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Abstract: Understanding the spatial differentiation and driving mechanisms of ecosystem service
value (ESV) is helpful for the protection and sustainable development of the ecological environment.
Despite the fact that various studies on ESV have been conducted in various regions, few studies have
discussed the spatial differentiation characteristics of ESV in a long time series at a national scale, and
even fewer studies have thoroughly examined the driving mechanism of the spatial differentiation
of ESV from the perspective of different regions. On the basis of China’s land use data from 1990
to 2018, this paper used the methods of land use dynamics, the ESV evaluation model, hot spot
analysis, the barycenter model, and the geographical detector model to study the temporal and
spatial differentiation characteristics of land use and ESV in the study area. Moreover, it analyzes the
driving mechanisms of the spatial differentiation of ESV at the national scale and in different regions
of China. Our results showed the following: (1) Other land types have increased overall, with the
exception of grassland. Obvious differences were observed in the single land use dynamics of each
land type, especially the construction land, where farmland was the primary source of construction
land. With the passage of time, the dynamic degree of comprehensive land use increased. (2) During
the study period, ESV generally showed a decreasing trend, with distinct characteristics in high and
low ESV areas. The center of gravity of ESV was constantly in Dingxi County and Pingliang City,
Shaanxi Province, and its trajectory was generally “S”-shaped. (3) From the perspective of national
scale and different regions, the dominant factors affecting the spatial differentiation of ESV were
different, and the interaction among multiple factors was significantly stronger than that of a single
factor. The findings of the study can provide more scientific decision-making services for China in
order to promote regional environmental protection and develop ecological civilization.

Keywords: land use; the evaluation model of ecosystem service value; geographical detector model;
spatial heterogeneity

1. Introduction

Ecosystem services (ES) refer to the life-supporting products and services provided to
human beings directly or indirectly by ecosystems under good ecological conditions [1,2].
Ecosystem service value (ESV) is an effective quantitative assessment method which high-
lights the importance of natural assets for human welfare and translates ecological services
into practical applications [3,4]. Numerous factors, including natural and social factors,
influence the spatial pattern and evolution of ESV. We can reflect the state of the ecosystem
in a deeper level by studying changes in the external spatial pattern and internal influence
mechanism of ESV, which is highly important for regional planning and effective protection
of the ecosystem [5].
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Since Costanza (1997) [6] first proposed the concept of ESV, the related research on
ESV has always been the major focus in geography and ecology [7,8]. At present, ESV can
be assessed in three ways: by the monetary, physical, and energy forms. The monetary
assessment method is the easiest and most widely used [9]. It can increase public awareness
of the importance of ecosystem services in social development [10]. Scholars have primarily
used the ESV equivalent factor table made by Costanza (1997) [6] and Xie (2008) [11]
to calculate the ESV of different ecosystems in recent years. However, the monetary
assessment is based on a subjective value coefficient that ignores the social development of
various regions in different times, resulting in some limitations of this evaluation method.
As a result, ESV should be revised in this study to produce more accurate ESV that is more
in accordance with the actual situation [9,12].

At present, studies on ESV have gradually changed from evaluation to analysis of
ESV’s temporal and spatial changes and driving mechanism [13]. For the analysis of
temporal and spatial differentiation of ESV, previous studies have focused on farmland [14],
wetlands [15], and lakes [16]. For the driving mechanism of changes in ESV, the driving
factors mainly include natural and socioeconomic factors [17,18]. The commonly used
methods are spatial autocorrelation analysis, logistic regression, and grey correlation
degree [19,20], most of which ignore the spatial correlation between the driving factors and
fail to reflect the internal complex coupling effect. The geographical detector model (GDM)
is an effective tool for exploring the relationship between geographical phenomena and
driving factors, and it can help understand ESV’s spatial heterogeneity and multifactor
interaction mechanism [21,22]. For the research scales of the temporal and spatial changes
and the driving mechanism of ESV, the majority of research objects are concentrated in
provinces [23], cities [24], urban agglomeration [25], and other local areas. However, little
relevant research has been conducted at the macro scale, especially at the national scale. At
the same time, in view of the large span of the macro scale from north to south and east
to west, the primary factors that influence the spatial and temporal differentiation of ESV
in different regions are varied. Currently, only a few studies have been conducted on the
evolution of the driving mechanism of the spatiotemporal differentiation of ESV from the
perspective of different regions.

Therefore, to better understand the temporal and spatial differentiation characteristics
and driving mechanism of China’s ESV, this study uses the dynamic degree of land use
and the calculation model of ESV to calculate the quantitative changes in land use and
ESV. Moreover, it analyzes the spatial change in ESV with the help of hot spot analysis
and the barycenter model. Finally, it usesGDM to analyze the driving mechanism of
influencing factors on ESV. Specifically, this study aims to: (1) evaluate the temporal and
spatial distribution characteristics of land use and ESV in China from 1990 to 2018; and
(2) determine the driving forces leading to the spatial differentiation of ESV and their effects.
Our study provides a new perspective on the driving mechanism of ecosystem service
function, and the results can provide scientific guidance for the optimization of ecosystem
protection and management.

2. Materials and Methods
2.1. Data Sources and Preparation

The land use data for 1990, 2000, 2010, and 2018 in China were derived from the Data
Center for Resources and Environmental Sciences of the Chinese Academy of Sciences
(1 km resolution). Land use was divided into six types: farmland, woodland, grassland,
water body, construction land, and unused land (Figure 1). The socioeconomic data (grain
price and the relevant calculation indexes of Engel coefficient) for the corresponding
years were from the China Statistical Yearbook and the China Urban Statistical Yearbook.
Except for Hong Kong, Macau, and Taiwan, the study focused on prefecture-level and
above urban units in China, including prefecture-level and above cities and provincial
county-level administrative units. In addition, some socioeconomic data in Zhenjiang,
Huaiyin, and Suqian Cities were lacking, and the 1990 Urban Statistical Yearbook in
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Xinjiang Uygur Autonomous Region was missing, making some data impossible to collect.
To interpolate these data, we used data from adjacent years’ statistics yearbooks and data
from surrounding cities and counties in the same province.
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Figure 1. Map of the study area ((a): prefecture-level and above cities of China, (b): DEM of China,
(c): LUCC and six regions of China).

To explore the socioeconomic and natural factors driving the change of ESV, we se-
lected nine driving factors, namely, slope, elevation, temperature, precipitation, normalized
difference vegetation index (NDVI) [26], population density, gross domestic product (GDP),
construction land intensity, and distance from road. Due to the lack of data on some
driving factors, this paper only studied the driving mechanism of the temporal and spatial
differentiations of ESV in 2000 and 2018. The digital elevation model (DEM) [27] and
NDVI data were obtained from the Data Center for Resources and Environmental Sciences
of the Chinese Academy of Sciences (http://www.resdc.cn, accessed on 1 January 2022).
DEM data could be used to extract slope and elevation distribution characteristics within
the study area. Meteorological data were acquired from the National Geospatial Data
Cloud platform of China (http://www.geodata.cn/data/, accessed on 1 January 2022),
which could reflect the regional changes in precipitation and temperature. The popula-
tion data were obtained from the World Pop Data Center. GDP was obtained from the
China Urban Statistical Yearbook. Construction land intensity was calculated with land
use data. Road data were provided by OpenStreetMap (which accessed on 1 January 2022,
http://www.openstreetmap.org/).

2.2. Methods
2.2.1. Land Use Dynamic Degree

Land use dynamic degree is an important index for analyzing the change dynamics of
land use, including single and comprehensive dynamic degrees [9,28].

http://www.resdc.cn
http://www.geodata.cn/data/
http://www.openstreetmap.org/
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(1) Single dynamic degree (K). Single dynamic degree refers to the change of a certain
land use type in a certain period. The calculation formula is as follows:

K =
(Ub −Ua)

Ua
× 1

T
× 100% (1)

where Ua and Ub refer to the areas of the specific land use type at the start date and end
date (km2), respectively; and T is the study period.

(2) Comprehensive dynamic degree (LC). Comprehensive dynamic degree refers to
the change rate of all land use types in a certain period in the study area. The calculation
formula is as follows:

LC =

n
∑

i=1
|Ubi−ai|

2
n
∑

i=1
Uai

× 1
T
× 100% (2)

where Uai and Ubi represent the areas of the specific LULC type at the start date and end
date, respectively; T is the study period; and n is the number of the land use type.

2.2.2. Construction of Ecosystem Service Value Evaluation Model

Costanza (1997) [6] used the utility and equilibrium value theories to evaluate the
global ESV for the first time. Xie (2008) [11] established the ESV equivalent per unit area of
the ecosystem in China by combining the structural characteristics of China’s ecosystem
with the global ESV evaluated by Costanza (1997) [6]. The ESV of cities at the prefecture
level and above in China was measured by Xie’s (2008) [11] “Equivalent scale of ESV per
unit area of terrestrial ecosystem in China”. The economic value of the ESV equivalent was
about 1/7 of the national average grain yield value. According to previous studies [29],
when evaluating the ESV of construction land, various factors must be considered, and the
calculation may be difficult, so this study would not estimate it. While estimating the ESV
of unused land, the equivalent factor parameters were estimated based on the average of
grassland and desert equivalent factors [30].

The economic value of grain output per unit area was calculated by actual grain yields
per unit area in China’s provinces, autonomous regions, and municipalities directly under
the central government. The calculation formula is as follows:

Ea =
1
7

PQ (3)

where Ea represents the economic value of grain yield per unit area in the study area
(yuan/hm2), and P refers to the average value of national grain in 2018 (yuan/kg). The
average price of grain in 2018 was 2.403 yuan/kg. This price was based on the average
value of the national minimum purchase price of early, middle, late indica rice and the
national minimum purchase price of wheat from the national development and reform
commission’s price monitoring center in 2018. Q is the average grain yield per unit area
of each study area from 1990 to 2018 (kg/hm2), estimated according to the grain yield
data from 31 provinces, autonomous regions, and municipalities directly under the central
government in China’s statistical yearbooks in 1990, 2000, 2010, and 2018 (Table 1).

However, as society develops, the degree of social development in the study area
changes with time, and then ESV will also change. This study used 2018 as the base year,
and it introduced the revised willingness to pay the coefficient related to social development
(Dt) to improve the accuracy of the ESV assessment model [31]. Dt is calculated as follows:

l =
2

1 + e−(
1

Ent
−2.5)

(4)

Ent = Etc×Ptc+Etr × Ptr (5)
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k =
lm
ln

(6)

Dt =
kt

k2018
(7)

where l is the social development stage coefficient in relation to actual willingness to
pay; Ent refers to the Engel coefficient of each region at year t; Etc and Etr refer to the
Engel coefficient of urban and rural regions at year t, respectively; Ptc and Ptr refer to the
proportion of urban and rural population at year t, respectively; k is the stage coefficient
of social development; lm refers to the stage coefficient of social development of different
cities, and ln refers to the stage coefficient of the social development of China.

Table 1. Average grain yield per unit area by region from 1990 to 2018 (kg/hm2).

Area

1990–2018
Average Annual
Grain Yield per

Unit Area

Area

1990–2018
Average Annual
Grain Yield per

Unit Area

Area

1990–2018
Average Annual
Grain Yield per

Unit Area

Area

1990–2018
Average Annual
Grain Yield per

Unit Area

Beijing 5497.64 Shanghai 6491.62 Hubei 5655.65 Yunnan 3953.27
Tianjing 4867.92 Jiangsu 6116.74 Hunan 6003.43 Xizang 4668.72
Hebei 4788.63 Zhejiang 6077.69 Guangdong 5437.98 Shaanxi 3449.46
Shanxi 3419.26 Anhui 5035.62 Guangxi 4708.75 Gansu 3352.8

Neimenggu 3948.88 Fujian 5332.2 Hainan 4155.37 Qinghai 3288.11
Liaoming 5272.28 Jiangxi 5310.57 Chongqing 5386.97 Ningxia 4404.3

Jilin 6290.21 Shandong 5447.66 Sichuan 5520.88 Xinjiang 5699.57
Heilongjiang 4685.64 Henan 5303.36 Guizhou 3948.57

Combined with the revised willingness to pay the coefficient related to social devel-
opment (Dt), we constructed an ESV evaluation model suitable for cities at the prefecture
level and above in China [31]. The calculation formula is as follows:

ESV =
m

∑
i=1

n

∑
j=1

Ai×Mij×Ea×Dt (8)

where ESV is the total value of ecosystem services in the study area (1010 yuan); Ai is
the area of class i land use type (km2); Mij is the table value of the equivalent factor
corresponding to j ecosystem service function of class i land use type (Table 2); m is the
number of ecosystem types, and n is the number of ecosystem service function items; Ea is
the economic value of grain output per unit area (yuan/hm2); Dt is the coefficient of the
social development stage after the introduction of the Engel coefficient and modification by
the logistic regression model.

Table 2. Equivalent value per unit area of ecosystem services in China (yuan/hm2.a).

Type Sub-Type Farmland Woodland Grassland Water
Body

Unused
Land

Construction
Land

Provisioning
services

Food production 1.00 0.33 0.43 0.53 0.23 0.00
Raw material 0.39 2.98 0.36 0.35 0.20 0.00

Regulating
services

Gas regulation 0.72 4.32 1.50 0.51 0.78 0.00
Climate regulation 0.97 4.07 1.56 2.06 0.85 0.00

Hydrology regulation 0.77 4.09 1.52 18.77 0.80 0.00
Waste treatment 1.39 1.72 1.32 14.85 0.79 0.00

Supporting
services

Soil conservation 1.47 4.02 2.24 0.41 1.21 0.00
Biodiversity maintenance 1.02 4.51 1.87 3.43 1.14 0.00

Cluture
service Esthetic landscape provision 0.17 2.08 0.87 4.44 0.56 0.00

Total 7.90 28.12 11.67 45.35 6.53 0.00
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2.2.3. Hot-Spot Analysis

The Getis–Ord Gi* can be used to describe the spatial agglomeration degree of ESV.
The hot and cold spots represent statistically significant high-value and low-value spatial
agglomeration of ESV and its changes [32]. The Getis–Ord Gi* index is calculated as [33].

G∗i (d) =

n
∑

j=1
wijxj − X

n
∑

j=1
wij

S

√
[n

n
∑

j=1
w2

ij − (
n
∑

j=1
wij)2]/(n− 1)

(9)

S =

√√√√√ n
∑

j=1
x2

j

n
− (X)

2 (10)

where xj is the ESV of unit j, X is the average value of ESV, Wij refers to the spatial weight
coefficient between geospatial units, and n is the total number of units. Gi* is represented by
the Z-value. For positive z-scores, with statistically significant positive values, the higher
the Z-score is, the more intense the clustering of high-values (hot spots) will be. Similarly,
for statistically significant negative z-scores, the lower the z-score is, the more intense is the
cluster of low-values (cold spots) will be.

2.2.4. Barycenter Model

The barycenter model is an effective tool for analyzing how spatial variables change
over time [34]. We introduced the model to reveal the spatial evolution characteristics
of ESV. The center of gravity of ESV in China has changed over the study period, and
its movement represents the spatial trajectory of ESV change in China. The calculation
formula is as follows:

X =

n
∑

i=1
xiwit

n
∑

i=1
wit

, Y =

n
∑

j=1
yiwit

n
∑

i=1
wit

(11)

D =
√
(xt2 − xt1)

2 + (yt2 − yt1)
2 (12)

where X and Y are the longitude and latitude of the barycenter, respectively; xi and yi are
the longitude and latitude of unit i, respectively; wit is the ESV of unit i at year t; and D is
the moving distance of the center of gravity.

2.2.5. Geographical Detector Model

Wang (2016) [35] proposed the Geographicol detector model, a statistical tool for
detecting spatial differentiation caused by geographical elements and revealing the driving
force behind it. Without excessive assumptions, this method can overcome the limitations
of traditional statistical analysis methods. This method, which has been widely used in the
fields of social economy and environment, can not only detect the spatial differentiation of
a single factor but can also assess the interaction of multiple factors [18,36,37]. To detect
the driving factors influencing the spatial difference of ESV in the study area, this study
primarily used the two modules of factor and interaction detection in the geographic
detector model. The calculation formula is as follows:

q = 1−

L
∑

h=1
Nhσ2

h

Nσ2 (13)

where q is the detection index of the influencing factors of the spatial differentiation of
ESV in China, and the interval is [0, 1]. The greater the value of q is, the stronger the
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heterogeneity of the spatial stratification will be. Conversely, the lesser the value of q is, the
randomness of the spatial distribution will be stronger. The value of q is 0, indicating that
the factor has no influence on ESV; N and σ2 are the sample size and variance, respectively;
Nh and σ2

h are the secondary sample size and variance, respectively; and h = 1, 2, . . . , L,
which is the stratification of variable Y or factor X.

3. Results
3.1. Change in Land Use from 1990 to 2018

On the basis of the land use data of four periods in 1990, 2000, 2010, and 2018, the
land use transfer matrix in China was calculated, and the transfer chord diagram between
different land use types was created (Figure 2). During the study periods of 1990–2000,
2000–2010, 2010–2018, and 1990–2018, the evolution characteristics of various land use
types in the study area were analyzed. The results showed that throughout each time,
the area of each land type in the study area changed to varying degrees. Woodland and
grassland were always the two primary land types. Specifically, the change in grassland
net area always showed a decreasing trend. The net area declined by 12.71% across the
study period. Especially from 2010 to 2018, the net area of grassland dropped by 11.4% and
mostly shifted to farmland, woodland, and unused land; Over the study period, the change
in woodland was relatively moderate, with a steady decreasing trend from 1990 to 2000,
followed by a slowly increasing trend from 2000 to 2018; From 1990 to 2000, the net area
of farmland increased by 1.61%, whereas from 2000 to 2018, it began to slowly decrease,
with most of the land being moved to woodland, grassland, and construction land; From
1990 to 2010, the unused land and water body changed steadily, whereas the increase from
2010 to 2018 showed an increasing trend, with increases of 11.39% and 6.07%, respectively;
The change in construction land was the most significant, and the change rate continued to
increase throughout the three study periods. The change rate of construction land reached
34.95%, particularly from 2010 to 2018.

According to the land use data of each year, Formulas (1) and (2) were used to calculate
the single and comprehensive dynamic degrees in 1990–2000, 2000–2010, 2010–2018, and
1990–2018, respectively. The area of each land type in the study area changed to varying
degrees in each period, as shown in Tables 3 and 4. From the perspective of single dynamic
degree, the land use dynamic degree of grassland was always negative, with the greatest
decline range (1.17%) between 2010 and 2018. Farmland and woodland change rates were
relatively slow, but overall showed an increasing trend, with increases of 1.50 × 104 km2

and 2.33 × 104 km2, respectively. The land use dynamic degree of farmland showed an
increasing trend from 1990 to 2000, and then decreased by a tiny margin in 2000–2010 and
2010–2018, and the decreasing range continued to increase. The land use dynamic degree
of woodland was was always less than 0.1% in each period, and the change range was not
obcious; The water body kept increasing throughout the study period. Especially from
2000 to 2010, The land use dynamic degree of water body reached 0.53%; The unused land
changed in a slowly decreasing trend from 1990 to 2010, and then it increased slightly
from 2010 to 2018; During the study period, the area of construction land continued to
grow rapidly. From 1990 to 2018, the dynamic degree of land use in the whole study
period from 1990 to 2018 increased by 2.50%, with a total increase of 10.72 × 104 km2. This
discovery was mostly due to population growth, urban development, and other factors,
which resulted in a progressive rise in the amount of construction land. The comprehensive
land use dynamics were always less than 0.05% from 1990 to 2010, but this changed greatly
from 2010 to 2018, reaching 0.36%.
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Table 3. Area change of different land use types in China from 1990 to 2018 (104 km2).

Farmland Woodland Grassland Water
Body

Construction
Land

Unused
Land

1990–2000 2.89 −1.18 −3.34 0.27 1.38 −0.04
2000–2010 −0.50 1.30 −0.42 1.37 2.83 −0.07
2010–2018 −0.90 2.21 −34.97 0.43 6.51 22.20

Net change
1.50 2.33 −38.74 2.06 10.72 22.10in 1990–2018
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Table 4. Dynamic changes of land use in China from 1990 to 2018 (%).

Single Land Use Change/%
Comprehensive

Land Use ChangeFarmland Woodland Grassland Water Body Construction
Land

Unused
Land

1990–2000 0.16 −0.05 −0.11 0.11 0.90 −0.002 0.05
2000–2010 −0.03 0.06 −0.01 0.53 1.69 −0.003 0.03
2010–2018 −0.05 0.10 −1.17 0.16 3.33 1.11 0.36
1990–2018 0.03 0.04 −0.46 0.29 2.50 0.40 0.41

3.2. Spatiotemporal Variation of ESV
3.2.1. Spatiotemporal Variation of ESV from 1990 to 2018

According to the results of the ESV evaluation model, the total ESV in the study area
in 1990, 2000, 2010, and 2018 was 23.54, 22.53, 22.64, and 21.97 trillion yuan, respectively.
During the study period, the total amount of ESV decreased by 6.67%, with an average
yearly decline rate of 0.24%. Figure 3 shows how the ESV produced by various land
use types and ecosystem subservice structure alterations varied. From the perspective
of various land use types, the ESV produced by woodland was the largest, followed by
grassland, farmland, unused land, and water body. The ESV generated by farmland and
unused land increased by 3.50% and 7.41%, respectively, whereas the ESV of other land
types decreased, especially grassland, which decreased by a total of 23.80%. From the
perspective of various ecosystem subservice structures, the ESV generated by the four
ecosystem service structures was in the following order: regulating services > supporting
services > provisioning services > cultural services. The change trend was consistent across
the three research periods, showing a trend of initially decreasing, then increasing, and
finally decreasing. During the whole study period, supporting services saw the greatest
decrease in ESV, with a total decrease of 7.35%, whereas provisioning services experienced
the least decrease, with a total decrease of 4.79%.
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ESV was divided into five levels (Figure 4) using the natural breakpoint method in ArcGIS
10.2: extremely low ESV (<3.48 × 1010 yuan), low ESV (3.48 × 1010–8.27 × 1010 yuan),
medium ESV (8.47 × 1010–16.68 × 1010 yuan), high ESV (16.68 × 1010–45.77 × 1010 yuan),
and extremely high ESV (>45.77 × 1010 yuan). In the four periods, the spatial distribution
of ESV was largely similar. The high and extremely high ESV were primarily distributed in
Tibet, Xinjiang, and Neimenggu, due to the huge distribution of grassland in the western
region and the large ESV produced by grassland. The medium, low, and extremely low
ESV were primarily distributed in the central, southern, and eastern coastal regions due
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to the large amount of farmland in these areas which generated less ESV than woodland
and grassland.
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3.2.2. Evolution Characteristics of Cold and Hot Spots of Ecosystem Service Value

With the help of the hot spot analysis tool in ArcGIS 10.2, this study conducted a hot
spot analysis on the ESV in 1990, 2000, 2010, and 2018 (Figure 5). In the four periods, the
distribution of cold spots and hot spots in the study area was relatively consistent, and both
were relatively concentrated. The hot spots were primarily distributed in the whole region
of Tibet, parts of Xinjiang, Heihe City and Tahe County in northeast Heilongjiang Province,
and Hailar City in Neimenggu. The cold spots were primarily distributed in the eastern
region. The sub-hot and sub-cold spots were sporadically scattered. The variations in cold
and hot spots were less noticeable with time. The number of sub-cold spots has increased
over time, but they were still mostly distributed around the cold spots. The distribution of
sub-hot spots varied with time, and the distribution areas were different.
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To further explore the temporal and spatial distribution characteristics of ESV changes
in China from 1990 to 2018, the cold and hot spot map in the change of ESV in the study
area was described again with the use of a hot spot analysis tool (Figure 6). From 1990 to
2000, the cold spots were primarily distributed in Tibet, the sub-cold spots were distributed
in Yuxi City, the hot spots were primarily distributed in north China, and the sub-hot spots
were widely distributed in north China, the eastern coast, and the southwest; From 2000 to
2010, the cold spots were primarily distributed in the south, whereas the sub-cold spots
increased slightly, primarily distributed around the cold spot area. In comparison with the
stage from 1990 to 2000, the number of hot spots increased significantly, and the degree
of aggregation also increased, mostly distributed in Qinghai, Sichuan, and Heilongjiang
Province. The number of sub-hot spots decreased significantly and scattered around the
hot spots; From 2010 to 2018, the regional distribution of cold and hot spots changed
significantly. Cold spots were mainly distributed in Tibet and some areas of Heilongjiang
and Inner Mongolia in the northeast. The number of sub cold spots decreased, with the
majority of them concentrated in Mudanjiang City. The spatial distribution of hot spots
was concentrated mostly in the central and southwest areas. The number of sub hot spots
slightly increased compared with the previous stage, and was primarily distributed in the
central area.
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3.2.3. Barycenter Evolution of Ecosystem Service Value

According to the barycenter model in Formulas (6) and (7), the change in China’s ESV
center of gravity trajectory was calculated. As shown in Figure 7, the center of gravity of
ESV was primarily distributed in Pingliang City and Dingxi County of Shaanxi Province
from 1990 to 2018, and the overall change difference was obvious, with an “S”-shaped trend.
From 1990 to 2000, the center of gravity of ESV in the study area migrated by 64.38 km
in the direction of 28◦ north by east. During this period, ESV changed significantly and
showed a decreasing trend, with a total decrease of 1.01 trillion yuan; From 2000 to 2010, it
continued to migrate by 47.26 km in the direction of 67◦ northeast. During this period, ESV
changed slowly, mostly increasing, with a total increase of 0.11 trillion yuan; From 2010 to
2018, it migrated by 36.24 km in the direction of 34◦ southeast. During this period, ESV
showed a decreasing trend, with a total decrease of 0.67 trillion yuan.

Land 2022, 11, x FOR PEER REVIEW 13 of 20 
 

3.2.3. Barycenter Evolution of Ecosystem Service Value 
According to the barycenter model in Formulas (6) and (7), the change in China’s ESV 

center of gravity trajectory was calculated. As shown in Figure 7, the center of gravity of 
ESV was primarily distributed in Pingliang City and Dingxi County of Shaanxi Province 
from 1990 to 2018, and the overall change difference was obvious, with an “S”-shaped 
trend. From 1990 to 2000, the center of gravity of ESV in the study area migrated by 64.38 
km in the direction of 28° north by east. During this period, ESV changed significantly 
and showed a decreasing trend, with a total decrease of 1.01 trillion yuan; From 2000 to 
2010, it continued to migrate by 47.26 km in the direction of 67° northeast. During this 
period, ESV changed slowly, mostly increasing, with a total increase of 0.11 trillion yuan; 
From 2010 to 2018, it migrated by 36.24 km in the direction of 34° southeast. During this 
period, ESV showed a decreasing trend, with a total decrease of 0.67 trillion yuan. 

 
Figure 7. Barycenter evolution trajectory of ESV. 

3.3. Driving Factors of Regional Differences in Ecosystem Service Value 
Taking 2000 and 2018 as examples, a total of nine driving factors were selected from 

the two aspects of physical geography and social economy. The ESV was used as the de-
pendent variable of the geographical detector. The independent variables were the slope 
(X1), elevation (X2), average annual temperature (X3), annual precipitation (X4), NDVI 
(X5), population density (X6), GDP (X7), construction land intensity (X8), and distance 
from road (X9). The influence degree of each driving factor on the spatial differentiation 
characteristics of ESV in the study area, as well as the interaction characteristics between 
the driving factors, were described using the geographical detector’s factor detection and 
interactive detection functions. China spanned a huge area from east to west and north to 
south, and different natural and socioeconomic factors influenced different regions in var-
ious ways. This paper divided the study area into six regions (i.e., northeastern region, 
north China, east China, south central region, northwest region, and southwest region) 
for further analysis to better detect the effects of various driving factors on the temporal 
and spatial differentiation of ESV in the study area. As shown in Table 5, the influence of 
each driving factor on the spatial differentiation characteristics of ESV in the study area 
was mostly explained using the Q statistic. From a national scale, the p value of all the 
driving factors, which were all significant characteristics, was less than 0.01 during the 

Figure 7. Barycenter evolution trajectory of ESV.



Land 2022, 11, 1000 13 of 20

3.3. Driving Factors of Regional Differences in Ecosystem Service Value

Taking 2000 and 2018 as examples, a total of nine driving factors were selected from
the two aspects of physical geography and social economy. The ESV was used as the
dependent variable of the geographical detector. The independent variables were the slope
(X1), elevation (X2), average annual temperature (X3), annual precipitation (X4), NDVI
(X5), population density (X6), GDP (X7), construction land intensity (X8), and distance
from road (X9). The influence degree of each driving factor on the spatial differentiation
characteristics of ESV in the study area, as well as the interaction characteristics between
the driving factors, were described using the geographical detector’s factor detection and
interactive detection functions. China spanned a huge area from east to west and north
to south, and different natural and socioeconomic factors influenced different regions in
various ways. This paper divided the study area into six regions (i.e., northeastern region,
north China, east China, south central region, northwest region, and southwest region)
for further analysis to better detect the effects of various driving factors on the temporal
and spatial differentiation of ESV in the study area. As shown in Table 5, the influence
of each driving factor on the spatial differentiation characteristics of ESV in the study
area was mostly explained using the Q statistic. From a national scale, the p value of all
the driving factors, which were all significant characteristics, was less than 0.01 during
the study period. The main natural factors that influenced the spatial differentiation of
ESV were elevation (X2) and average annual temperature (X3). The main social factors
that influenced the spatial differentiation of ESV were always population density (X6) and
distance from road (X9). Simultaneously, the influence of construction land intensity (X8) on
the spatial differentiation of ESV changed significantly from 0.19 to 0.33 between 2000 and
2018. The effects of other driving factors on the spatial differentiation of ESV did not change
significantly over time. This result was mostly due to the wide latitude and longitude
spans of the various regions in China, as well as the fast social and economic growth with
the passage of time. Moreover, construction land encroached on other ecological lands,
making construction land intensity (X8) one of the main driving factors of ESV spatial
differentiation. From the regional scale, the main driving factors influencing the spatial
differentiation characteristics of ESV were different. The most important socioeconomic
factors for the spatial differentiation of ESV in the northeast region and north China were
population density (X6), construction land intensity (X8), and distance from road (X9). The
annual average temperature (X3) had a significant influence on the spatial differentiation of
ESV in the northeast region in 2000, but not in 2018. The Q statistic of the annual average
temperature (X3) on ESV In north China between 2000 and 2018 was 0.74, indicating
significant characteristics; In east China and the south central region, slope (X1), population
density (X6), and construction land intensity (X8) had the strongest explanations. The
influence of NDVI (X5) increased over time, whereas that of distance from road (X9) on
the spatial differentiation of ESV in the two regions was insignificant; In the northwest
region, the main driving factors were NDVI (X5) and distance from road (X9), with the
annual precipitation (X4) and construction land intensity (X8) gradually increasing their
explanatory strength for ESV over time; Natural factors such as elevation (X2), average
yearly temperature (X3), and NDVI (X5) exhibited significant influence on the ESV of
the southwest region, in addition to distance from road (X9), which explained the largest
degree of spatial differentiation of ESV.

The interactive detection results showed that bi-enhanced or nonlinear enhanced
effects were primarily interaction types between natural and socioeconomic factors. This
finding indicates that the spatial differentiation of ESV in the study area was caused by the
interaction of multiple driving factors, rather than being purely influenced by one factor.
From a national scale (Figure 8), the interaction degree between slope (X1) and distance
from road (X9) was the largest, with an interaction intensity of 0.74. The influence of the
interaction between distance from road (X9) and other factors on the spatial differentiation
of ESV was greater than 0.60, and the interaction between distance from road(X9) and
natural factors was significantly greater than the interaction between distance from road
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(X9) and socioeconomic factors. From the regional scale, we listed the top three dominant
interactions of influence of different driving factors on the spatial differentiation of ESV
in each region (Table 6). Overall, construction land intensity (X8) and distance from road
(X9) had the most significant interactions with other factors, especially with natural factors.
Thus, the interactive effect between natural and socioeconomic factors further enhanced
the effect on the spatial differentiation of ESV. Specifically, in the northeast, northwest, and
southwest regions, the main interactions came from the interaction between natural factors
and distance from road (X9) in 2000 and 2018. The interaction between elevation (X2) and
distance from road (X9) in the northeast region was always the largest; The interaction
between distance from road (X9) and altitude (X2) and the interaction between distance
from road (X9) and annual average temperature (X3) in Northwest China always ranked
in the top two. In the southwest region, the interactions between distance from road (X9)
and natural factors were above 0.90, and the interaction intensity was relatively large.
The primary interactions in north China, east China, and the south central region were
produced by the interaction of natural factors and the intensity of development land (X8).
During the research period, the top three interactions in north China were primarily the
interaction intensity among construction land intensity (X8), with elevation (X2), annual
average temperature (X3), and NDVI (X5), all of which had interaction strengths over
0.92; In east China and the south central region, the interaction between slope (X1) and
construction land intensity (X8) was the strongest, and the interaction between them kept
growing as the years passed.

Table 5. Q statistic of the driving factors of ESV in different regions in 2000 and 2018.

X1 X2 X3 X4 X5 X6 X7 X8 X9

Nation
2000 0.10 ** 0.28 ** 0.29 ** 0.08 ** 0.23 ** 0.31 ** 0.05 ** 0.19 ** 0.58 **
2018 0.11 ** 0.28 ** 0.32 ** 0.16 ** 0.25 ** 0.35 ** 0.06 ** 0.33 ** 0.58 **

Northeastern region 2000 0.16 0.35 0.48 * 0.01 0.22 * 0.33 * 0.01 0.43 ** 0.41 *
2018 0.18 0.38 0.34 0.01 0.12 0.36 ** 0.05 0.46 * 0.38 *

North China
2000 0.07 0.11 0.74 ** 0.04 0.12 0.4 ** 0.08 0.44 ** 0.73 **
2018 0.07 0.11 0.74 ** 0.1 0.13 0.45 ** 0.13 0.79 ** 0.73 **

East China
2000 0.46 ** 0.26 * 0.04 0.44 ** 0.15 ** 0.48 ** 0.04 0.48 ** 0.02
2018 0.44 ** 0.22 0.03 0.39 ** 0.4 ** 0.44 ** 0.09 0.61 ** 0.02

South central region 2000 0.43 ** 0.41 ** 0.07 0.18 ** 0.2 ** 0.55 ** 0.02 0.57 ** 0.04
2018 0.43 ** 0.44 ** 0.02 0.22 ** 0.49 ** 0.51 ** 0.08 0.62 ** 0.05

Northwest region 2000 0.18 0.06 0.08 0.13 * 0.26 * 0.21 ** 0.07 0.16 * 0.57 **
2018 0.19 0.07 0.13 0.24 ** 0.36 ** 0.23 ** 0.09 0.26 ** 0.61 **

Southwestern region 2000 0.1 0.58 ** 0.65 ** 0.52 * 0.76 ** 0.39 ** 0.19 0.03 0.87 **
2018 0.11 0.57 ** 0.65 ** 0.51 * 0.67 ** 0.42 ** 0.51 ** 0.16 * 0.81 **

Note: *: p < 0.05; **: p < 0.01.
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Table 6. Dominant interactions between two variables in different regions.

Dominant Dominant Dominant
Interaction 1 Interaction 2 Interaction 3

Northeastern region 2000 X2 ∩ X9 (0.855) X7 ∩ X9 (0.825) X8 ∩ X9 (0.786)
2018 X2 ∩ X9 (0.858) X7 ∩ X9 (0.849) X2 ∩ X7 (0.746)

North China
2000 X5 ∩ X8 (0.954) X5 ∩ X9 (0.935) X3 ∩ X9 (0.927)
2018 X3 ∩ X8 (0.989) X5 ∩ X8 (0.984) X2 ∩ X8 (0.983)

East China
2000 X1 ∩ X8 (0.667) X4 ∩ X6 (0.665) X1 ∩ X4 (0.660)
2018 X7 ∩ X8 (0.732) X1 ∩ X8 (0.690) X4 ∩ X8 (0.661)

South central region 2000 X1 ∩ X8 (0.694) X2 ∩ X8 (0.684) X1 ∩ X5 (0.679)
2018 X7 ∩ X8 (0.751) X1 ∩ X8 (0.750) X3 ∩ X8 (0.736)

Northwest region 2000 X2 ∩ X9 (0.865) X3 ∩ X9 (0.865) X4 ∩ X9 (0.849)
2018 X3 ∩ X9 (0.867) X2 ∩ X9 (0.865) X5 ∩ X9 (0.858)

Southwestern region 2000 X4 ∩ X9 (0.957) X1 ∩ X9 (0.954) X5 ∩ X9 (0.925)
2018 X5 ∩ X9 (0.928) X1 ∩ X9 (0.924) X4 ∩ X9 (0.908)

4. Discussion
4.1. ESV Dynamic Change in Response to LUCC in China

The ESV of each Chinese region was calculated using Xie’s (2008) [11] ESV equivalent
per unit area of the ecosystem. Simultaneously, the sensitivity index was used to reflect
the change of ESV caused by the change in ESV coefficient by 1% (See References [38,39]
for details). The results showed that the ESV has decreased by 1.57 trillion yuan, with an
average annual decline rate of 0.24%. During the study period, the sensitivity indexes of
different land use types have been in a stable state and were less than 1 (Figure 9), indicating
that the ESV coefficient was reasonable in the study area. In addition, the sensitivity index
of different land use types in the study area was in the following order from high to low:
woodland > grassland > farmland > unused land > water body. Woodland and grassland
contributed the most ESV, whereas unused land and water body contributed the least.
Therefore, to ensure the stability and coordination of ESV, we should improve the protection
of woodland and grassland. From the perspective of the spatial distribution of ESV, we
found an obvious phenomenon of high and low value aggregation of ESV. The high and
extremely high ESV was mainly distributed in the northwest region with more grassland.
The low ESV was mainly distributed in the central region and the eastern coastal region; this
part of the region had rapid economic development and serious occupation of ecological
resources. The center of gravity of ESV in the study area was always distributed in Shaanxi
Province, and continued to move north by east with the passage of time, generally in an
“S”-shaped trend. The ESV was affected by changes in land use. To maintain the security
and stability of ecosystem service capacity, relevant departments should properly adjust
the land use structure and strengthen the ecological land occupation and compensation
mechanism in each region.

4.2. Impact Factors on ESV Distribution

The spatial differentiation of ESV was affected to some extent by the interaction
between human activities and the ecological environment [40]. Exploring the impact
mechanism of the spatial differentiation of ESV, which was of great significance to China’s
ecosystem management and ecological pattern optimization, could help in further explain-
ing the generating mechanism of ecological problems.

This study quantitatively analyzed the relative importance of the driving factors to the
ESV and the degree of interaction among driving factors in the national and regional scales.
The results showed that the primary driving factors affecting the spatial differentiation
of ESV were different in the whole nation and different regions. From a national scale,
elevation (X2), average annual temperature (X3), population density (X6), and distance
from road (X9), were the primary driving factors affecting the spatial differentiation of
ESV, especially distance from road (X9). From the different regional scales, the driving
factors affecting the spatial differentiation of ESV in the northeast, north, east, and south
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central regions were mainly socioeconomic factors, such as population density (X6) and
distance from road (X9). In northwest and southwest regions, the primary driving factor
was not only the distance from road (X9), but also the annual average temperature (X3),
NDVI (X5), and other natural factors. At the same time, the influence of construction land
intensity (X8) on the spatial differentiation of ESV also increased over the years, and it has
recently become one of the major driving factors affecting the spatial differentiation of ESV
in the nation scale and different regional scales. The interaction between driving factors
had a greater influence on ESV than that of a single factor, and the interaction between
socioeconomic and natural factors had a greater influence on the spatial differentiation of
ESV. In particular, the interaction among construction land intensity (X8), distance from
road (X9), and other natural factors was always stronger than that with socioeconomic
factors. This finding was made because, as the social economy develops, the intensity of
human activities has increased, the speed of urban expansion also increases, and some irra-
tional reclamation and construction has occupied green vegetation land, such as farmland,
woodland, and grassland, thereby putting great pressure on the ecosystem’s stability [41].
Therefore, China should properly control the rate of urbanization and optimize the land
use structure. While focusing on the coordinated development of ecological and economic
construction, more ecological protection and restoration projects must be implemented to
increase vegetation coverage and mitigate water and soil loss, thereby ensuring the stability
of the ecosystem [42,43].
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4.3. Limitations and Improvement

Xie (2008) [11] created the ESV equivalent per unit area of the ecosystem in China,
which has been widely used by Chinese scholars in the assessment of ESV [44,45]. The
revised willingness to pay coefficient related to social development (Dt) was introduced
in our paper based on this table to modify the evaluation model of ESV. However, due to
the large span from north to south and east to west, significant differences were observed
in the geographical environments of the various regions in the study area. This paper did
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not formulate the ESV equivalent per unit area of terrestrial ecosystem suitable for each
region according to the actual situation of each region, resulting in a certain deviation
in calculation. Furthermore, while using the geographical detector model to analyze the
driving mechanism of ESV spatial difference, this study did not consider the relevant policy
factors. At the same time, due to the limitations of the model’s own characteristics, it
could not accurately describe the spatial characteristics of each driving factor’s influence
on ESV. In the future, we will select appropriate policy factors and use a geographically
and temporally weighted regression model to advance our arguments.

5. Conclusions

(1) During the study period, grassland always showed a decreasing trend, with a total
decline of 38.74 × 104 km2, due to the large quantity of grassland transferred to farmland,
woodland, and unused land. Farmland increased from 1990 to 2000, then slightly decreased
from 2000 to 2018, but it kept growing throughout the study period, with a net area increase
of 1.5× 104 km2. The change in woodland in each research stage was not obvious. The land
use dynamic degree of the water body was always positive, increasing by 2.06 × 104 km2

throughout the study period. From 1990 to 2010, the amount of unused land decreased,
but increased from 2010 to 2018, with an overall increase. Construction land changed
the most throughout the study period, and the dynamic degree of construction land was
always positive, with an increase of 10.72 × 104 km2, and farmland was the largest source
of growth of construction land. The comprehensive dynamic degree of land use has also
increased over time, especially from 2010 to 2018.

(2) From 1990 to 2018, the high ESV was mostly in the western region. The total
amount of ESV decreased by 6.67% over the last three decades, with an average yearly
decline rate of 0.24%. From the perspective of different land use types, the ESV generated
by woodland and grassland was the main part of the total ESV. During the study period,
farmland and unused land showed an increasing trend, whereas other land use showed
a decreasing trend, especially grassland. From the perspective of different ecosystem
subservice structures, regulating services produced the most ESV, whereas cultural services
produced the least. Supporting services decreased the most during the study period, with
a total decrease of 7.35%. The distribution of ESV cold and hot spots in the study area was
relatively consistent in 1990, 2000, 2010, and 2018. The hot spots were mostly concentrated
in the northeast and northwest regions, whereas the cold spots were mostly concentrated
in east China. During the study period, the numbers of both remained relatively consistent.
The number of sub-cold spots increased with time, mainly in the vicinity of cold spots. The
distribution of sub-hot spots changed with time. The center of gravity model showed that
ESV’s center of gravity was always distributed in Shaanxi Province, and it continues to
migrate northeast of China in an “S”-shaped trend.

(3) The results of the Geographical detector model revealed that the spatial difference
of ESV in China was driven by a combination of natural and socioeconomic factors, and that
the influence of different driving factors on ESV in the study area was significantly different.
From a national scale, the ESV is mostly affected by the distance from the road (X9). From
the regional scale, the primary factors affecting the spatial differentiation of ESV were
different. Socioeconomic factors dominated in the northeast area, north China, east China,
and the central south region. Distance from road (X9) was the most important factor in the
northwest and southwest areas (X9). In southwest China, natural factors such as annual
average temperature (X3) and NDVI (X5) were also primary factors. At the same time, the
spatial differentiation of ESV was the result of the interaction of multiple driving factors
rather than a single factor. In particular, the interaction among construction land intensity
(X8), distance from road (X9), and other driving factors was significantly enhanced.

(4) By analyzing the spatiotemporal differentiation of China’s ESV and exploring the
driving mechanism of ESV at national and regional scales, this paper proposed some policy
implementation suggestions for environmental conservation in China. First, we should
pay more attention to the areas of low ESV, especially in the central and eastern coastal
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regions, where fast economic growth and high degree of urbanization have transformed a
huge quantity of ecological land into construction land. For these areas, some ecological
land for specific applications should be earmarked, and protective measures should be
taken to avoid being occupied by construction land. Simultaneously, land consolidation
for residential areas and related infrastructure in rural areas should be promoted. Second,
some areas with high ESV, especially in northwest China, have more woodlands and
grasslands, which produce more ESV. However, the effects of human activities on these
areas continues to increase over time. Indiscriminate land reclamation and overgrazing
have led to the destruction of woodland and the degradation of grasslands. For these areas,
to limit unreasonable human activities, various ecological protection measures should be
implemented. For example, policy subsidies should be offered to relevant employees to
encourage them to return farmland to forest and grassland.
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38. Yi, H.; Güneralp, B.; Filippi, A.M.; Kreuter, U.P.; Güneralp, İ. Impacts of land change on ecosystem services in the San Antonio

River Basin, Texas, from 1984 to 2010. Ecol. Econ. 2017, 135, 125–135. [CrossRef]
39. Zhang, Z.; Xia, F.; Yang, D.; Huo, J.; Wang, G.; Chen, H. Spatiotemporal characteristics in ecosystem service value and its

interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [CrossRef]
40. Hu, X.; Hong, W.; Qiu, R.; Hong, T.; Chen, C.; Wu, C. Geographic variations of ecosystem service intensity in Fuzhou City, China.

Sci. Total Environ. 2015, 512, 215–226. [CrossRef]
41. Ma, L.; Cheng, W.; Bo, J.; Li, X.; Gu, Y. Spatio-temporal variation of land-use intensity from a multi-perspective—Taking the

middle and lower reaches of Shule River Basin in China as an example. Sustainability 2018, 10, 771. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2020.141778
http://doi.org/10.1016/j.landusepol.2016.08.033
http://doi.org/10.1016/j.gecco.2020.e01253
http://doi.org/10.1007/s10661-020-08797-y
http://doi.org/10.1016/j.cosust.2013.02.002
http://doi.org/10.1016/j.jclepro.2021.127995
http://doi.org/10.1016/j.landusepol.2015.04.005
http://doi.org/10.1016/j.scitotenv.2015.12.067
http://doi.org/10.1016/j.jclepro.2019.05.342
http://doi.org/10.1016/j.ecolind.2021.108393
http://doi.org/10.1016/j.ecolind.2020.106507
http://doi.org/10.1016/j.envres.2020.110618
http://www.ncbi.nlm.nih.gov/pubmed/33316232
http://doi.org/10.1016/j.landusepol.2021.105587
http://doi.org/10.1016/j.ejrs.2020.08.003
http://doi.org/10.1017/S0376892911000658
http://doi.org/10.1016/j.ecolind.2019.105720
http://doi.org/10.1016/j.scitotenv.2020.137818
http://www.ncbi.nlm.nih.gov/pubmed/32179357
http://doi.org/10.1111/j.1538-4632.1992.tb00261.x
http://doi.org/10.1016/j.ufug.2020.126894
http://doi.org/10.1016/j.ecolind.2016.02.052
http://doi.org/10.1016/j.ecolmodel.2016.03.002
http://doi.org/10.1016/j.scitotenv.2019.03.465
http://doi.org/10.1016/j.ecolecon.2016.11.019
http://doi.org/10.1016/j.ecolind.2019.105826
http://doi.org/10.1016/j.scitotenv.2015.01.035
http://doi.org/10.3390/su10030771


Land 2022, 11, 1000 20 of 20

42. Jiang, C.; Wang, F.; Zhang, H.; Dong, X. Quantifying changes in multiple ecosystem services during 2000–2012 on the Loess
Plateau, China, as a result of climate variability and ecological restoration. Ecol. Eng. 2016, 97, 258–271. [CrossRef]

43. Wu, D.; Zou, C.; Cao, W.; Xiao, T.; Gong, G. Ecosystem services changes between 2000 and 2015 in the Loess Plateau, China: A
response to ecological restoration. PLoS ONE 2019, 14, e0209483. [CrossRef]

44. Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719.
[CrossRef] [PubMed]

45. Zhang, F.; Yushanjiang, A.; Jing, Y. Assessing and predicting changes of the ecosystem service values based on land use/cover
change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [CrossRef]

http://doi.org/10.1016/j.ecoleng.2016.10.030
http://doi.org/10.1371/journal.pone.0209483
http://doi.org/10.1016/j.scitotenv.2016.07.078
http://www.ncbi.nlm.nih.gov/pubmed/27810757
http://doi.org/10.1016/j.scitotenv.2018.11.444

	Introduction 
	Materials and Methods 
	Data Sources and Preparation 
	Methods 
	Land Use Dynamic Degree 
	Construction of Ecosystem Service Value Evaluation Model 
	Hot-Spot Analysis 
	Barycenter Model 
	Geographical Detector Model 


	Results 
	Change in Land Use from 1990 to 2018 
	Spatiotemporal Variation of ESV 
	Spatiotemporal Variation of ESV from 1990 to 2018 
	Evolution Characteristics of Cold and Hot Spots of Ecosystem Service Value 
	Barycenter Evolution of Ecosystem Service Value 

	Driving Factors of Regional Differences in Ecosystem Service Value 

	Discussion 
	ESV Dynamic Change in Response to LUCC in China 
	Impact Factors on ESV Distribution 
	Limitations and Improvement 

	Conclusions 
	References

