 8 days of the dataset at 500 m spatial resolution.

LE =
∆ × (Rn − G) + ρ × Cp × (esat − e)/ra

∆ + γ × (1 + rs/ra)
(1)

where Rn represents the net surface radiation flux (w·m−2); G represents the soil heat flux
(w·m−2); ∆ is the slope of the saturated vapor pressure–temperature curve; ρ represents
air density (kg·m−3); Cp represents constant pressure heat ratio of air (J·kg−1K−1); esat
represents the surface saturated vapor pressure (Pa); e represents atmospheric vapor
pressure (Pa); γ represents dry and wet bulb constants; ra represents the resistance of
evaporation surface to air transmission (s m−1); rs represents all resistance to evaporation
of the vegetation canopy, soil, and other underlying surfaces (s·m−1).

We used the MOD16A2 product of 2010 and 2020, with tiles h23v05, h24v04, h24v05,
h25v04, h25v05, h26v05 and h27v05 (https://ladsweb.modaps.eosdis.nasa.gov/, accessed on
31 January 2021). The ET datasets were used to select pixels with good quality according to
the corresponding quality-control files for statistical analysis. In this paper, temporal latent
heat flux (LE) observations from the Haibei site of China Flux in 2010 were used to verify
the applicability of MOD16A2 in Northwest China [21]. Because the temporal resolution
of China Flux is daily and in MW/m2, while the temporal resolution of MOD16A2 is
per 8 days in J/m2, we converted them into the 8-day format in MW/m2 and performed
correlation analysis using the R2 determinant. The specific calculation formula is as follows.
Scatterplots of latent heat (Figure 2) indicated good correlations (R2 = 0.781) between the
simulations and observations, and the root mean square error (RMSE) of LE was around

http://www.globeland30.org/
https://ladsweb.modaps.eosdis.nasa.gov/
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1.76 MW/m2/8-day; PBIAS showed that the MOD16A2 value was a little overestimated
(Table 1). This indicated that the product has confidence when applied to Northwest China.

R2 = 1 −

n
∑

i=1

(
LECF − LEMOD)2

n
∑

i=1

(
LECF − LECF

)2 (2)

RMSE =

√√√√√ n
∑

i=1
(LECF − LEMOD)

2

n
(3)

PBIAS =

n
∑

i=1

(
LECF − LEMOD) ∗ 100

n
∑

i=1
(LECF)

(4)

where LECF represents the value of China Flux LE, and LEMOD represents the value of
MOD16A2 LE.
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Table 1. Validation of MOD16A2 latent heat flux.

DOY PBIAS DOY PBIAS

49 −59.727 201 −14.965
57 −211.321 209 −45.015
65 −148.666 217 −37.461
73 −81.076 225 −4.127
81 −0.670 233 18.862
89 −77.009 241 9.271
97 −67.892 249 34.974

105 −36.304 257 −35.628
113 11.057 265 −104.327
121 10.660 273 −9.032
129 −16.079 281 −62.236
137 7.009 289 −152.270
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Table 1. Cont.

DOY PBIAS DOY PBIAS

145 −33.835 305 −110.994
153 11.063 313 −384.156
161 16.419 321 −621.961
169 16.888 345 −592.443
185 −28.735 353 −436.365
193 −21.970 361 −204.055

2.2.3. Subecoregion Vector

Northwest China is a vast region with different climatic and geographic conditions, and
many vegetation categories. There is interaction between climate and topography [39–43], and
the ET of vegetation varies dramatically in different subecoregions. Therefore, we relied
on ecoregional data provided by the Database of Ecological Function Region in China
to exclude the impact of climatic conditions on ET as much as possible (http://www.
ecosystem.csdb.cn/ecoass/ecoecoplanning.jsp/, accessed on 18 March 2021). We discuss
vegetation changes regions in Northwest China by regionalization. On the basis of the area
of vegetation changes, we selected subecoregional data to divide typical change areas in
Northwest China. Table 2 shows the nine subecoregions with major changes, and their
spatial distribution is presented in Figure 3 (review no. GS (2019)1822).

Table 2. Subecoregion data.

Code Name Geographic Location

I1204
Cultivated land and grassland

subecoloregion of Loess hilly remnant
tableland in southeast Gansu.

The subecoregion is located in the southern part of the
Ningxia Hui Autonomous Region and the eastern part of

Gansu province.

I1207 Western agricultural subecoregion of
Loess Plateau.

The subecoregion is located in the west of the Loess Plateau,
the Loess hilly region in the middle of Gansu province, the

Hulu River valley in the southwest of Ningxia, and the
Liangmao hills on both sides.

I1501
Subecoregion of deciduous broad-leaf
conifer and broadleaf mixed forests in

Qinling Mountains.

The subecoregion is located in the Qinling mountains,
across Gansu, Shaanxi, and Henan provinces.

II0303 Arid desert oasis agricultural
subecoregion in Hexi Corridor.

The subecoregion is located in the eastern section of the
Hexi Corridor in Gansu province.

II0604
Desert, and shrubby and semishrubby

oasis agricultural subecoregion in
southern Junggar Basin.

The subecoregion is located in the south and southeast of
Junggar Basin. The piedmont plain of the northern foot of

the Tianshan Mountain reaches the foot of the Tianshan
Mountain in the south, the southern boundary of the

Goulban Tungut Desert in the north, the western boundary
of the city of Wusu in the west, and the Baitou township of

Autonomous County Muleh Kazakh in the east.

II0702
Desert steppe–oasis agricultural

subecoregion on the southern slope of
Tianshan Mountains.

The subecoregion is located in western and central Xinjiang.

II0803 Desert oasis agricultural subecoregion in
northern Tarim Basin.

The subecoregion is located in the northern part of Tarim
Basin, Tianshan piedmont plain, Kashgar Delta and Tarim

River alluvial plain.

III0401 Alpine grassland subecoregion in
Gonghe Basin.

The subecoregion is located in the Gonghe Basin south of
Qinghai Lake.

III0405 Alpine meadow grassland subecoregion
of Lancang River source.

The subecoregion is located in the southern most part of
Autonomous Prefecture Qinghai Yushu Tibet.

http://www.ecosystem.csdb.cn/ecoass/ecoecoplanning.jsp/
http://www.ecosystem.csdb.cn/ecoass/ecoecoplanning.jsp/
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2.2.4. NDVI and Preprocessing

We discuss the effect of vegetation changes on ET, and vegetation changes usually
occurred in boundary zones of vegetation. The distribution of vegetation is more complex in
Northwest China, with forests, grassland, and cultivated land being alternately distributed.
Therefore, to ensure the accuracy of the pixels that we selected, we further improved the
accuracy of cultivated land, forests, and grassland by extracting MOD13A1 time series
data [44]. MOD13 A1 is produced by NASA (https://ladsweb.modaps.eosdis.nasa.gov/,
accessed on 26 May 2021). The MOD13 A1 product contains 16 days of data at 500 m spatial
resolution with tiles h23v05, h24v04, h24v05, h25v04, h25v05, h26v05 and h27v05.

The composition proportion and organizational structure of the canopy groups had
obvious seasonal characteristics of cultivated land, forest, and grassland, and they showed
different characteristics in the Normalized Difference Vegetation Index (NDVI) [45]; ET of
the same vegetation type in different subecoregions also shows differences. In this paper,
we established a standard rule for distinguishing cultivated land, forest, and grassland by
using the NDVI. Forest was the highest, followed by cultivated land and grassland. The
cultivated land, forest, and grassland indices are shown in Figure 4.
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2.3. Methods

This flowchart of this study is shown in Figure 5. First, vegetation information in
Northwest China was extracted from Global Land30 data in 2010 and 2020, and vegetation
changes could be obtained via transfer matrix. Climatic, topographic, and vegetation
characteristics were more complex in different regions in Northwest China. Thus, we
discuss vegetation changes in Northwest China on the basis of the subecoregion. Then,
vegetation growth presented by temporal MOD13 A1 was used for the auxiliary verification
of extracted vegetation-change pixels to further improve the accuracy of cultivated land,
forest, and grassland. Lastly, ET corresponding to vegetation-change areas were extracted
on the basis of relatively accurate pixels. The influence of typical vegetation changes on ET
was analyzed regarding inter-annual and seasonal variation.
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Figure 5. Flow-chart of information process.

2.3.1. Land Cover Transfer Matrix

The land cover transfer matrix reflects the situation and direction of mutual transfor-
mation between different land cover types in the research period [46]; the mathematical
expression is as follows:

Sij =


S11 S12 · · · S1n
S21 S22 · · · S2n

...
...

. . .
...

Sn1 Sn2 · · · Snn

 (5)

where Sij (km2) is the area converted from type i to type j (i = j means an area with
unchanged land cover); i and j are land cover types before and after the transfer, respectively.

We established the transfer matrix of cultivated land, forest, and grassland in 2010 and
2020, and we could analyze vegetation changes by calculating the transition matrix in the
past ten years.
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2.3.2. Extraction of Changed Pixels

To obtain ET corresponding to different vegetation, the reference GlobalLand30 with
a spatial resolution of 30 m was first re-projected to the standard MOD16A2 sinusoidal
projection [47]. Then, we selected the pixels for which a total of 30 m pixel fraction for each
500 m grid was more than 60% (Figure 6a). We extracted the NDVI from points selected in
different ecological subregions to verify the accuracy of the extracted vegetation types [48],
and obtained NDVI features in different ecological subregions as shown in Figure 6b.
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2.3.3. Method of Absolute Change

In this paper, inter-annual and seasonal ET differences in 2010 and 2020 are used for
change analysis. The formula for calculating the absolute change is as follows:

Y = Mt − Nt (6)

where Y (mm) is inter-annual variation; Mt (mm) is the ET of the spring, summer, autumn,
and winter and total annual amount in 2020; and Nt (mm) is the ET of spring, summer,
autumn and winter and total annual amount in 2010.

2.3.4. Method of Relative Change

ET is affected by multiple factors. Variation in ET may be also explained by warming
temperatures [49]. Thus, we focused on the influence of vegetation changes on ET. In order
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to control a single variable, we discuss the change between the ET of vegetation changes
and ET without vegetation changes; the expression is as follows:

Z = (ETi+10 − ETi)change − (ETi+10 − ETi)unchange (7)

where Z (mm) is the relative change, ETi+10 (mm) is the ET of vegetation in 2020, and ETi

(mm) is the ET of vegetation in 2010.
To further discuss the relative change in ET, the increased ET of unchanged vegetation

was taken as the reference standard to calculate the rate of relative change. The relative
change value of ET after vegetation change was analyzed. The formula for calculating the
relative rate of change is as follows:

Re =
(ETi+10 − ETi)change − (ETi+10 − ETi )unchange

ETi
unchange

(8)

where Re (%) is the relative rate of ET change, and ETi
unchange (mm) is the ET of unchanged

vegetation in 2010.

3. Results and Discussion
3.1. Vegetation Changes in Northwest China

Partial changes occurred from cultivated land into forest or grassland due to returning
ecological restoration, and grassland was converted into cultivated land due to food
demand and security during 2010–2020. One of the dominant land cover conversion types
was grassland into cultivated land. Second was the conversion from grassland into forest,
and conversion from cultivated land into grassland and forest was relatively small (see
Table 3).

Table 3. Transfer matrix of vegetation types from 2010 to 2020 (unit: km2).

2010

Cultivated Land Forest Grassland Total

2020

Cultivated Land 250,149 4133 22,780 277,068
Forest 4293 156,162 13,848 174,303

Grassland 10,398 7927 866,321 884,645
Total 264,839 168,222 902,949 1,336,011

We focused on analyzing vegetation changes in the following typical regions. In
Northwest China, conversion from grassland into cultivated land was mainly concentrated
in I1207, II0303, II0604, and III0401 because cultivated land was scientifically expanded
without damaging the ecological environment due to food demand in the northwestern
agricultural and pastoral transition zone, while grassland and desert kept decreasing [50].
At the same time, grassland-to-forest land conversion mainly occurred in II0702 and III0405.
Cultivated land was transformed into grassland mainly in II0303 and II0803. Conversion
from cultivated land into forest was mainly distributed in I1204 and I1501 because of the
policy implementation of returning cultivated land to forest and grassland in Northwest
China. To sum up, vegetation changes in Northwest China were mainly grassland into
cultivated land, grassland into forest, cultivated land into grassland, and cultivated land
into forest, and their spatial distribution characteristics are shown in Figure 7 (review no.
GS (2019)1822).
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3.2. Annual ET of Typical Vegetation in Different Regions

There are great differences in topographic and climatic conditions in each region in
Northwest China. The annual ET of each vegetation type is relatively different. Therefore,
we analyzed the annual ET of cultivated land and forest and grassland in each subecoregion
in 2010 and 2020. ET characteristics differed significantly among different vegetation
types [51]. The annual ET of cultivated land, forest, and grassland in different subecoregions
is shown in Table 4. Annual ET over cultivated land was in the range of 420–520 mm,
and annual ET over forests was about 600 mm in I1204 because it has a semi-humid and
semi-arid climate in the western and northern part of Loess Plateau. ET generated by
cultivated land was relatively the largest, annual ET was about 600 mm, while annual forest
ET was about 700 mm in I1501. This is because it belongs to the humid and sub-humid
climate in the south of Loess Plateau; precipitation in this region is relatively sufficient.
The annual ET of cultivated land was about 400 mm, and that of grassland was about
410 mm in II0303. It has a dry climate and low rainfall, but the area is close to the Qilian
Mountains, where there is meltwater from glaciers and snow, water resources are abundant,
and irrigated agriculture is thus developed. The annual ET of cultivated land was less than
300 mm, approximately 240 mm, and the annual ET of grassland was about 200 mm in
II0803 due to this subecoregion being extremely arid.
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Table 4. Annual ET of cultivated land, grassland, and forests in different regions in 2010 and 2020.

Code Type of Trans-
formation

Annual ET of
Changed

Vegetation in
2010 (Mm)

Annual ET of
Changed

Vegetation in
2020 (Mm)

Type of Trans-
formation

Annual ET of
Unchanged

Vegetation in
2010 (Mm)

Annual ET of
Unchanged

Vegetation in
2020 (Mm)

I1204 cf 516 625 cc 427 442
I1501 cf 614 688 cc 598 655
II0303 cg 424 407 cc 357 363
II0803 cg 235 204 cc 239 242
I1207 gc 384 439 gg 393 434
II0303 gc 308 345 gg 295 302
II0604 gc 221 320 gg 228 211
III0401 gc 383 441 gg 391 421
II0702 gf 339 379 gg 372 376
III0405 gf 517 627 gg 534 594

Note: cf, change from cultivated land into forest; cg, change from cultivated land into grassland; gc, change from
grassland into cultivated land; gf change from grassland into forest; cc, unchanged cultivated land; gg, unchanged
grassland.

The annual ET of grassland in different regions in 2010 and 2020, and annual ET
converted into forest and cultivated land in 2020 are shown in Table 4. The annual ET of
grassland was relatively high, between 400 and 600 mm in III0401 and III0405, the annual
ET of cultivated land in III0401 was about 440 mm, and that of the forest in III0405 was
about 630 mm. This is mainly because it is located in the alpine Qinghai–Tibet region,
which has a continental climate on the plateau, with intense radiation and high rainfall.
The annual ET of grassland in I1207 was about 400 mm, and the corresponding annual
ET of cultivated land was about 440 mm. The annual ET of grassland was in the range of
200–310 mm in the arid desert–oasis agro-ecological subregion in II0303 and II0604. The
annual ET of cultivated land was 320–350 mm in II0303 and II0604. The annual ET of
grassland in II0702 was relatively high and could reach 340 mm, and the annual ET of the
forest in this subecoregion was about 380 mm. Due to the relatively abundant rainfall and
there being forest cover in the Tianshan Mountains, they have strong water conservation
capacity. In conclusion, on the basis of vegetation-type analysis, the ET of cultivated land in
Northwest China is greater than that of grassland in the same subecoregion, and combined
with the analysis of different ecoregions, that of eastern monsoon region and arid region of
Qinghai–Tibet is greater than that of the arid region on the same vegetation type.

Forests had greater water conservation capacity than that of cultivated land. However,
the annual ET of forests near the Loess Plateau was 600–700 mm, and that of grassland was
about 400 mm, which is comparable to the results of Schwrzel [52]; afforestation has many
effects on long-term sustainable development. The annual ET of cultivated land was about
450 mm in the agricultural oasis area of the Heihe River Basin, which was similar to the
research results of another study [19,53]. In general, forests are mainly distributed in the
Loess Plateau, near the Tianshan Mountains in Xinjiang, and the Qilian Mountains. With
the condition of sufficient water, the ET of forests was the highest, followed by cultivated
land, and that of grassland was the lowest. Cultivated land was mainly distributed in the
alluvial plain of the Loess Plateau and in the agricultural oasis region of the Hexi Corridor,
and in the Junggar and Tarim Basins. The amount of ET produced by cultivated land is
relatively large under the influence of irrigation and other human factors [54]. Because
of the dry climate in Northwest China, it can achieve strong evaporation and produce a
large amount of moisture with enough water, and transpiration and photosynthesis occur
at the same time. When there is much loss of water, carbon sequestration is completed,
organic matter is accumulated, and crop yields are improved. Compared with forests and
cultivated land, the ET generated by grassland was smaller. Grassland grows in arid desert
areas, and its leaves shrink in the process of continuous evolution in order to retain water
and adapt to the external environment. Therefore, in terms of subecoregions in Northwest
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China, for the same vegetation type, ET in the Qinghai–Tibet alpine region was much
higher than that in the eastern monsoon region in Loess Plateau, and the lowest in the
western arid and semi-arid region. In the same subecoregion, forest ET was higher than
that of cultivated land, and the ET of grassland was relatively lower.

3.3. Effect of Typical Vegetation Changes on ET
3.3.1. Effect of Typical Vegetation Changes on Inter-annual ET

ET showed a trend of change on the basis of the vegetation change in Figure 8, and we
focused on the influence of vegetation changes on ET. In order to control a single variable,
the increased ET of unchanged cultivated land and unchanged grassland was taken as the
reference standard. The absolute and relative change values of ET after vegetation changes
were analyzed, calculated with Formulas (6)–(8).
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Afforestation and the conversion of cultivated land into forest on the Loess Plateau
are very important to the water balance in the arid region [55]. With the promotion of
the policy of returning sloping land into grass and planting trees, vigorously building
all kinds of shelterbelts, economic forests, and artificial grasslands, and controlling soil
erosion, some cultivated land was converted into forests in the Loess Plateau, the increased
absolute ET was about 110 mm compared with the unchanged cultivated land, the relative
rate of change increased by 22.1% after cultivated land was changed into forest in I1204; the
increased absolute ET was approximately 70 mm, and the relative rate of change increased
by 2.72% in I1501 (Figure 8). This was because I1204 has a sub-humid and semi-arid climate,
while I1501 has a humid and semi-humid climate. ET from the conversion of cultivated
land into forest in semi-humid and semi-arid regions was thus higher than that in humid
and semi-humid regions.

In Northwest China, artificial licorice is vigorously developed, and desert vegetation
is protected. After the conversion from cultivated land into grassland in II0303 and II0803,
ET showed a decreasing trend by 16 and 25 mm, respectively. Compared with unchanged
cultivated land, the relative rate of change decreased by 5.49% and 12.8%, respectively, after
cultivated land had changed into grassland (Figure 8).

In order to solve the problem of food security and food demand, the area of basic
cultivated land expanded in the northwestern agricultural and pastoral transition zone
and other regions, as grassland in different areas was converted into cultivated land, and



Land 2022, 11, 808 14 of 19

cultivated land expansion affects temperature extremes and thus ET [56]. As shown in
Figure 8, the increase in ET in II0604 was the largest, up to 99 mm, compared with the
unchanged grassland, it increased by 45.8%. The increased ET in I1207 and III0401 was
between 40 and 60 mm. Because the grassland had a lower ET in II0604 in 2010, while the
ET of cultivated lands was similar in I1207, II0303, II0604, and III0401 in 2020, the different
value in annual ET was much larger in II0604.

After the grassland had been transformed into forest in III0405, the increased ET
was approximately 110 mm compared with the unchanged grassland in this region, an
increase of 9.54%; on the southern slope of Tianshan Mountain, the increased ET value was
about 40 mm after the grassland had been converted into forest in II0702, a 9.71% increase
compared with the unchanged grassland (Figure 8).

ET from the conversion of cultivated land into forest, grassland into cultivated land,
and grassland into forest showed an increasing trend, while ET from cultivated land into
grassland showed a decreasing trend. The increase in ET was the largest in II0604 after
the grassland had been transformed into cultivated land, a 45.8% increase compared with
that in 2010. The expansion of cultivated land should be reasonable. Excessive expansion
consumes a large amount of moisture, which is not conducive to the long-term development
of the ecological environment. Secondly, the rate of relative ET change increased by 22.1%
after cultivated land had changed into forest in I1204. However, cultivated land was
converted into forest in I1501, and the increase in ET was only 2.72% compared with
that of unchanged cultivated land. To a certain extent, this can be explained by the fact
that water consumption caused by converting cultivated land into forest in semi-arid and
semi-humid regions was higher than that in humid and semi-humid regions. Thus, the
contributions of vegetation restoration and cultivated land expansion increased ET in
Northwest China [57,58].

3.3.2. Effect of Typical Vegetation Changes on Seasonal ET

We defined the seasons as spring (057–145), summer (153–241), autumn (249–329),
and winter (337–049). The ET of each vegetation type is generally the highest in summer,
followed by spring, autumn, and winter. The high ET in summer is due to abundant
water, high temperatures, and long sunshine duration, vegetation is in a flourishing period
of growth and development accompanied by transpiration and photosynthesis, and a
large amount of water is emitted into the air through stomata. In spring, vegetation
is in the green stage, the physiological activities of vegetation are gradually increasing,
temperatures rise, ice and snow melt in all mountains, and ET shows a slight increasing
trend. In autumn, vegetation gradually withers and yellows, transpiration is obviously
weakened, the temperature decreases, and ET is smaller than that in spring. In winter, the
physiological activity of vegetation almost stops completely, thus ET is relatively low.

The seasonal characteristics of vegetation in different regions are different and they
are shown in Figure 9a–d. Figure 9a shows that, after conversion from cultivated land into
forest, the increased ET in I1204 was about 28 mm in spring, 70 mm in summer, and less
than that in autumn and winter. Increased ET was about 14 mm in spring, nearly 50 mm
in summer, and less than that in autumn and winter in I1501. On the whole, after the
conversion of cultivated land into forest, ET increased the most in the summer in the range
of 50–70 mm, followed by spring in the range of 10–30 mm. ET in each season in semi-arid
and semi-humid regions was higher than that in humid and semi-humid regions after the
conversion of cultivated land into forest, mainly in spring and summer.
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Figure 9b shows that ET in II0303 and II0803 decreased after the conversion from
cultivated land into grassland, mainly in summer, but the magnitude of the decrease was
small. ET changed a little after the cultivated land had been changed into grassland. The
decrease in ET was relatively large in summer, about 12mm, while the change in ET in
other seasonal phases was less than that. The main reason was that barren cultivated land
was planted with grass in order to meet animal husbandry needs.

Corresponding to Figure 9c, after conversion from grassland into cultivated land, ET
increased by about 30 mm in summer, 20 mm in autumn, and less than that in spring
and winter in I1207. ET increased more in summer, about 50–100 mm, and decreased
by 13–15 mm in spring in II0303 and II0604. III0401 was in the dry and cold region of
the Qinghai–Tibet Plateau; the ET of grassland and cultivated land had obvious seasonal
characteristics, and the increased ET in spring, summer, and autumn was relatively similar,
in the range of 10–25 mm.

As Figure 9d indicates, in the conversion from grassland into forest, the increased
ET in II0702 was 15–30 mm in summer and autumn, and the changed ET was relatively
small in spring and winter. The increased ET in spring and summer was in the range of
40–60 mm, and the changed ET in autumn and winter was relatively small in III0405.

Overall, the ET of grassland is different due to the different roots and water absorption
capacity levels [59]. From the perspective of seasonal analysis, after grassland had been
converted into cultivated land or forest, it was negative in spring, but positive in summer,
autumn, and winter in the western arid and semi-arid region. The main reason lies in the
relatively high ET of grassland in spring in areas with water supply from Tianshan and
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Qilian Mountains snow melt, which contributed to the high ET of grassland in spring; thus,
the grassland ET of spring and summer season phase differences was not significant, while
the cultivated land was influenced by irrigation, and ET in summer was higher than that in
spring, which is supported by Chen’s research [60]. In the alpine Qinghai–Tibet region and
the eastern monsoon Loess Plateau region, ET increased in spring, summer, autumn, and
winter after grassland had been converted into cultivated land or forest.

4. Conclusions

On the basis of the GlobalLand30 land cover products in 2010 and 2020, subecore-
gion datasets, and temporal NDVI products, we extracted and analyzed inter-annual and
seasonal MOD16A2 products, and explored the impact of typical vegetation changes in
different regions of Northwest China on ET. Our conclusions are the following:

(1) In the past ten years, vegetation changes were mainly from grassland into cultivated
land in the northwestern agricultural and pastoral transition zone, accompanied by the
conversion of cultivated land into grassland. Then, the conversion from cultivated land
into forest primarily occurred in the Loess Plateau region.

(2) There was much conversion from grassland into cultivated land in the agricultural
oasis region, the maximal increased water consumption reached 99 mm/10a, and the
relative rate of change increased by 45.8% compared with the unchanged grassland. ET was
largely increased with an absolute magnitude value of up to 110 mm/10a, a 22.1% increase
compared to that of unchanged cultivated land. However, the humid and semi-humid
region of the southern Loess Plateau showed a small ET increase of about 73 mm/10a,
a small relative change rate increase of 2.72%, and it would be more suitable to convert
cultivated land into forest.

(3) Vegetation ET was the highest in summer, followed by spring and autumn, and
with the lowest in winter. It could provide grassland with adequate water because global
warming is causing the massive melting of ice and snow at the foot of mountains, and there
was a small ET difference of grassland between spring and summer in arid regions. ET
showed an increasing trend after cultivated land had changed into forest, and grassland
had been converted into cultivated land and forest, while it showed a decreasing trend after
cultivated land had changed into grassland, which was mainly manifested in the summer.

(4) Therefore, stricter policy to limit agriculture expansions should be adopted in
future land use planning for sustainable ecosystem development in Northwest China. This
research helps in better distinguishing ET changes from vegetation changes and managing
limited water resources in future land and water allocation in arid and semiarid regions.
Future work should use fine-grained vegetation classification data and the quantification
of ET based on the refinement of types of cultivated land, grassland, and forest.
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https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.-modaps.eosdis.nasa.gov/
https://ladsweb.-modaps.eosdis.nasa.gov/
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nasa.gov/, accessed on 26 May 2021. The vector of ecological data was provided by the Database
of Ecological Function Region in China http://www.ecosystem.csdb.cn/ecoass/-ecoplanning.jsp,
accessed on 18 March 2021.
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