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Abstract: Geoelectrical methods can be part of early warning systems for landslide-prone hillslopes
by giving estimates of the water content distribution. Structurally constrained inversions of geoelec-
trical data can improve the water content estimation by reducing the smoothness constraint along
known lithological boundaries, which is especially important for landslides, as often layers with
strongly divergent hydrological parameters and varying electrical signatures are present in landslides.
However, any a priori information about those boundaries has an intrinsic uncertainty. A detailed
synthetic study and a field investigation are combined to study the influence of misplaced structural
constraints and the strength of the smoothness reduction via a coupling coefficient on inversion
results of electrical resistivity data. While a well-known lithological boundary with a substantial
reduction of the smoothness constraint can significantly improve the inversion result, a flawed
constraint can cause strong divergences from the synthetic model. The divergence can even grow
above the divergence of a fully smoothed inversion result. For correctly placed structural constraints,
a coupling coefficient smaller than 10−4 uncovers previously unseen dynamics in the resistivity
distribution compared to smoothed inversion results. Uncertain layer boundaries can be included
in the inversion process with a larger coupling coefficient to avoid flawed results as long as the
uncertainty of the layer thickness is below 20%. The application to field data confirms these findings
but is less sensitive to a further reduction of the coupling coefficient, probably due to uncertainties in
the structural information.

Keywords: electrical resistivity tomography; structural constraint inversion; water content; landslide;
monitoring; early warning

1. Introduction

Landslides are a latent danger in many parts of the world. After heavy rainfall
events, increasing pore pressure in hillsides is a common source of slope failure (e.g., [1–3]).
As more and heavier rainfalls are expected in future years, the number of massive landslides
will increase (e.g., [4–7]). There is a growing demand for observation and analysis tools for
risk assessment and early warning to protect residents and infrastructure. Factors regarding
the moisture content of the soil are considered to have the highest early warning potential [8]
and are essential for hazard estimation (e.g., [9,10]). However, even a small divergence in
estimated moisture content can have a significant influence on the stability analysis of a
landslide-prone hillslope as bonding forces in the soil change suddenly within a range of a
few percentages of saturation (e.g., [9,10]).

So far, measurements often focus on slope movement, water content and pore pressure
at discrete points (e.g., [11,12]). In recent years, geophysical methods have been used
for areal characterization (e.g., [13–18]) and monitoring (e.g., [19–23]) of landslide-prone
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hillslopes. Electric resistivity tomography (ERT) has been especially utilized (e.g., [8,24,25])
due to its capability to estimate water content distribution in the subsurface based on the
correlation between electrical bulk resistivity and saturation (e.g., [26,27]). However, ERT
suffers from resolution limitations, which enhance the non-uniqueness during the inversion
of the data. In the traditional inversion of ERT data, a smoothness constraint is included
to overcome non-uniqueness (e.g., [28]). Such a smoothness constraint is based on the
assumption of gradually varying electrical properties in the ground, which is valid in many
cases but may fall short along lithological boundaries. In a smoothed inversion, sharp
boundaries are blurred.

Several studies have shown that the hydrogeophysical interpretation of ERT data sets
can be significantly improved when structural information is included in the inversion
process (e.g., [29–32]). The smoothness constraint can be discarded to enable sharp resistiv-
ity contrasts along known layer boundaries. Structural information can be derived from
additional sources such as GPR, seismic studies, boreholes, or (hydro-)geological maps.
For example, in the study of Doetsch et al. [29], geological layers were identified using
ground penetrating radar (GPR) and included in the ERT inversion process to improve
the characterization of an aquifer by identifying layers of different hydraulic properties.
Al Halgrey [33] emphasizes that constrained inversion is the only option to achieve sat-
isfactory results for monitoring CO2 mitigation in an underground reservoir using ERT.
Since any a priori information for the inversion process has inherent uncertainties depen-
dent on the source, structural constraints should be applied with caution [34].
Although structurally constrained inversions have become more and more common
(e.g., [35–38]), in the context of landslides for moisture content estimation [32], there is
yet, to our best knowledge, no systematic study on the impact of an uncertain structural
constraint [39].

This work studies the effect of a misplaced structural constraint on the water content
estimation in a landslide-prone hillslope. A systematic study with a synthetic model based
on an actual landslide is conducted concerning the strength of the decoupling via a coupling
coefficient and varying accuracy of the assumed boundary. The findings from the synthetic
study are applied to measured data from the field site, and the effect of a varying coupling
coefficient on the moisture content estimation is evaluated on the basis of field data.

2. Study Area Dollendorfer Hardt

The studied landslide is located on the southern slope of the hill Dollendorfer Hardt in
the Siebengebirge, a hill range formed by volcanic intrusions southeast of Bonn, Germany
(Figure 1). The geological basement of the area is formed by lower Devonian shales and
superposed by Tertiary sediments. At the transition between Oligocene and Miocene,
volcanic activity formed the hills of the Siebengebirge with basaltic and latitic intrusions.
Volcanic deposits, mainly trachyte tuffs, and Pleistocene sediments overlay and interfinger
with the Tertiary sediments on top of the hills (e.g., [40–42]).

The landslide has an affected area of approximately 30,000 m2. Its slope inclination is
up to 40◦ and multiple failures occurred in the last 60 years [41]. The first observed failure in
the last century happened in 1958 after construction work for a pathway, followed by heavy
rainfall over two weeks [41]. A second major failure occurred in 1972, again after heavy
rainfall and a rainy season in late summer. The landslide can be separated into a scar zone
with four rotational blocks and visible scarp, a narrow transport zone of approximately
15 m width and an accumulation zone with toe failure and several tongues [43]. The
landslide events have been classified as rotational slides near the scar zone, turning into
mudflows in the transport zone [42,44]. In both cases, the shear plane was located in the
clay layer with low hydraulic conductivity [41]. The latest available data suggests creeping
slope movement in response to precipitation in the range of a few centimeters per year [43].
The landslide has been extensively studied in the past, and more detailed information
concerning its triggering mechanism, geomorphology and geological cross sections can be
found elsewhere (e.g., [41–45]).
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Figure 1. The left map shows a geological map of Dollendorfer Hardt region [46]. The landslide is
framed with white on both maps. The right map shows the DEM of the landslide with contour lines
for the height above sea level. The ERT profile in the transport zone of the landslide is marked with a
white bar.

This study focuses on the transport zone of the previous landslides (Figure 1). Drill logs
suggest that the landslide mass lies on top of the Devonian basement at roughly 4 m
depth [44]. Original sediments on top of the basement were eroded during the landslide
events, and landslide mass was deposited here as the movement stopped.
Mineralogical studies of soil probes identified two layers inside the landslide debris [42].
The upper one, down to a depth of 2 m to 3 m, is dominated by trachytic materials, while
the lower layer, down to 4 m, shows a high fraction of clay-rich Tertiary sediments [42].
However, the geometry of the landslide is complex, and the landslide material is often
mixed and disturbed. A clay content around 65% for the landslide mass and around
30–40% for the Devonian basement has been found [44]. In this part of the slope, a water
conductivity of σw = 0.1 S/m was measured in observation wells.

3. Materials and Methods
3.1. Theoretical Background of Constrained Electrical Inversion

Inversions and synthetic modeling in this work are performed with the finite-element-
based inversion code CRTomo [47]. During the inversion of ERT data, logarithmic electrical
resistivities across the grid cells (model m) are iteratively calculated to produce logarithmic
resistance values f(m) comparable to the measured data d, assuming uncorrelated and
normally distributed errors. In each iteration, the objective function ψ(m), which weights
data misfit and model roughness through the regularization parameter λ, is minimized:

ψ(m) = ‖Wd[d− f(m)]‖2 + λ‖Wmm‖2, (1)

with data weighting matrix Wd and a matrix Wm evaluating the first-order roughness of
the model vector m [47]. The data weighting matrix Wd is a diagonal matrix with the standard
deviation εi = ∆Ri/Ri, with resistance error ∆R and resistance R, for the ith of N data points:

Wd = diag
{

1
ε1

, ...,
1

εN

}
. (2)
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The maximum value of λ is found through a univariate search at each iteration step,
which minimizes the data misfit locally. The iteration stops once the error-weighted data
misfit RMS reaches a value close to one:

RMS =

√√√√ 1
N

N

∑
i=1

|di − fi(m)|2
|εi|2

. (3)

To avoid overfitting the data, which can cause artifacts in the ERT image, a realistic
estimation of the data error εi is necessary. A resistance error model with parameters a and
b for absolute and relative resistance error contributions is used, resulting in a resistance
error ∆R for the measured resistance R [48,49]:

∆Ri = a + bRi. (4)

In a structurally constrained inversion, model roughness between neighboring cells is
weighted using a coupling matrix H, which is connected to the model roughness via the
Hadamard product. The coupling coefficient η for each element boundary in the matrix
H can vary between fully coupled (η = 1) and fully decoupled (η = 0). Along a fully
decoupled element boundary, the smoothness constraint is omitted. With the coupling
matrix H, the objective function ψ(m) is defined as:

ψ(m) = ‖Wd[d− f(m)]‖2 + λ‖H�Wmm‖2. (5)

Thus, structural layer boundaries can be considered in the inversion of ERT data
through the coupling matrix, assuming that the structural information is relevant for the
electrical resistivity distribution in the ground [30]. It has been previously shown that a
structural constraint does not introduce an electrical resistivity contrast in the inversion re-
sult if not supported by the data [29]. Workflows for the inclusion of external data sources such
as ground penetrating radar or refraction seismic are described in detail in Doetsch et al. [29]
and Bergmann et al. [30].

3.2. Synthetic Hydraulic and Electrical Modeling

The synthetic model is adapted to the field site and consists of two layers. The upper
layer has a thickness of 4 m. Rainwater infiltration was modeled using the 1d—Richard’s
equation [50] with the Van Genuchten relationship [51]. A 12-hour rain event was simulated
at the beginning of a 24-hour period with a spatial discretization of 5 cm and an implicit
time stepping of 1 min. Water ponding was avoided by setting the infiltration rate to the
maximum value possible by the given hydraulic soil conductivity. For the first layer, the
values of the landslide mass were used, and a low hydraulic conductivity of 30 cm/day
was assumed. For the Devonian basement layer, a slightly higher hydraulic conductivity
of 50 cm/day was used [52]. Further values and parameters were used as listed in Table 1
and were taken from Müller [52].

Table 1. Hydraulic parameters used for the synthetic infiltration modeling.

Symbol Quantity Value

θsat,1 Saturated volumetric water content (layer 1) 0.63
θres,1 Residual volumetric water content (layer 1) 0.33
α1 Van Genuchten coefficient (layer 1) 0.027 1/cm
n1 Van Genuchten exponent (layer 1) 1.21
Ksat,1 Saturated hydraulic conductivity (layer 1) 30 cm/day
θsat,2 Saturated volumetric water content (layer 2) 0.45
θres,2 Residual volumetric water content (layer 2) 0.20
α2 Van Genuchten coefficient (layer 2) 0.030 1/cm
n2 Van Genuchten exponent (layer 2) 1.25
Ksat,2 Saturated hydraulic conductivity (layer 2) 50 cm/day
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The calculated saturation S was then used to determine synthetic electrical resis-
tivity values for the two layers assuming a homogeneous infiltration along the electric
resistivity profile. The relationship from Waxman and Smits [27] was used to calculate the
bulk conductivity σb of the soil:

σb =
Sn

F

(
σw +

σs

S

)
. (6)

All values, including formation factor F and cementation index n for both layers are
listed in Table 2. The water conductivity σw was taken from field measurements. The surface
conductivity σs was calculated using the empirical relationship based on clay content cc
from Rhoades et al. [53]:

σs = (2.3 · cc− 0.021) · 10−3 S/m. (7)

This resulted in a resistivity distribution of around ρ1 = 20 Ωm in the upper, and
of ρ2 = 100 Ωm in the lower layer 24 h after the onset of the synthetic rain infiltration.
Apparent electric resistivities (synthetic data) were then calculated for a dipole–dipole
configuration with 0, 2, 4 and 6 skipped electrodes in a dipole for a total of 48 electrodes with
an electrode spacing of 2.5 m. The finite element grid was set to 134 times 80 rectangular
elements covering an area of 167.5 · 20 m2. The synthetic data were combined with Gaussian
noise of 3%. Relative uncertainties for the inversion process were set to 3% accordingly and
absolute uncertainties to 10−4 Ω to account for numerical accuracy.

Table 2. Petro-physical parameters for both layers used for the synthetic study and the field data analysis.

Symbol Quantity Value

F1 Formation factor (layer 1) 4.115
F2 Formation factor (layer 2) 5.2
n1 Saturation exponent (layer 1) 1.5
n2 Saturation exponent (layer 2) 2
σw Pore water conductivity 0.1 S/m
σs1 Surface conductivity (layer 1) 0.15 S/m
σs2 Surface conductivity (layer 2) 0.09 S/m

3.3. Data Acquisition and Processing for the Field Case

Electric measurements were taken with a Syscal Pro Switch by IRIS Instruments Inc.,
Orleans (France), using 48 electrodes with 1 m spacing. A normal and reciprocal dipole–
dipole measurement (i.e., exchanging the current and potential dipoles) with 0, 1, 2, 4 and 6
skipped electrodes in a dipole consisting of around 2500 data points each was conducted in
April 2017. Due to good quality, no data points were filtered prior to the inversion. The
error parameters were set to a = 10−4 Ω and b = 2.5%, which is a rather conservative
approach for the given data. The inversion was performed using CRTomo [47].

The same profile was analyzed using refraction seismic [45]. The seismic profile
was measured with a SUMMIT II Compact by DMT Group, Essen (Germany), using 24
geophones with 2.5 m spacing in December 2016. The seismic profile was significantly
longer than the electric profile and was obtained using a roll-along method. Waves were
generated by strokes with a 5 kg hammer close to each geophone. For a good signal-to-noise
ratio, 10 strokes per geophone were staked. First arrivals were picked, and the wave paths
were inverted to gain a tomogram of p-wave velocity Vp using the software ReflexW by J.
Sandmeier, Karlsruhe (Germany).

4. Results
4.1. Modeling Results

The effect of a logarithmically varied coupling coefficient η between one and 10−6 was
investigated using 61 inversions. All other inversion input parameters were similar across
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inversions, and all inversions converged to an RMS close to 1. Figure 2 shows the resistivity
along a vertical line over 8 m depth in the center of the grid for all conducted inversions.
Resistivity contrast between the layers increases with decreasing coupling coefficient. The
most visible improvement is for η between 1 and 0.05 when the gradual change in resistivity
changes to a sharp contrast. However, η ≤ 10−4 uncovers the heterogeneity in the layers
caused by the infiltration process. This is especially visible in the uppermost 2.5 m of the
tomogram. Below η = 10−4, no further change can be observed. The remaining variations
between the separate inversions are attributed to fluctuations during the inversion process.
For the unconstrained inversion, the relative mean divergence between model and input
data is around 30%, while the perfectly matched constrained inversion with η = 10−4 shows
a relative mean divergence of around 5%. The perfectly matched constrained inversion
with η = 10−3 results in a divergence of around 15% since the heterogeneity of the layers is
not reproduced.

10-610-510-410-310-210-1100

Coupling Coefficient η

0

2

4

6

8

z 
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80
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Figure 2. Resistivity profile of 61 inversions with a logarithmic variation of η between one and 10−6.

Structural constraints in the inversion that were shifted relative to the layer bound-
ary in the synthetic model are used to study the influence of a faulty placed constraint.
Resistivity along a vertical line over 8 m in the center of the grid for η = 10−4 is shown
in Figure 3a). For comparison, the synthetic model and the smooth inversion result are
shown as well. Generally, the discrepancy between the inversion result and the model
increases with increasing distance between structural constraint and layer boundary, which
is driven by a compensation effect. As the upper layer has a lower resistivity compared to
the layer beneath, a structural constraint shifted upwards towards the surface with respect
to the layer boundary in the model causes lower resistivities in the inversion result than in
the model input in both layers. Vice versa, a downward-shifted constraint causes higher
resistivities. This compensation effect becomes vital for growing discrepancies between the
constraint and the layer boundary.

Naturally, the region between the structural constraint and the layer boundary has
the highest divergence in the resistivities between the inversion result and the model. For
the case of a constraint shifted ±1 m relative to the layer boundary, which corresponds to a
quarter of the layer thickness, the maximum local difference in resistivity in comparison to
the synthetic model is 120%. Locally, this divergence is much larger than the divergence
between an unconstrained inversion and the synthetic model, which shows a maximum
deviation of 50%. However, the mean difference between the inversion results with a
constraint shifted ±1 m relative to the layer boundary and the synthetic model along the
profile line is below 15%. There are some differences between upward and downward
shifted constraints concerning their percent deviation because, in our case, the upper layer
has a smaller resistivity so that the percentage difference for upward shifted constrained
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inversions is larger than for downward shifted constrained inversions. Considering that,
upward and downward shifted constraints have deviations of similar magnitude.

Figure 3. Resistivity along a depth profile in the grid center for misplaced structural constraints
using: (a) η = 10−4; and (b) varied η.

Besides the absolute difference in resistivities, the degree of resistivity variation within
a layer depends on the mismatch between constraint and layer boundary. When the struc-
tural constraint is shifted downwards relative to the synthetic model, the resistivity variation
in the upper layer is still visible but overestimated. On the other hand, if the structural con-
straint is shifted upwards, almost no resistivity variation within the layers can be seen. In that
case, fewer measurement points for the region above the constraint exist. Therefore, a smaller
dynamic range is captured in this region when the constraint is shifted upwards.

The influence of η with respect to misplaced constraints is shown in Figure 3b. If only
the deviation in the lower layer is considered for a +1 m shifted constraint, the inversion
with η = 10−3 has a maximum divergence of 24% in comparison to 41% for an inver-
sion with η = 10−4. A further increased coupling coefficient does not result in an even
smaller divergence. Therefore, the influence of η seems very limited to compensate for
misplaced constraints.
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Figure 4. Absolute difference in resistivity between model and inversion result with respect to the
difference between layer boundary and structural constraint relative to the thickness of the upper layer.

For generalization, the synthetic model was changed to two homogeneous layers with
ρ1 = 50 m and ρ2 = 200 Ωm. These values are loosely based on former studies to represent



Land 2022, 11, 1207 8 of 13

a typical landslide [15,16,19,54]. The thickness of the upper layer was varied between 2 m
and 50 m, and the surrounding grid and measurement layout were adapted accordingly.
Input parameters of the inversions were not individually adapted. The coupling coefficient
was set to η = 10−4. The resistivity of the upper layer of the input model ρM was compared
to the mean value of the upper layer of the inversion result ρ̄i. The grid cells close to the
edge and below the structural constraint in the inversion, not the true layer boundary, were
excluded from the calculation. The difference between layer depth in the model h and the
region above the constraint h′ is expressed relative to h. The results, shown in Figure 4,
indicate that inversion results tend to overestimate resistivity of the upper layer when its
width is overestimated and to underestimate resistivity when its width is underestimated.
This agrees with the compensation effect described above but may be different for an
inverted resistivity model. However, within a divergence between a true layer boundary
and a structural constraint relative to the upper layer thickness of less than 20%, the
absolute error is within a narrow margin of 5 Ωm, which is 10% of the layer resistivity in
the model. The thicker the upper layer is, the less accurate the structural constraint needs
to be placed to achieve a similar agreement with the model. As similar input parameters are
used for all inversions, the inversion results overestimate the resistivity even for a perfectly
matched constraint. This is within the natural error margin of any inversion using data
with noise and could be reduced using adjusted error parameters for each inversion.

4.2. Measurement Results

The seismic data showed three layers, while the fully smoothed ERT inversion resolved
only two layers (Figure 5). Due to similar electric conductivities of the materials of the
two landslide events, the electric signature of the uppermost layer of trachytic materials
is similar to the lower clay-rich materials [42]. However, the elastic properties are diverse
enough to be captured with refraction seismic, probably due to compaction during the
landslides. The lower layer boundary from the seismic data along a wave velocity isoline
of 800 m/s was used as a structural constraint in the ERT inversion.

Figure 5. Seismic and unconstrained electric resistivity tomogram.

Constraint inversions of the resistivity data were conducted using varying
coupling coefficients. Similar to the results of the synthetic model, an impact of the magni-
tude of the structural constraint on the resistivity model is visible (Figure 6a–d).
The structural constraint uncovers more details of the upper layer (Figure 6c,d) in com-
parison to the smooth inversion result (Figure 6a). A small resistivity contrast becomes
visible within the first layer. Introducing a second structural constraint from the uppermost
layer of the seismic tomogram along a wave velocity isoline of 300 m/s in the electric



Land 2022, 11, 1207 9 of 13

inversion did not influence the inversion result because the resistivity contrast is too small.
Figure 6a–c shows the growing impact of the structural constraint with decreasing
coupling coefficient. However, the change from Figure 6c,d is minimal, and no change
was observed during further reduction of η. In Figure 6e–g the absolute change in the
resistivity compared to the fully smoothed inversion is shown. The emerging hetero-
geneity in the upper layer with decreasing η is visible. The upper layer separates into
two horizontal subregions of higher and lower resistivity. Following the petro-physical
relationship (Equation (6)), the volumetric water content is increased in regions of lower
electrical resistivity and decreased in regions of higher resistivity (Figure 6). Due to the
structural constraint, the corresponding change in volumetric water content is around 4%.
Considering the mentioned steep dependence of slope stability on saturation, this could
make a significant difference in stability estimations [9,10].

Figure 6. Resistivities (a–d) and resistivity differences (e–g) compared to the fully smoothed inversion
with varying coupling coefficients (η = 1, 0.5, 0.05, 0.005 from top to bottom row). The colorbar is
limited to 40 Ωm to focus on the heterogeneity of the upper layer, but the resistivity in the lower
layer reaches up to 100 Ωm.

5. Discussion

The synthetic study shows that the resistivity model and derived moisture contents im-
prove significantly compared to a fully smoothed inversion when the structural constraint
in the inversion and the layer boundary match perfectly. The structural constraint matching
a sharp resistivity contrast enables the reproduction of this sharp resistivity contrast in the
resistivity model in the inversion process more accurately. Without a structural constraint
but with the regular smoothness constraint, the range of resistivity values is widened across
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a more extensive depth range, thereby falsifying the true resistivity values of this area.
Reducing the smoothness constraint at the true location of the sharp resistivity contrast
significantly improves the resistivity model and water content estimation.

The magnitude of the smoothness reduction strongly influences the magnitude of
the improvement. A reduction of the coupling coefficient from 1 down to 0.05 has the most
visible impact on the inversion result due to the change from gradual resistivity distribution
to a sharp contrast. This observation from synthetic and field data is in agreement with
previous results from Bergmann et al. [30], who find a decoupling of more than 70%
necessary to improve time-lapse inversions. In the synthetic model, a further reduction
of the smoothness constraint down to η = 10−4 improves the inversion result concerning
the input model by uncovering the heterogeneities within the layers, but only for accurate
constraints or slightly thicker top layers. This need for a valid constraint to uncover the full
layer heterogeneity might hinder the further improvement of the inversion result for the
field data for coupling coefficients below η < 0.005.

When the structural constraint in the inversion does not represent the layer boundary
well, the results can diverge strongly from the synthetic model, even stronger than for
a fully smoothed inversion. To compensate for the misplaced boundary, the resistivities
of the layers are underestimated for upward shifted boundaries and overestimated for
downward shifted boundaries. A spatial accuracy of 25% of the layer position relative
to the upper layer thickness is necessary for an error margin below 15% in the resistivity.
Heterogeneities within the layers are only reproduced for accurate or slightly downward
shifted layer boundaries. Inversions with larger coupling coefficients gain better agree-
ment with the input model for slightly misplaced structural constraints. For large spatial
divergence between layer boundary and constraint, this effect vanishes.

As an alternative approach, no structural constraint has to be defined if the ERT data
and the geophysical data providing the structural inversion are subjected to a joint inversion
(e.g., [55,56]), thus avoiding misplaced constraints while still using all the available infor-
mation in the most flexible way. However, a constrained inversion has almost no additional
computational effort in opposition to a joint inversion. This is especially important when
electric resistivity tomography is included as a part of an early warning system for land-
slides because the processing time is crucial in such a setting. With a usual time window of
a few hours between the increase of soil moisture and slope failure, a prolonged processing
time for the inversion of geoelectrical data would be a deal breaker. Furthermore, water
content dynamics are often monitored using time-lapse measurements, recording multiple
measurements within a short time window focusing on dynamic changes in the recorded
electrical data (e.g., [57]). For the analysis of time-lapse measurements, it is preferable to
have the same a priori information for all inversions because the lithological layer can be
considered static while the soil moisture is dynamic. In a joint inversion, the lithological
boundary might be shifted each time depending on the sensitivity of the data. Still, a
joint inversion might be helpful to initially determine the layer boundary using multiple
geophysical methods and then apply the result using a structural constraint for repeated
inversions in an early warning system.

6. Conclusions

Quantifying soil moisture content is critical for hazard estimation in pore-pressure-
driven slope failure. Electric resistivity methods allow the multi-dimensional spatial
acquisition of data points related to soil moisture. However, accurate derivation of moisture
content from electrical resistivity requires a priori knowledge about the hydro-geophysical
relationship and the extent of the soil layers. Known soil layer boundaries can be included
as structural constraints in the electrical inversion by reducing the smoothness constraint
along the layer boundary compared to a conventional ERT inversion. This work shows that
such a structural constraint can significantly improve moisture content estimations from
ERT measurements when the smoothness along the layer boundary is reduced significantly.
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As a drawback of the method, any a priori information is affected by uncertainties de-
pending on the data source, and a misplaced structural constraint will negatively influence
the inversion process. For strongly misplaced constraints, we find that resulting moisture
content estimations can diverge stronger from true values than a fully smoothed inversion.
The inversion result can benefit from a higher coupling coefficient in the inversion pro-
cess to account for uncertainties in the positioning of the structural constraint. In any
case, uncertainties in the a priori information must be thoroughly addressed when using
a constrained inversion as results can be substantially influenced by flawed constraints.
These considerations have to be taken into account when using water content estimations
from geoelectrical measurements for landslide early warning systems since small variations
in water content can greatly impact stability estimations.
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