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Abstract: Drought impacts on food security, land degradation and rates of biodiversity loss. Here,
we aimed to investigate selenium nanoparticles (Se NPs) influenced plant resilience to drought
using the morphological, physiological, and essential oil (EO) quantity and quality of basil (Ocimum
basilicum L.) as drought proxies. Treatments included irrigation at 100% field capacity (FC100) as no
stress, 80% FC as moderate water stress (FC80) and 60% FC as severe water stress (FC60), together
with application of Se NPs at either 0 mg L−1 (control), 50 mg L−1, or 100 mg L−1. The highest
(257 g m−2) and lowest (185 g m−2) dry matter yields were achieved in nil-stress and severe-water-
stress conditions, respectively. Dry matter yields decreased by 15% and 28% under moderate and
severe water stress, respectively. Applying Se NPs enhanced the dry matter yields by 14% and 13%
for the 50 and 100 mg L−1 treatments, respectively. The greatest EO content (1.0%) and EO yield
(1.9 g m−2) were observed under severe water stress. Applying Se NPs of 50 and 100 mg L−1

enhanced the essential oil content by 33% and 36% and the essential oil yield by 52% and 53%,
respectively. We identified 21 constituents in the EO, with primary constituents being methyl chavicol
(40%–44%), linalool (38–42%), and 1,8-cineole (5–6%). The greatest methyl chavicol and linalool
concentrations were obtained in FC80 with 50 mg L−1 Se NPs. The highest proline (17 µg g−1 fresh
weight) and soluble sugar content (6 mg g−1 fresh weight) were obtained under severe water stress
(FC60) for the 50 mg L−1 Se NP treatment. Our results demonstrate that low-concentration Se NPs
increase plant tolerance and improve the EO quantity and quality of basil under drought stress.

Keywords: antioxidant activity; crop production; essential oil; soluble sugar; water restriction; water
deficit; extreme event

1. Introduction

The intensification of climate change driven by global warming is threatening the
sustainability, food security, and prosperity of many agricultural communities across the
world. The higher frequency and intensity of climate variability and extreme climatic events
have significantly affected agricultural productivity growth over the past 60 years [1].
Stress associated with a water deficit is one of the most critical environmental factors
limiting global crop and pasture growth and distribution [2,3]. The prevailing rainfall
level in Iran is around 75% less than the global average, leading to more than 88% of
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agricultural lands in Iran being classified as in arid and semiarid climates [4]. Similar to
the consequences of nutrient stress [5–7], a sub- or supraoptimal water supply results in
morphological, physiological, and biochemical changes that constrain quantitative and
qualitative plant growth [1,7,8]. On the basis of the severity and duration of water stress,
crop production has been reported to decrease by 13–94% [9]. Water stress limits stomatal
opening, reducing CO2 uptake and photosynthesis and decreasing plants’ growth [10].
Increasing reactive oxygen species (ROS) increases the lipid peroxidation of the membrane,
leading to the decomposition of chlorophylls and other structural biomolecules [11,12].
In addition to negative impacts of drought stress on the plant’s productivity, drought
affects land degradation and biodiversity loss, which in turn have adverse effects on
resource-dependent rural populations and can potentially lead to livelihood losses and
subsequent migration out of affected areas. Therefore, providing new solutions to increase
the adaptation and production of plants in arid and semiarid areas is needed. One of the
new technologies to alleviate drought-stress effects on plant production and quality comes
from harnessing advances in nanotechnology [13].

Anecdotal evidence suggests that applying stress-modulating nanoparticles (NPs)
may reduce the detrimental impacts of drought and improve plant performance under
otherwise-stressful conditions. Selenium (Se) is a common trace metalloid categorized
among beneficial elements for plant growth [14]. The beneficial effects of Se are not directly
involved in plant metabolisms, but they play a unique role in improving the vegetative
and reproductive phases, especially when the plants are exposed to environmental stresses.
In addition, Se NPs can modulate the negative impacts of stressful conditions through
antioxidant and pro-oxidant agents [15]. It has been reported that applying Se NPs under
stressful conditions prevents oxidative stress by reducing the ROS content in normal ranges
and enhancing the expression of stress-responsive proteins and genes [16].

Because of the long-term adverse effects of chemical drugs on human health, medicinal
compounds with natural origins are increasing daily. It has been reported that about 80%
of people use herbal medicines for some part of their primary healthcare [17]. Among
different medicinal and aromatic plants, the Lamiaceae family, including about 200 genera
and 3200 species, widely distributed almost all over temperate and tropical regions. Most
plant species belonging to the Lamiaceae family are considered medicinal and aromatic
thanks to the terpenoids and phenylpropanoid compounds in their essential oils (EOs) [18].
Basil (Ocimum basilicum L.) is an annual herbaceous plant belonging to the Lamiaceae
family. Basil is used as a fresh vegetable, a flavoring agent in many dishes, and a medicinal
and aromatic plant [19]. In traditional and folklore medicine, basil is used for stomach
problems such as spasms, fluid retention, head colds, kidney disorders, etc. [20]. The
basil EOs have biological properties such as antiviral, antibacterial, antioxidant, anti-
inflammatory, etc. characteristics [21]. The EO productivity of basil and its constituents
varies, depending on the different species and environmental conditions. It has been
reported that methyl chavicol, linalool, 1,8-cineole, and methyl eugenol were the main EO
constituents of basil [22,23].

The climate crisis will result in greater global average temperatures that will result
in higher frequencies and intensities of extreme events, including drought, heat waves,
and flooding, which call for the development of integrated adaptations [24,25]. In the
past century, average global surface temperatures have risen by 0.7 ◦C and, together
with the increased frequencies of extreme events, will intensify adverse effects on plant
performance [4]. Also, in arid and semiarid regions, the increasing consumption of chemical
inputs to compensate for the yield loss in these conditions will increase production costs
and environmental pollution. The higher use of chemical fertilizer in the cultivation of
medicinal and aromatic plants has negative impacts on bioactive compounds and decreases
the EO quality of these plants. Therefore, this study aims to investigate the effects of
Se NPs as stress-modulating compounds on basil plants’ morphological, physiological,
and phytochemical characteristics under drought-irrigation regimes. We hypothesize that
(i) the application of Se NPs will increase photosynthesis pigments under drought-stress
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conditions, (ii) the application of Se NPs will enhance the tolerance of basil plants by
increasing osmolyte (proline and soluble sugar) concentration, and (iii) the application of
Se NPs will improve the EO quantity and quality of basil plants.

2. Materials and Methods
2.1. Study Area

The study was conducted at the research farm of Shahid Bakeri Higher Education
Center, Miandoab, Iran, during the 2021–2022 growing season. The physical and chemical
properties of the experimental soil (depth of 0–30 cm) are shown in Table 1. This region has
a semiarid climate, with a mean temperature of 12 ◦C and annual precipitation of 390 mm.

Table 1. Physicochemical properties of field soil (depth of 0–30 cm).

Texture pH Electrical Conductivity
(dS m−1)

Organic Matter
(%)

Total N
(%)

Phosphorus
(%)

Potassium
(%)

Silty 8.25 0.88 1.30 0.13 10.33 211.6

2.2. Treatments

The study was laid out as factorial experiment based on a randomized complete block
design (RCBD) with three replications. The treatments included different irrigation levels
containing irrigation at 100% field capacity (FC100) as no stress, 80% FC as moderate water
stress (FC80), and 60% FC as severe water stress (FC60), as well as the application of Se
NPs at three concentrations, 0 mg L−1 (control), 50 mg L−1, and 100 mg L−1. Each plot
contained five rows with a 40 cm distance between rows. Se NPs foliar application was
performed twice each growing season, once upon seedling establishment and once three
weeks later.

The basil seeds were sown with a density of 12.5 plants m−2, on 21 May 2021. The
first irrigation was performed immediately after sowing to ensure germination. Weeds
were regularly controlled by hand. The different water stresses were applied one month
after sowing.

2.3. Measurements
2.3.1. Agronomic Traits and Dry Yield

In the flowering stage, five plants were selected randomly from each plot to measure
basil’s agronomic traits, including canopy diameter, number of leaves, and lateral branches.
To measure the dry yield of basil, 2 m2 of each plot was randomly harvested after removing
the marginal effects, on 8 August 2021.

2.3.2. Essential Oil Extraction and Analysis

Clevenger extracted the basil essential oil from the water distillation method. For
this purpose, 40 g of the aerial parts of basil were poured into the Clevenger and were
added with 300 mL of distilled water. The essential oil extraction was performed at a
water boiling temperature for 3 h. In addition, the EO yield, as g m−2, was calculated by
multiplying the dry yield with EO content. After extraction of the basil EO, the required
amount of sodium sulfate was added to the EO samples and kept in a refrigerator (4 ◦C)
in darkness for chemical analysis. Moreover, the oil constituents were analyzed using
GC-MS (GC-MS; Agilent 7890/5975A, USA) and GC-FID (Agilent 7990B, USA), following
the previous method of Rezaei-Chiyaneh et al. [26].

2.3.3. Chlorophylls and Carotenoid

In the flowering stage, 0.5 g fresh basil leaves were homogenized in 10 mL of 80%
acetone and centrifuged at 12,000 rpm for 15 min. Afterward, a UV spectrophotometer
read the absorbance at 663 nm, 645 nm, and 470 nm (UV-1800, Shimadzu, Tokyo, Japan).
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The content of chlorophyll a, chlorophyll b, and carotenoids was calculated by using the
following equations [27]:

Ca = (12.25A663.2) − (2.79A646.8)

Cb = (21.5A646.8) − (5.1A663.2)

Car =
[1000A470 − 1.82Ca − 85.02Cb]

198
In these equations, Ca , Cb , and Car are chlorophyll a, chlorophyll b, and caro-

tenoids, respectively.

2.3.4. Proline

To determine the proline concentration of basil leaves, the reaction mixture contain-
ing 2000 µL of extract, 2000 µL of ninhydrin reagent, and 2000 µL of glacial acetic acid
was mixed, and the absorbance was determined at 520 nm (UV-1800 Shimadzu, Tokyo,
Japan) [28].

2.3.5. Total Soluble Sugars

The phenol and sulfuric acid method measured the soluble sugar content of basil.
Briefly, 0.5 g of fresh basil leaves were homogenized with ethanol and mixed with 98%
sulfuric acid and 5% phenol, and the absorbance was spectrophotometrically read at
485 nm [29].

2.4. Phenolic Acid

Dried leaves were dissolved in 2 mL 80% MeOH and transferred to an ultrasonic bath
for 30 min. The homogenates were centrifuged at 3000 rpm for 15 min and transferred to
sealed jars. The extracts were crushed through fine membrane lighters and stored at 20 ◦C.
Finally, 20 mL of the extract was injected into HPLC to separate and analyze the phenolic
acid [30].

2.5. Statistical Analysis

All obtained data were analyzed by SAS (SAS Institute Inc., Cary, NC, USA) software,
and the mean comparisons were analyzed by the least significant difference (LSD) test at
the 95% level of probability.

3. Results

The analysis of variance results showed that the canopy diameter, number of leaves,
number of lateral branches, dry yield, essential oil (EO) content, and yield were significantly
impacted by the main effects of the irrigation levels and the selenium nanoparticles (Se NPs).
Meanwhile, the interaction between the factors mentioned above (irrigation levels × Se NPs)
significantly impacted the content of chlorophyll a, chlorophyll b, carotenoids, soluble
sugars, and proline.

3.1. Agronomic Traits

Among different irrigation regimes, the highest canopy diameter (54.22 cm), number
of leaves (717.56), and number of lateral branches (20.55) of basil were obtained in FC100.
The lowest values of the mentioned traits were achieved in FC60. The canopy diameter,
the number of leaves, and the number of lateral branches decreased by 11.9%, 7.5%, and
11.3% in moderate water stress (FC80), respectively. They were decreased by 18.7%, 11.8%,
and 26.4% in severe water stress (FC60), respectively, when compared with nonstress
conditions (FC100) (Table 1). Among different concentrations of Se NPs, the highest canopy
diameter, the number of leaves, and the number of lateral branches were achieved after
the application of 50 mg L−1 Se NPs which was 8.7%, 7.2% and 14.6% greater than the
non-application of Se NPs, respectively (Table 2).
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Table 2. The agronomic traits (canopy diameter, number of leaves, and number of lateral branches),
dry yield, essential oil content, and essential oil yield of basil in different irrigation regimes
and Se NPs.

Canopy Diameter
(cm)

Number
of Leaves

Number of Lateral
Branches

Dry Yield
(g m−2)

Essential
Oil Content

(%)

Essential Oil
Yield

(g m−2)

Irrigation levels (I)
FC100 54.22 a 717.56 a 20.55 a 256.61 a 0.68 c 1.74 c
FC80 47.78 b 663.78 b 18.22 b 218.58 b 0.84 b 1.84 b
FC60 44.11 c 633.11 c 15.11 c 184.62 c 1.03 a 1.90 a

Se nanoparticles (S)
Control (0 mg L−1) 46.22 b 649.44 b 16.67 b 201.74 b 0.67 b 1.35 b

50 mg L−1 50.22 a 696.22 a 19.11 a 230.77 a 0.89 a 2.05 a
100 mg L−1 49.67 a 668.78 b 18.11 a 227.31 a 0.91 a 2.07 a

Source of variations Significance

I ** ** ** ** ** **
S * * ** ** ** **

I × S NS NS NS NS NS NS

Ns, * and ** indicated no significant difference, significant at 5% probability level and significant at 1% probability
level, respectively. Different letters indicate significant differences at the 5% level according to LSD’s test.

3.2. Dry Yield

The dry yield of basil significantly reduced with increasing drought stress levels. The
plant’s highest (256.61 g m−2) and the lowest (184.62 g m−2) dry yields were observed in
FC100 and FC60, respectively. The dry yields of basil decreased by 14.8% and 28.1% in
moderate and severe drought stress, respectively. Additionally, applying Se NPs in the
concentration of 50 mg L−1 sharply increased the dry yield of basil. The dry yield of basil
with 50 mg L−1 Se NPs enhanced by 14.4% compared with the control (non-application of
Se NPs) (Table 2).

3.3. Essential Oil Content

The EO productivity of basil was enhanced by increasing drought-stress levels. Among
different irrigation regimes, the maximum EO content of basil (1.03%) was recorded under
severe water stress (FC60), while the lowest EO content (0.68%) was related to the non-stress
conditions (FC100). The EO productivity of basil was enhanced by 23.53% and 51.5% under
moderate and severe water stress, respectively (Table 1). In addition, the application of Se
NPs in the concentration of 50 and 100 mg L−1 enhanced the EO content of basil by 32.8%
and 35.8% when compared with the control (Table 2).

3.4. Essential Oil Yield

Among different irrigation levels, the highest (1.90 g m−2) and lowest (1.74 g m−2) EO
yields of basil plants were obtained under severe water stress (FC60) and non-stress (FC100)
conditions. Compared with the non-stress conditions, the EO yields of basil enhanced by
5.8% and 9.2% in FC80 and FC60, respectively. Interestingly, the application of Se NPs in
concentrations of 50 and 100 mg L−1 enhanced the EO yields of basil by 51.8% and 53.3%,
respectively, when compared with the control (Table 2).

3.5. Essential Oil Constituents

According to the GC-MS and GC-FID analysis, 21 constituents were identified in basil
EO, the major constituents being methyl chavicol (39.74–43.61%), linalool (37.78–41.51%),
and 1,8-cineole (4.83–6.15%). The maximum content of methyl chavicol and linalool was
obtained under moderate water stress (FC80) following the application of 50 mg L−1 Se
NPs. In addition, the maximum content of 1,8-cineole was recorded under severe water
stress (FC60) treated with 50 mg L−1 Se NPs. Additionally, the lowest content of the
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three mentioned constituents was measured under non-stress conditions (FC100) without
applying Se NPs (Table 3).

3.6. Phenolic Compounds

The main phenolic compounds of the basil plant include comaric (522.07–687.97 ppm),
chlorogenic acid (310.68–395.83 ppm), caffeic acid (212.41–282.49 ppm), and gallic acid
(110.18–178.12 ppm). The respective maximum contents of comaric, caffeic acid, and gallic
acid were obtained under moderate water stress (FC80) following 50 mg L−1 Se NPs. In
addition, the maximum contents of chlorogenic acid, rosmaric acid, quercetin, and apigenin
were recorded under severe water stress (FC60) with 50 mg L−1 Se NPs. On average, the
content of gallic acid, caffeic acid, chlorogenic acid, rutin, comaric, rosmaric acid, quercetin,
cinnamic acid, and apigenin enhanced by 24%, 10%, 6%, 10%, 8%, 14%, 2%, 11%, and 17%
after the application of 50 mg L−1 Se NPs and 14%, 7%, 11%, 24%, 7%, 11%, 11%, 10%, and
19% after the application of 100 mg L−1 Se NPs, respectively (Table 4).

3.7. Chlorophyll Content

The maximum concentrations of chlorophyll a (0.56 mg g−1 fresh weight) and chloro-
phyll b (0.23 mg g−1 fresh weight) in the basil plant were obtained under non-stress
conditions (FC100) treated with 50 mg L−1 Se NPs. In contrast, the lowest contents of
chlorophyll a (0.3 mg g−1 fresh weight) and chlorophyll b (0.11 mg g−1 fresh weight) were
recorded in FC60 without Se NPs. The concentrations of chlorophyll a and chlorophyll b
were reduced by 16.7% and 14.3% under moderate water stress (FC80) and by 31.5% and
28.6% under severe water stress (FC60), respectively. Additionally, the concentration of
photosynthesis pigments was enhanced by 21.9% and 42.9% with the application of 50 mg
L−1 Se NPs and 12.2% and 35.7% with the application of 100 mg L−1 Se NPs, respectively,
when compared with the control (Figure 1A,B).

3.8. Carotenoid Content

Applying 50 mg L−1 Se NPs under moderate water stress (FC80) produced the high-
est carotenoid concentration in the basil plant. However, the lowest concentration of
carotenoid was observed in FC100 without the application of Se NPs. Under moderate
and severe water stress, carotenoid concentration enhanced by 35.9% and 45.5% compared
with non-stress conditions. In addition, the application of 50 and 100 mg L−1 Se NPs in-
creased the carotenoid concentration by 44.9% and 31.6%, respectively, compared with the
control (Figure 2).

3.9. Soluble Sugar Content

Applying 50 mg L−1 Se NPs under severe water stress (FC60) produced the maximum
soluble sugar content in the basil plant. However, the lowest soluble sugar content was
obtained in FC100 without applying Se NPs. Under moderate and severe water stress,
carotenoid concentration enhanced by 35.3% and 41.5%, respectively, compared with
nonstress conditions. In addition, the soluble sugar content of basil increased by 65.4% and
27.1% after the application of 50 and 100 mg L−1 Se NPs, respectively (Figure 3).

3.10. Proline

The highest proline concentration (16.87 µg g−1 fresh weight) was obtained under
severe water stress (FC60) treated with 50 mg L−1 Se NPs. In addition, the lowest proline
concentration (9.1 µg g−1 fresh weight) was related to the non-stress conditions without
applying Se NPs. Under moderate and severe water stress, the proline concentration
enhanced by 17.4% and 35.9%, respectively, compared to non-stress conditions. In addition,
the proline concentration of basil increased by 41.1% and 18.4% after the application of 50
and 100 mg L−1 Se NPs, respectively (Figure 4).
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Table 3. The essential oil constituents of basil in different irrigation regimes and Se NPs.

Treatments

No. Components RI a FC100+
Control

FC100+
50 mg L−1

Se

FC100+
100 mg L−1

Se

FC80+
Control

FC100+
50 mg L−1

Se

FC100+
100 mg L−1

Se

FC60+
Control

FC100+
50 mg L−1

Se

FC100+
100 mg L−1

Se

1 α-Pinene 925 0.21 0.18 0.18 0.21 0.2 0.19 0.17 0.22 0.17
2 Sabinene 964 0.12 0.1 0.09 0.12 0.11 - 0.09 0.13 0.09
3 β-Pinene 968 0.26 0.23 0.21 0.27 0.25 0.24 0.22 0.28 0.21
4 Myrcene 981 0.08 0.1 0.06 0.09 0.08 0.08 0.07 0.09 0.06
5 1,8-Cineole 1024 4.83 5.43 4.91 5.87 5.81 5.54 5.61 6.15 5.83
6 Linalool 1097 37.78 38.89 38.09 39.09 41.51 41.09 38.12 39.23 40.06
7 Terpinen-4-ol 1177 1.18 0.83 0.91 0.55 0.61 0.34 0.56 0.19 0.57
8 Methyl chavicol 1195 39.74 42.45 42.62 42.80 43.61 43.08 41.93 42.35 41.42
9 Neral 1234 0.38 0.5 - - 0.29 - 0.59 0.53 0.11
10 Geraniol 1249 0.72 0.92 0.1 0.21 0.1 - 0.55 - 0.05
11 α-Copaene 1369 0.07 0.09 0.08 0.07 0.07 - 0.09 - 0.08
12 β-Cubebene 1383 0.39 0.21 0.16 0.52 0.14 0.19 0.21 0.23 0.14
13 Methyl eugenol 1395 3.02 1.65 2.96 2.63 2.23 1.91 2.17 1.36 2.98
14 trans-Caryophyllene 1414 2.16 1.64 1.53 1.58 1.24 1.52 1.55 1.87 1.43
15 (E)-β-Farnesene 1433 0.05 0.06 0.05 0.07 0.07 0.06 0.06 0.08 0.06
16 α-Humulene 1447 0.84 0.67 0.64 0.7 0.58 0.62 0.67 0.8 0.63
17 Germacrene D 1475 1.46 0.96 1.02 0.88 0.79 0.98 0.23 0.82 0.99
18 α-Bisabolene 1498 0.08 0.09 0.09 0.08 0.08 0.09 1.12 0.11 0.08
19 cis-α-Bisabolene 1532 1.83 0.91 1.47 1.66 0.83 1.67 1.59 0.77 1.51
20 Caryophyllene oxide 1578 0.12 0.13 0.11 0.12 0.07 0.14 0.09 -
21 α-Bisabolol 1674 0.05 - 0.05 - 0.13 0.05 0.07 0.06

Total identified (%) 95.37 96.44 95.33 97.4 98.85 97.72 95.74 95.37 96.53
a RI, linear retention indices on the DB-5 MS column, experimentally determined using homologue series of n-alkanes. Bold values show the main components.
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Table 4. The phenolic compounds of basil in different irrigation regimes and Se NPs.

ppm

No. Components FC100+
Control

FC100+
50 mg L−1

Se

FC100+
100 mg L−1

Se

FC80+
Control

FC80+
50 mg L−1

Se

FC80+
100 mg L−1

Se

FC60+
Control

FC60+
50 mg L−1

Se

FC60+
100 mg L−1

Se

1 Gallic acid 110.18 122.34 119.75 118.20 178.12 159.63 147.43 167.09 149.93
2 Caffeic acid 219.56 212.41 242.25 230.75 282.49 262.46 251.63 274.11 243.82
3 Chlorogenic acid 310.68 341.91 360.55 322.60 342.91 393.54 390.28 395.83 384.31
4 Rutin 42.72 43.36 49.78 42.23 53.38 59.16 43.38 44.29 50.20
5 Comaric 522.07 597.11 578.21 632.29 687.97 639.87 533.39 540.95 593.23
6 Rosmaric acid 31.01 33.58 32.79 35.56 38.78 39.59 37.90 46.56 43.76
7 Quercetin 51.67 57.11 67.56 69.97 59.81 69.16 79.75 89.17 86.10
8 Cinnamic acid 4.50 5.65 5.39 6.72 7.45 7.98 8.12 8.34 8.01
9 Apigenin 19.75 22.30 23.37 21.29 23.11 24.68 21.39 27.61 26.54
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4. Discussion

Plant productivity depends on various vital factors, such as soil fertility, good quality
irrigation water, etc. During the crop growth cycle, a plant has to constantly face several
biotic and abiotic stresses that negatively affect the morphological, physiological, biochemi-
cal, and molecular changes in plants, ultimately decreasing productivity. Recently, there has
been an increased interest in using nanotechnology in the agriculture sector for managing
abiotic stresses and improving plant performance under these conditions. However, the
excessive use of nanofertilizers in high concentrations will cause toxicity in plants and
negatively affect plant growth. Also, the excessive application of nanoparticles may be
destructive to humans and the environment owing to the fast accumulation of nanoparticles
in the tissues of alive bodies. This obligates the researchers to find the correct method and
doses of nanoparticles for different plants. The study aimed to investigate the advantages
and disadvantages of applying different doses of Se NPs for basil productivity and its
quality under drought stress conditions.

The study demonstrated that basil’s agronomic traits and dry yield were reduced
under moderate and severe water stress. Water limitation negatively impacts the plant’s
morphological, physiological, and chemical processes. In this situation, the photosynthesis



Land 2023, 12, 164 10 of 14

rate of plants decreases in water-stress conditions owing to reducing the leaf area, closing
the stomata, reducing the conductivity of the stomata, the lipid peroxidation of membranes,
and reducing the synthesis of protein and chlorophyll, which lead to decreasing plants
productivity [31]. Similarly, Ostadi et al. [4] noted that the dry yield of sage (Salvia officinalis
L.) decreased by 30% and 35% under moderate and severe water stress, respectively.
Javanmard et al. [32] reported that the fresh and dry weight of balangu (Lallemantia iberica)
reduced by 14.9% and 15.3% under moderate water stress (60% FC), and by 33.9% and
34.2% under severe water stress (30% FC), respectively.

On the other hand, applying Se NPs, especially in the concentration of 50 mg L−1,
enhanced canopy diameter, the number of leaves, lateral branches, and basil’s dry yield.
One of the positive effects of using selenium nanoparticles, especially in low concentrations,
is the increase in plant root growth [33]. Therefore, the increase in plant productivity after
applying Se NPs could be attributed to the improvement of root growth, which will lead
to an increase in the absorption of nutrients, the rate of photosynthesis, and the plant’s
growth characteristics. It has been reported that applying Se NPs, especially in a low
concentration, is vital for increasing stomatal conductance and Rubisco activity and for
the efficiency of photosynthetic system II, which will enhance the photosynthesis rate and
plant productivity [34,35]. Kiumarzi et al. [36] reported that applying Se NPs increased the
fresh and dry weight of pineapple mint (Mentha suaveolens Ehrh.).

Our results showed that the EO content and main EO constituents of basil, such as
methyl chavicol, linalool, and 1,8-cineole, enhanced under water-stress conditions. Com-
pared with plants whose economic performance is reduced under drought stress, the
performance of medicinal and aromatic plants is enhanced under stressful conditions
through the biosynthesis of secondary metabolites. The biosynthesis of secondary metabo-
lites in medicinal and aromatic plants is known as one of the defensive mechanism systems
for increasing the adoption of these plants in the face of stressful conditions [37]. Under
drought stress conditions, the photosynthesis rate of plants decreased because of closing
stomata and the lower absorption of CO2, which led to the accumulation of NADPH+H+ in
plant cells. The biosynthesis of secondary metabolites, such as EO compounds, alkaloids,
phenolics, etc., through the consumption of NADPH+H+ increases plant efficiency under
stressful conditions [4]. Amani Machiani et al. [38] concluded that the essential oil content
of thyme (Thymus vulgaris L.) and the main EO constituents of this plant, such as thymol
and γ-terpinene, enhanced under moderate drought stress.

Interestingly, applying Se NPs enhanced the EO content and improved EO quality
by increasing basil’s main EO constituents. The increasing EO productivity through the
application of Se NPs could be explained by the role of the aforementioned NPs in im-
proving root growth and higher nutrient uptake, which leads to increasing EO precursor
compositions and intermediate EO compounds such as acetyl coenzyme A, NADPH, and
ATP. In addition, applying Se NPs could increase the chlorophyll content by modulating
the adverse effects of drought stress. Increasing the chlorophyll concentration is vital for
improving the photosynthesis rate and producing sufficient carbohydrates for the growth
of cells and the production of EO-secreting glands. In this way, it can increase EO content
in the plant. In accordance with the results of the present study, Azimi et al. [39] noted
that the application of Se NPs improved the EO quality of Dracocephalum moldavica L. by
increasing the content of geranyl acetate, geraniol, geranial, and z-citral.

The EO yield of basil enhanced under severe water stress and Se NPs. The EO yield of
plants is calculated from the dry matter yield productivity and EO content, and it directly
relates to these two mentioned indicators. Therefore, the increasing EO yield of basil
could be attributed to enhancing plant EO productivity under severe water stress and
applying Se NPs.

Phenolic compounds have antioxidant activities that they collect and reduce reac-
tive oxygen species (ROS), thereby preventing the oxidation of vital biomolecules and
inhibiting oxidative stress or mitigating its impacts on plant cells. The results of this study
demonstrated that the application of Se NPs, especially at lower concentrations, improved
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basil plants’ phenolic compounds under water-stress conditions. The increasing phenolic
compounds through the application of Se NPs could be attributed to enhancing nutrient
availability, which enhances the activity of enzymes involved in the biosynthesis of pheno-
lic compounds [40]. In addition, Li et al. [41] reported that the Se NPs affect JA productivity
by adjusting the alpha-linolenic acid pathway, which induces the synthesis of phenolics
and flavonoids in the celery (Apium graveolens) plant. These authors noted that the content
of the apigenin, rutin, p-coumaric acid, and ferulic acid of the celery plant enhanced by
58.4%, 66.2%, 80.4%, and 68.2% after the application of Se NPs.

The content of chlorophyll a and chlorophyll b decreased under both moderate and
severe water stress. Exposing the plant to drought stress seems to enhance the content
of reactive oxygen radicals (ROS) compounds, which leads to an increase in the lipid
peroxidation of the membranes and, ultimately, the decomposition of chlorophylls in the
leaves [42]. In addition, the decreasing chlorophyll content under water-stress conditions
may be due to the decreasing nutrient absorption that negatively affects the biosynthesis of
chlorophyll [43]. Javanmard et al. [32] reported that the content of chlorophyll a and b in
Lallemantia iberica leaves decreased under moderate and severe water deficits. In contrast to
chlorophylls, the carotenoid concentration was enhanced under drought-stress conditions.
The actions of enzymatic and nonenzymatic antioxidant systems usually suppress the
oxidative damage of drought stress in plant tissues. The nonenzymatic antioxidants
include carotenoids (xanthophylls and carotenes), ascorbates, and alpha-tocopherol, which
enhance plant tolerance in the face of stressful conditions by decreasing the activity of ROS
compounds [44].

Moreover, the concentration of chlorophylls and carotenoids was enhanced by ap-
plying Se NPs. It seems that applying stress-modulating NPs such as Se NPs reduced the
adverse effects of water stress and the lipid peroxidation of membranes, thereby affect-
ing the content of chlorophyll and carotenoids in plant cells. Similarly, Seliem et al. [45]
showed that the application of Se NPs enhanced the content of chlorophyll a and b in the
Chrysanthemum morifolium Ramat leaves.

Our results showed that the osmolyte (proline and soluble sugar) concentration en-
hanced under water-deficit conditions. The accumulation of soluble sugars and proline in
response to environmental stress is related to the osmotic regulation or protection of cell
membranes. During this physiological process, plant cells absorb osmolyte metabolites
such as amino acids (especially proline), soluble sugars, etc., which reduces osmotic po-
tential and maintains the turgescence pressure of plant cells at a high level. Therefore, the
increasing proline and soluble sugars under water stress maintain the ROS levels within
normal ranges (detoxification of ROS), decreasing lipid peroxidation, stabilizing the mem-
branes and improving cell turgor [46]. In addition, the application of Se NPs enhanced
the content of soluble sugars and proline, which may be due to the central role of Se NPs
in decreasing chlorophyll decompositions and increasing the photosynthesis rate, which
enhances the carbohydrate and other biomolecule content under water-stress conditions.
It has been reported that the application of Se NPs enhanced the photosynthesis rate by
modulating the negative impacts of drought stress and the upregulation of genes related to
light-harvesting complex II [47].

5. Conclusions

Water stress is one of the leading abiotic stress factors that disrupt plant growth and de-
velopment and thus lead to productivity loss. Using selenium under water stress conditions
can cause plants to adapt to drought. The study demonstrated that the application of Se
NPs modulates the negative impacts of water-stress conditions by improving chlorophylls,
carotenoids, and osmolytes (proline and soluble sugars). In addition, the application of
Se NPs enhanced the EO content and main EO constituents of the basil plant, such as
linalool, methyl chavicol, and 1,8-cineol. We conclude that applying Se NPs, especially in
low concentrations, increased plant tolerance and improved the essential oil quantity and
quality of the basil plant under water-stress conditions.
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