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Abstract: Global climate change is one of the major challenges facing the world, and the spatial
optimization of land use patterns has been regarded as critical in realizing carbon mitigation. In
this study, the linear programming model and the Markov Chain model are integrated in different
scenarios to optimize land use structure for low-carbon development. The land use pattern is then
simulated through the adjusted convolutional neural network and cellular automata model, taking
Guangzhou City as the case study area. The results reveal that construction land with high economic
efficiency will increase its area, and the reaming types will experience slight changes, in 2035 in the
natural development scenario and the economic priority scenario. Ecological land such as forest land,
grassland, and water is partly occupied by construction land in the urban–rural fringe areas. The total
carbon emissions decrease by 2.32% and 1.57% in these two scenarios. In the low-carbon-oriented
scenario, the expansion of construction land is restricted, and the forest land and grassland undergo
great expansion. The total carbon emission decreases by 18.95%—a figure much larger than that in
the natural development scenario and the economic priority scenario. Our paper embeds the needs
and constraints in land spatial planning into the spatial optimization of the land use pattern, which
provides valuable references for low-carbon city development in the future.

Keywords: carbon emission; land use; spatial optimization; scenario simulation; Guangzhou City

1. Introduction

Global warming has a profound influence on human survival and development, and
is one of the major challenges facing countries worldwide [1]. Land use affects the carbon
cycle of terrestrial ecosystems by changing the natural surface cover and the intensity of
human activities, which is one of the main factors of the greenhouse effect. Changes in land
use and land management contribute around 14% of the total global anthropogenic CO2
emissions [2]. As a major agglomeration of human socioeconomic activities, construction
land is the largest source of greenhouse gas emissions. The expansion of construction
land in the urbanization continues to encroach on carbon sink land categories, leading to a
continuous decline in the overall regional capacity for carbon storage and sequestration by
vegetation [3]. The spatial optimization of land use facilitates improving the carbon emis-
sion efficiency of land use, enhances the “carbon sequestration capacity” of the land system,
and refixes 60–70% of the depleted carbon [4]. The proper planning and management of
construction land based on scientific logic is becoming especially important in relation to
preventing the increase in greenhouse gas emissions.
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In the context of the “dual carbon” strategy in China, there have been substantial
transformations in socioeconomic development, as well as human activities. Land use
patterns have thus also been greatly influenced by focusing on controlling the scale of urban
construction land, with a high intensity of land emission, and conserving ecological land
with carbon sink functions, such as forest and grassland [5]. Construction land is primarily
regarded as a carbon source, whereas ecological land such as forest and water serves as a
carbon sink. Researchers are concerned with the topics of urbanization and the expansion
of construction land, built-up land intensity, and green land development [6]. Scholars
have also discussed the feasibility of China’s carbon neutrality in 2060 and the distribution
of carbon sinks in the scenarios of different land use patterns, which demonstrates that
the expansion of construction land should be limited in the future [7]. Moreover, one
dilemma is that China’s current environmental conditions and ecological environment can
hardly allow the coexistence of high construction land development intensity and high
carbon emissions [8]. Hence, controlling the scale of construction land and improving the
degree of intensive conservation of construction land are powerful measures to reduce
carbon emissions. Forest land and grassland are important carbon sinks. Scholars have
shown that the conservation and restoration of forest and grassland waters and increasing
the proportion of forest and grassland can effectively enhance the carbon sink of urban
ecosystems [9,10]. Pragmatically, China’s rapid urbanization and industrialization have
led to dramatic changes in land use in the past several decades, and the uncontrolled
expansion of urban construction land has led to the intensification of spatial conflicts
in the existing “three zones and three lines”, the imbalance between carbon source and
carbon sink scale, and the rising carbon emissions [11]. Land spatial planning is a basic,
binding mode of planning to guide land use, regional development, urban and rural
construction, and ecological protection, and it is a blueprint for the protection, utilization,
and restoration of land spatial resources [12]. Basing land spatial planning on the carbon
reduction target can promote the synergy between the development and utilization of land
and the low-carbon target, regulate the total amount and boundaries of production, living
and ecological space, constrain the scale of carbon sources in urban space, and consolidate
the scale of carbon sinks in ecological and agricultural space [13]. Carbon mitigation-related
research with respect to land use change and land use planning will help us to explore
carbon emission reduction pathways in cities, which is important for building a low-carbon
land spatial pattern and realizing a balance between socioeconomic development and
eco-environmental protection [14].

With the advent and popularity of geospatial data and intelligent models, the research
on carbon emissions combined with land use change continues to deepen. In recent years,
land use carbon emission accounting [15,16], the driving mechanism of land use-related
carbon source and sink changes [17], and low-carbon land use optimization [18] have
become mainstream. The land use carbon accounting method is closely related to the
datasets available at various times. In the early days, the carbon emissions of land use
were calculated via the sample plot inventory method or the system dynamic model [19,20].
Based on national forest resource inventory data, scholars in China established biomass
conversion factors to estimate the carbon storage of major ground plants in China in the
past 20 years [21]. Later, with the development of remote sensing technologies, the inter-
preted land use data and other geospatial information were utilized to measure carbon
emissions [22,23]. At present, studies are based on the IPCC’s National Greenhouse Gas
Emission Inventory, which integrates different data sources [24,25]. These datasets and
generated data products on carbon emissions in relation to land use provide information
essential to comprehending the relationship between land use and carbon emissions in
different cities and regions [15]. In terms of optimization models, scholars have conducted
a series of studies on the optimization of the land use quantity structure and spatial layout
by setting different development paths and development goals [26,27]. The optimization
of land use can change the carbon source/sink pattern, thereby guiding the low-carbon
transformation and sustainable development of the regional social economy [28]. In ad-
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dition to the traditional optimization of the quantities of different land use types using
programming models for balancing ecological and socioeconomic benefits, spatial optimiza-
tion models such as the cellular automata (CA) model have been widely applied for their
applicability in unearthing the optimal land use pattern for climate change mitigation and
adaptation [29]. For example, Huang et al. analyzed the carbon emissions of Jinhua City in
2030 under different scenarios based on the linear programming model and the CA model,
and proposed a land use structure and layout with the least carbon emissions [14]. Li et al.
set differentiated carbon emission and economic and ecological benefit constraint objectives
based on the linear programming model and conducted land spatial zoning optimization
simulations through the PLUS model [29]. These models and empirical studies have set
the tone in how the optimization of future land spatial pattern can be realized with the
consideration of carbon mitigation goals. Although scholars have conducted substantial
research on land use and carbon emission, the context of future land use or urban planning
has not been fully integrated, resulting in the insufficient feasibility and practicability of
research. Furthermore, future land use simulation (FLUS) [30], PLUS [31], CLUE-S [32], and
other intelligent models developed based on CA have been widely applied in the extant
research, yet ignorance with regard to human development and socioeconomic factors still
exists, which constrains model accuracy.

To address the gaps in the lack of the integration of local land use and urban planning,
as well as local socioeconomic development, in the prediction, simulation and optimization
of land use patterns, this study applies linear programming and the adjusted cellular
automata model with the consideration of local conditions, taking Guangzhou city as an
example. It attempts to establish a research framework to link future land spatial plans
with carbon mitigations to promote low-carbon development in cities.

2. Materials and Methods
2.1. Study Area and Data Description

Guangzhou is in the south of mainland China, in the south-central part of Guangdong
Province. Guangzhou is the industrial, economic heart of Guangdong Province, including
11 districts (Figure 1). This city had 18.73 million permanent residents and an urbanization
rate of 86.48% in 2022. With rapid development, the area of construction land increased by
45.72% in Guangzhou, while the areas of forest and grass decreased by 2.65% and 75.60%,
respectively.

Since the implementation of policies focused on energy restructuring, industrial
transformation and upgrading, and traffic management in 2005, the carbon emissions of
Guangzhou decreased by 20.73%. However, the population explosion and unprecedented
urbanization have placed heavy pressure on Carbon Neutral Targets, and a low-carbon
land use pattern still needs to be explored to tackle the serious challenges.

This study uses a geospatial dataset in the forms of raster and vector, as well as
statistical dataset and generated dataset products with multiple data sources. Land use in
Guangzhou is classified into six types: cultivated land, forest, grassland, water, construction
land, and unused land. The main impact factor data used in the paper include China’s high-
spatial-resolution emission grid data (CHRED) provided by the China Cities Greenhouse
Gas Work Platform, land use data released by the Geographic State Monitoring Cloud
Platform, and physical geographic and socioeconomic data from multiple time periods, as
shown in Table 1.
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Figure 1. Location and administrative divisions of Guangzhou.

2.2. Methods

Figure 2 shows the land use data and the natural and socioeconomic driver force
data of Guangzhou that were used in this paper to predict and simulate future land use
patterns, including two subsections: (1) Land use demand prediction. Three scenarios
were set based on urban development and future socioeconomic planning. The land use
structure in 2035 of the natural development scenario was calculated based on the Markov
Chain model. Land use structures oriented toward low-carbon economic priorities were
projected through the Gray Predicting model and the Linear Programming model. (2) Land
use spatial layout simulation. The driver forces of land use transformation from physical
geography datasets and socioeconomic datasets were selected, and the probability layers
of various land use types were predicted by the convolution neural network (CNN) and
random forest (RF) classifier, which were combined with a restricted layer as the input of
CA to simulate the future land use spatial layout.
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Table 1. Overview of dataset.

Name Time Range Format Source Description

Land use 2000–2020 Raster (30 m × 30 m)
http://www.dsac.cn/

DataProduct/Index/200804
(accessed on 15 June 2023)

Land use types, areas, and
spatial pattern

DEM (Digital
Elevation Model) 2020 Raster (1 km × 1 km)

http://www.dsac.cn/
DataProduct/Index/200804
(accessed on 20 June 2023)

Spatial raster dataset
describing the elevation

and slopeSlope 2020 Raster (1 km × 1 km) Calculated by DEM

Soil data 2009 Raster (1 km × 1 km)

HWSD
(http://www.fao.org/soils-

portal/soil-survey/soil-
maps-and-databases/

harmonized-world-soil-
database-v12/en/ (accessed

on 20 June 2023))

Spatial soil dataset
describing the soil

properties of density,
topsoil organic carbon, clay
fraction, sand fraction and

texture

River network 2005 Shapefile

Resource and Environment
Science and Data Center
(https://www.resdc.cn/

Default.aspx (accessed on
20 June 2023))

Dataset describing the
spatial distribution of the

rivers

Population density 2020 Raster (1 km×1 km)
WorldPop (https:

//www.worldpop.org/
(accessed on 20 June 2023))

Spatial data dataset
describing the spatial

distribution of population
Nighttime-light

Dataset 2020 Raster (1 km × 1 km)
http://59.175.109.173:

8888/index.html (accessed
on 20 June 2023)

Subway station
points 2020 Shapefile AutoNavi Open Platform

Dataset describing the
spatial distributions of

infrastructure and public
facilities such as school,

hospital, park, et al.

Social services
(School, hospital,

park, hotel, bank, and
supermarket)

2020 Shapefile

GDP
2000–2020

Statistical data Guangzhou Statistical
Yearbook

(2000–2020)

Statistical dataset
describing the

socioeconomic levels in
Guangzhou

Resident population Statistical data
Added value of

agriculture, forestry,
animal husbandry,

and by-fishery
industries

2000–2020 Statistical data

CO2 emissions
dataset

2005, 2010,
2015, and 2020 Dataset http://www.cityghg.com/

(accessed on 20 June 2023)

Dataset describing CO2
emissions in the Chinese

cities

2.2.1. Relationship between Land Use and Carbon Emissions

The heterogeneity of the physicochemical properties and functions of different land
types leads to dissimilarities in the relationship between land use types and carbon emis-
sions. Therefore, different coefficients should be used to calculate the carbon emissions
from diverse land use types, which have been widely used by scholars. In this paper,
the previous parameters were obtained from the studies showed in Table 2 and adjusted
according to the actual situation of Guangzhou. The equation is as follows:

Ci = Ki × Si (1)

where Ci denotes the carbon emission of land type i, Ki denotes the carbon emission
coefficient of land type i, and Si denotes the area of land type i.

http://www.dsac.cn/DataProduct/Index/200804
http://www.dsac.cn/DataProduct/Index/200804
http://www.dsac.cn/DataProduct/Index/200804
http://www.dsac.cn/DataProduct/Index/200804
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
https://www.worldpop.org/
https://www.worldpop.org/
http://59.175.109.173:8888/index.html
http://59.175.109.173:8888/index.html
http://www.cityghg.com/
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Figure 2. Technical route.

• Carbon emission coefficient of cultivated land. Cultivated land is a carbon sink and
a carbon source, which can be considered in two ways: (1) With the utilization of
fertilizers and farm machinery, cultivated land can be considered a carbon source.
(2) Crops can absorb and store carbon during growth. However, most studies treated
cultivated land as a carbon source [33]. In this paper, cultivated land is also considered
a carbon source. Due to the high density of human activities on cultivated land,
the carbon emission coefficient is not stable and needs to be determined by linear
regression based on historical data [34]. The carbon emission factor of cultivated land
in Guangzhou in 2035 is calculated as 181.735 t/km2.

• Carbon emission coefficient of forest and grass land. These two land use types have a
carbon sink capacity that is affected by a variety of factors, such as climate, vegetation,
and the chemical and biological properties of the soil, which are generally stable
and do not undergo substantial changes in the short term [35,36]. Thus, the carbon
emission coefficients of forest and grass land obtained from the existing studies are
−57.8 and −2.1 t/km2, respectively [37].

• Carbon emission coefficient of water. According to the previous studies, water areas
are usually considered a carbon sink [35]. The carbon coefficient of water areas in this
paper is −25.2 t/km2 [37].

• Carbon emission coefficient of construction land. Carbon emissions from construction
land are closely related with the high intensity of human activities. With the expansion
of construction land, the encroachment of ecological space and growth in energy
consumption sharply increase the carbon emissions [38]. The carbon emissions from
construction land can be accounted by a mature methodological system and have been
proven to be in a constant state of change by existing studies [34,39,40]. Thus, the time
series pattern of carbon emissions from construction land needs to be explored based
on historical carbon emissions to determine future carbon emissions. Based on this, the
CHRED was used to match the spatial relationship between industries and land use
type, account for the carbon emission coefficient of cultivated land and construction
land from 2005 to 2020 to explore the carbon emission coefficient change pattern, and
project the carbon emission coefficient in 2035, which can be used to determine the
carbon emissions from construction land in 2035 using the Gray Prediction model. The
carbon emission coefficient is set as 27,993.95 t/km2 in this paper.

• Carbon emission of unused land. Unused land consists of wasteland and bare
ground. The capacities for carbon emissions and carbon sink of unused land are
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weak. According to existing studies, the carbon emission coefficient of unused land is
−0.5 t/km2 [37].

Table 2. Definition of carbon emissions and sinks in different land use types and references for
site studies.

Land Use Type Carbon Source/Sink Site Experiment

Cultivated land Carbon source Sichuan Province [33]; Guangdong Province [41]
Forest Carbon sink

Mainland China [37,42]
Grassland Carbon sink

Water Carbon sink
Unused land Carbon sink

Construction land Carbon source Pearl River Delta [39]

2.2.2. Land Use Demand Prediction in Multiple Scenarios

The areas of various land types of Guangzhou under different scenarios in 2035 can be
calculated based on the Markov Chain model and the Linear Programming model. The
land use area transfer matrix and transfer probability can be discovered by the Markov
Chain model to determine the transformation trend between different land use types [43].
The Linear Programming model, which is an important model for studies about the opti-
mization of land use structure, is a basic mathematical model for examining the geography
and the development of regional economics. Decision variables, objective functions, and
constraints are included in the Linear Programming model, which can be shown in the
following formulas:

F(x) = min(max)
n

∑
j=1

Kj × xj (2)

s.t. =
n

∑
j=1

aijxj = (≥,≤)bj, (i = 1, 2, 3 . . . , m) (3)

where F(x) denotes total carbon emissions, xj denotes the decision variable j (j = 1, 2, 3, . . . , m),
xj ≥ 0, and Kj denotes optimized carbon emission coefficients or economic efficiency coefficients;
in the constraints s.t., aij is the coefficient corresponding to the j-th variable in the i-th constraint,
and bj is the constraint value.

Three scenarios in 2035 were set based on the transformation of land use types in
Guangzhou from 2005 to 2020, in “Outline of the Fourteenth Five-Year Plan for the National
Economic and Social Development of Guangzhou Municipality and the Vision 2035” and
“Guangzhou City Territorial Spatial Master Plan (2021–2035)”:

• Natural development scenario. This scenario does not consider the other factors’
effects of land use type transformation. The natural development scenario is the
control group for other scenarios—it just obeys the historical pattern of land use
change from 2005 to 2020. The land use demands under the natural development
scenario in 2035 are predicted by the Markov Chain model [44];

• Low carbon-oriented scenario. This scenario concentrates on the high carbon sink
and low carbon emissions from land use sectors. Under this scenario, the total carbon
emissions should be the lowest among the three scenarios [45], the carbon reduction
benefits of high-carbon sink land use types should be utilized fully, the ecological land
protection should be enhanced, and the rough expansion of high-carbon emission land
should be seriously limited. The areas of land use types, such as forest and grassland,
that can absorb carbon should not be less than those in 2020;

• Economic priority scenario. The goal of this scenario is to maximize economic rewards.
Therefore, construction land maximizes expansion within the constraints of food
security and ecological benefits [46].

Based on the current land use classification, six land types, namely, cultivated land
(X1), forest (X2), grassland (X3), water (X4), construction land (X5), and unused land (X6),



Land 2023, 12, 1903 8 of 19

were selected as the decision variables. The objective functions were set through the
optimized carbon emission coefficients and economic efficiency coefficients. Considering
food demand and ecological efficiency, the detail constraints of various land types were
set, as shown in Table 3. The constraints for each land use type were set as follows:
(1) Cultivated land. According to the “Guangzhou City Territorial Spatial Master Plan
(2021–2035)”, the area of basic permanent farmland and the holdings of cultivated land in
2035 should not be less than those in 2020. (2) Water. According to the “Guangzhou Water
Management Regulations”, “Measures for the Administration of Guangzhou Municipal
Construction Projects Occupying Waters”, and other documents on the strict management
of water areas, the areas of water set in this paper were not changed. (3) Grassland and
unused land. The areas of these two land use types were set based on their original spatial
distribution and change rates. (4) Construction land. According to the urban development
boundary set in “Guangzhou City Territorial Spatial Master Plan (2021–2035)” and the
requirements of economic development set in “Outline of the Fourteenth Five-Year Plan
for the National Economic and Social Development of Guangzhou Municipality and the
Vision 2035”, the area of construction in 2035 was set as less than the urban development
boundary and more than that in 2020. (5) Forest. According to the red line for ecological
protection set in “Guangzhou City Territorial Spatial Master Plan (2021–2035)” and the
rules to protect forests in “Regulations on the Protection and Management of Forests in
Guangdong Province”, the area of forest should not less than the area required by the
red line for ecological protection. To satisfy the requirements of the low-carbon-oriented
scenario and the economic scenario, the rate of forest cover should not be less than 0.416
for the former, and the decrease rate of forest area should less than it in past decade
for the latter. In addition, the economic development goals constraint and development
intensity constraint were set based on “Guangzhou City Territorial Spatial Master Plan
(2021–2035)” and “Outline of the Fourteenth Five-Year Plan for the National Economic and
Social Development of Guangzhou Municipality and the Vision 2035”.

Table 3. Constraint setting and reference.

Factors Constraint Expressions Reference

Total area ∑ Xi = TA “Guangzhou City Territorial Spatial Master Plan (2018–2035)”
(http://ghzyj.gz.gov.cn/zwgk/ztzl/gtkjgh/gzxx/content/post_6484475.html (accessed on 22 June 2023))Cultivated Land area X1 ≥ CLQ

X1 ≥ BPCLA

Forest area X2 ≥ TA ∗ 0.416 (LCS)
X2 ≥ FA ∗ (1−MDRFA) ∗ 15

1. “Guangzhou City Territorial Spatial Master Plan (2018–2035)”
(http://ghzyj.gz.gov.cn/zwgk/ztzl/gtkjgh/gzxx/content/post_6484475.html (accessed on 22 June 2023))

2. “Regulations on the Protection and Management of Forests in Guangdong Province”
(https://www.gd.gov.cn/zwgk/wjk/zcfgk/content/post_2523665.html (accessed on 22 June 2023))

Grassland area X3 ≥ GA ∗ (1−MDRGA) ∗ 15
X3 ≤ 1.5 ∗ GA Estimation based on historical dataset

Unused land area X6 ≥ ULA ∗ (1 + MIRULA)

Water area X4 = WA

1. “Guangzhou Water Management Regulations”
(https://www.gd.gov.cn/zwgk/wjk/zcfgk/content/post_2531887.html (accessed on 22 June 2023))

2. “Measures for the Administration of Guangzhou Municipal Construction Projects Occupying Waters”
(https://www.gd.gov.cn/zwgk/wjk/zcfgk/content/post_2531521.html (accessed on 22 June 2023))

Ecological land X2 + X3 + X4 ≥ RLEP 1. “Guangzhou City Territorial Spatial Master Plan (2018–2035)”
(http://ghzyj.gz.gov.cn/zwgk/ztzl/gtkjgh/gzxx/content/post_6484475.html (accessed on 22 June 2023))

2. “Outline of the Fourteenth Five-Year Plan for the National Economic and Social Development of
Guangzhou Municipality and the Vision 2035”
(https://www.gz.gov.cn/zwgk/fggw/szfwj/content/post_7288094.html (accessed on 22 June 2023))

Construction land
area

X5 ≤ UDB
X5 > CLA

Economic
development goals

∑ Xi*Ei ≥ EE ∗ (1 + increase rate)
∗ 15

Development
intensity X5/TA < 0.3

Notes: Ei denotes the economic coefficient of land use type i; TA denotes total area; CLQ denotes cultivated
land quantity; BPCLA denotes basic permanent cultivated land area; LCS denotes low-carbon-oriented scenario;
FA denotes forest area; MDRFA denotes maximum decrease rate of forest area in past decade; GA denotes
grassland area; MDRGA denotes maximum decrease rate of grass land area in past decade; ULA denotes unused
land area; MIRULA denotes maximum increase rate of unused land area in past decade; WA denotes water
area; RLEP denotes red line for ecological protection; UDB denotes urban development boundary; CLA denotes
construction land area; EE denotes economic efficiency; IR denotes increase rate.

2.2.3. Spatial Simulation of Land Use Based on Optimized CA Method

In our study, the probability of land use was predicted using the CNN–RF model.
CNN was coupled with the RF classifier to determine the nonlinear relationship between
numerous factors and land use types, which can be used to calculate the probability of

http://ghzyj.gz.gov.cn/zwgk/ztzl/gtkjgh/gzxx/content/post_6484475.html
http://ghzyj.gz.gov.cn/zwgk/ztzl/gtkjgh/gzxx/content/post_6484475.html
https://www.gd.gov.cn/zwgk/wjk/zcfgk/content/post_2523665.html
https://www.gd.gov.cn/zwgk/wjk/zcfgk/content/post_2531887.html
https://www.gd.gov.cn/zwgk/wjk/zcfgk/content/post_2531521.html
http://ghzyj.gz.gov.cn/zwgk/ztzl/gtkjgh/gzxx/content/post_6484475.html
https://www.gz.gov.cn/zwgk/fggw/szfwj/content/post_7288094.html
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different land types for each pixel. Land use change data and factor data were included
in the input data of the CNN–RF model. Land use data in 2015 and 2020 were used to
explore the land use change, which was encoded into seven categories: 0, 1, 2, 3, 4, 5, and 6.
Code 0 denotes unchanged, and codes 1, 2, 3, 4, 5, and 6 indicate the six types of cultivated
land, forest, grass land, water, construction land, and unused land, respectively, that have
been converted from other land use types. Then, land use change data were divided into
small patches from which the sample can be chosen randomly as the label data of model
input. There are many factors of the change in land use, such as the digital elevation model
data, the slope and aspect included in the physical geography data, and the gross domestic
product, population density and points of interest included in the socioeconomic data.
Factor raster data were divided into small patches, the same as the land use change data,
according to their corresponding spatial relationship, and were stacked into different bands
in a raster layer.

The framework of the CNN–RF model is shown in Table 4. Part of CNN, the Python
library Shapely, and GDAL were used to read the raster dataset and convert the data into
digital information. Through the library Shapely, land use change data were divided into
small land patches according to the ground truth whose centroid could be extracted. Then,
windows with a size of 50 × 50 were constructed around the row–column positions of
centroids, and the factor raster layer and land use were divided into small regular patches.
Thirty factor layers were used to predict the probability for each pixel in this paper, resulting
in a 3D matrix size of 30× 50× 50 for each random sample.

Table 4. Structure of the CNN–RF model.

Order Layer Name Input Size Kernel Size Output Size

1 Convolution layer 30 × 50 × 50 3 × 3 16 × 48 × 48
2 Max-pooling 16 × 48 × 48 2 × 2 32 × 24 × 24
3 Convolution layer 32 × 24 × 24 3 × 3 32 × 22 × 22
4 Max-pooling 32 × 22 × 22 2 × 2 32 × 11 × 11
5 Convolution layer 32 × 11 × 11 3 × 3 32 × 9 × 9
6 Fully connection 1 × 2592 Null 1 × 96
7 SoftMax 1 × 96 Null 1 × 6

Notes: The SoftMax layer will be replaced by a random forest classifier in the following study.

The high-level features of the factors were extracted by CNN, which can be used in
RF to classify the land. The seven network layers in the CNN structure are as follows:
two pooling layers, three convolution layers, one fully connected layer, and a SoftMax
classifier layer. The first layer is a convolution layer with a 3× 3 convolution kernel, and a
16× 48× 48 feature map is output. The second layer is the 2× 2 max-pooling layer that
can export a 32× 24× 24 feature map. The third layer is a convolution layer with a 3× 3
convolution kernel, and a 32× 22× 22 feature map is obtained. The fourth layer is also the
2× 2 max-pooling layer, producing a 32× 11× 11 feature map. The fifth layer is also a
convolution layer, like the first layer, yielding a 32× 9× 9 feature map. The sixth layer is a
fully connected layer by which the 2692 features were reduced to 96 features. The seventh
layer is a SoftMax layer whereby the probability of various land use types can be calculated.
The type with the highest probability is the predicted type.

However, the performance of RF is better than that of the SoftMax classifier. Thus,
the SoftMax classifier is replaced by RF in this paper to discover the relationship between
the high-level features extracted by layers before the SoftMax classifier and land use types.
Previous studies showed that RF is the most effective classifier and can perform better than
other classifiers [47]. RF is integrated by many decision trees; the result of RF may be the
average value or the plurality of all the results from the decision trees, which can improve
predictive accuracy and control overfitting [48]. In this paper, a CNN model with high
accuracy needs to be trained. Then, RF is used to replace the SoftMax classifier and train
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the RF using the high-level features extracted by the CNN. Finally, the CNN–RF model is
used to predict the probability of various land use types.

Artificial neural networks (ANNs) were used to predict the probability of various
land use types in previous studies. Although ANNs performed well in former studies, the
ANNs only focus on the relationship between land use types and factors on an independent
grid. The land use type on an independent grid is influenced not only by the factors on
this grid but also the factors of the grid neighborhood, which can be considered more
comprehensively by the CNN–RF model.

Then the spatial pattern of land use is simulated using CA method. The multiple
CA model is used to simulate the future spatial pattern of land use. After predicting the
probabilities of various land use types and obtaining the demands determined by the Linear
Programming model, the probability layers are used as the input of the multiple CA model
to simulate the future spatial pattern of land use. The self-adaptive inertia and competition
mechanism CA of the FLUS model are used as the CA module in the paper [30]. CA
consists of three elements, namely, cellular status, transformation rules, and neighborhood
cellular, in which the transfer rules are the most important in the changing of cellular status.
Aside from the probability predicted by the CNN–RF model, the neighborhood effects,
inertia coefficients, and conversion cost were also included in the combined probability
of the cellular in the FLUS model. The neighborhood effects are similar to the traditional
CA; for a specific grid cell p, the neighborhood effects of land use i are defined via the
following formula:

Ωt
p,k =

∑N×N con
(

ct−1
p = k

)
N × N − 1

× wi (4)

where the ∑N×N con
(

ct−1
p = i

)
denotes the total number of grid cells covered by land use

k after the last iteration time t− 1 in the N × N window. Because the different land use
types have dissimilar neighborhood effects, wi is the neighborhood weight for land use i
obtained by experts’ experiential knowledge or the results of multiple tests.

Inertia coefficients can describe the competition and interaction between different land
use types during the CA iterations. The inertia coefficients of various land use types can be
adapted according to the difference between land use demands and the number of ground
truth grids for land use types, as follows:

Inertiat
i =


Inertiat−1

i i f
∣∣∣Dt−1

i

∣∣∣≤∣∣∣Dt−2
i

Inertiat−1
i × Dt−2

i
Dt−1

i
i f Dt−1

i < Dt−2
i < 0

Inertiat−1
i × Dt−1

i
Dt−2

i
i f 0 < Dt−2

i < Dt−1
i

(5)

where Inertiat
i denotes the inertia coefficient at iteration time t of land use type i; Dt−1

i is
the difference between the demand of land use i and the grid count covered by land use i.

Conversion cost indicates the difficulty of converting land use type i to other land use
types. The value of conversion cost ranges from 0 to 1, and the closer it is to 1, the more
difficult it is to convert.

The combined probability of a specific cellular grid is defined as follows:

TPt
p,j = Pp,j ×Ωt

p,j × Inertiat
j ×
(
1− Ci→j

)
(6)

where TPt
p,j is the combined probability of grid cell p converting from the land use type

i at iteration time t− 1 to land use type j at iteration time t; Pp,j denotes the probability
of cell p being covered by land use type j; Ωt

p,j denotes the neighborhood effect of land

use j on grid cell p at iteration time t; Inertiat
j is the inertia coefficient of land use type j

at iteration time t, and Ci→j denotes the conversion cost from land use type i to the target
land use type j.
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3. Results
3.1. Spatial and Temporal Changes of Land Use and Carbon Emissions
3.1.1. Changes of Land Use Structure

Table 5 illustrates the change in the proportion of land use types between 2010 and 2020.
Forest makes up the largest proportion of land at 44.21% in 2010, but this slightly decreases
by 0.59% from 2010 to 2020. Cultivated land proportion ranks second and exhibits the
same slight decreasing trend from 31.82% to 30.99%. The substantial encroachment by
other land types during the change results in the largest reduction for water from 7.38% to
5.69%. Except for unused land, construction land is the only land use type that increases
from 16.41% to 19.64%. The expansion of construction land is always accompanied by the
encroachment of other land types, which causes damage to the ecological environment and
increases the difficulty of controlling carbon emissions.

Table 5. Historical quantity of land use change (/km2).

Land Use Type 2010 Percentage 2015 Percentage 2020 Percentage

Cultivated land 2366 31.82% 2264 30.45% 2304 30.99%
Forest 3287 44.21% 3333 44.83% 3243 43.62%

Grassland 12 0.16% 6 0.08% 3 0.04%
Water 549 7.38% 495 6.66% 423 5.69%

Construction land 1220 16.41% 1336 17.97% 1460 19.64%
Unused land 1 0.01% 1 0.01% 2 0.03%

Table 6 shows the transfer areas and land use change types for each land use type.
Figure 3 reveals the spatial distribution of land use change types. Cultivated land transfers
most actively during land use change. The conversion of other land use types to cultivated
land and construction land is distributed broadly in Guangzhou. Forest of 210 km2 was con-
verted into cultivated land located in central and northern Guangzhou. Moreover, 118 km2

of water converted into cultivated land is concentrated in southern Guangzhou, especially
in Nansha District. Due to the influence of the policy of “returning farmland to forests”,
cultivated land of 173 km2 was transferred to forest, which was scattered in the central area
of Guangzhou. Aside from unused land, only 3.7026 km2 of construction land was turned
into other land use types, which is the lowest figure among the various land use types. The
largest part of inflow for construction land was cultivated land, at 208 km2, centered on
Huadu and Baiyun Districts, and spreading in all directions. Despite the implementation
of the policy of “returning farmland to forests” and the Management Measures for The
Occupation of Waters by Construction Projects in Guangzhou, the ecological land use types
of forest, water, and grassland were transformed to cultivated land and construction land
with the rapid development of socioeconomic and urban expansion.

Table 6. Land use transfer matrix (km2).

2020
2010 Cultivated Land Forest Grassland Water Construction Land Unused Land

Cultivated land 1971 173 2 12 208 0.1377
Forest 210 3067 0.3537 0.2025 10 0

Grass land 4 0.468 1 0.1089 5 0.5382
Water 118 2 0.1458 407 22 0.4599

Construction land 0.3618 0.0297 0 3 1216 0.0009
Unused land 0.0378 0.0036 0.0153 0 0.3249 0.4383
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3.1.2. Changes of Carbon Emissions in Guangzhou

Figure 4 shows the changes in average carbon emissions at the village level. The
carbon emissions of Guangzhou show an overall downward trend from 2005 to 2020. With
the industrial transformation and upgrading, as well as the energy structure adjustments,
in Guangzhou, the carbon emissions of Guangzhou dropped from 6,641,000 tons in 2005
to 5,288,000 tons in 2020. According to the requirements of the “Guangzhou Carbon Peak
Implementation Program”, before 2030, Guangzhou’s carbon emissions need to continue to
maintain a downward trend, and a path to increase sinks and reduce emissions is worth
exploring. Figure 4 shows that this paper accounts for the carbon emissions per unit of each
village in Guangzhou in 2010 and 2020, and classifies them into five categories according to
the natural break method. The areas with high carbon emissions gradually spread around
the city center in all directions as Guangzhou develops. Carbon emissions in the northern
part of Guangzhou are kept low due to the large forest areas. The considerable reduction in
carbon emissions in the central city is caused by the evident decrease in the carbon emission
coefficient of construction land with the implementation of a series of low-carbon policies.

3.2. Prediction of Land Use Structure in Multiple Scenarios

The land use structure and carbon emissions of Guangzhou under multiple scenarios
in 2035 are shown in Tables 7 and 8. The quantities of the six land use types under different
scenarios in 2035 meet the quantitative requirements in the existing planning documents,
or are consistent with the changes in the land category areas in the historical years.

Under the natural development scenario, the total carbon emissions of Guangzhou
will reach 51,458,000 tons in 2035, which is 2.32% lower than in 2020. In terms of land use
structure, water has shown the largest decline of 37.75%. The areas of grassland and forest,
land types with carbon sink capacity, decrease by 36.27% and 7.48%, respectively. The area
of construction land increases by 25.27% from 2020. However, the carbon emission from
construction land under the natural development scenario in 2035 decreases by 2.54% with
the development of carbon emission-controlling technology.

Under the low-carbon-oriented scenario, the total carbon emissions decline by 18.95%
from 2020, which is the largest decline of the three scenarios. This scenario shows a
remarkable reduction in carbon emissions while meeting the economic growth rate target.
Forest and grassland, which are carbon sinks, rise by 0.10% and 50.11%, respectively.
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The area of construction land does not show a substantial increase under the restriction,
increasing by 3.93% compared with 2020, and the total carbon emissions from construction
land in 2035 decrease by 19.15% compared with 2020.

Land 2023, 12, x FOR PEER REVIEW 14 of 21 
 

 
Figure 4. Changes of carbon emissions per unit of each village from 2010–2020. 

3.2. Prediction of Land Use Structure in Multiple Scenarios 
The land use structure and carbon emissions of Guangzhou under multiple scenarios 

in 2035 are shown in Tables 7 and 8. The quantities of the six land use types under different 
scenarios in 2035 meet the quantitative requirements in the existing planning documents, 
or are consistent with the changes in the land category areas in the historical years. 

Under the natural development scenario, the total carbon emissions of Guangzhou 
will reach 51,458,000 tons in 2035, which is 2.32% lower than in 2020. In terms of land use 
structure, water has shown the largest decline of 37.75%. The areas of grassland and forest, 
land types with carbon sink capacity, decrease by 36.27% and 7.48%, respectively. The 
area of construction land increases by 25.27% from 2020. However, the carbon emission 
from construction land under the natural development scenario in 2035 decreases by 
2.54% with the development of carbon emission-controlling technology. 

Under the low-carbon-oriented scenario, the total carbon emissions decline by 
18.95% from 2020, which is the largest decline of the three scenarios. This scenario shows 
a remarkable reduction in carbon emissions while meeting the economic growth rate tar-
get. Forest and grassland, which are carbon sinks, rise by 0.10% and 50.11%, respectively. 
The area of construction land does not show a substantial increase under the restriction, 
increasing by 3.93% compared with 2020, and the total carbon emissions from construc-
tion land in 2035 decrease by 19.15% compared with 2020. 

Under the economic priority scenario, total carbon emissions decrease by 1.57% from 
2020, with the lowest decrease compared with the two remaining scenarios. Construction 
land increases by 26.28% compared with 2020. Due to the orientation of economic effi-
ciency priority, more cultivated land, forest, and grassland will be converted into con-
struction land and decrease by 2.71%, 9.88%, and 27.51%, respectively. 

  

Figure 4. Changes of carbon emissions per unit of each village from 2010–2020.

Table 7. Optimization of land use structure in Guangzhou under different scenarios.

Land Use Types 2020
Natural

Development
Scenario/km2

Change Rate
Low-Carbon-

Oriented
Scenario/km2

Change Rate
Economic
Priority

Scenario/km2
Change Rate

Cultivated land 2304 2338 1.48% 2241 −2.71% 2241 −2.71%
Forest 3243 3000 −7.48% 3246 0.10% 2922 −9.88%

Grassland 3 2 −36.27% 5 50.11% 2 −27.51%
Water 423 263 −37.75% 423 0 423 0

Construction land 1460 1829 25.27% 1518 3.93% 1844 26.28%
Unused land 2 2 −4.13% 2 4.76% 2 4.76%

Total area 7434 7434 0 7434 0 7434 0

Table 8. Change of carbon emissions from land use in Guangzhou under different scenarios.

Land Use Types 2020
Natural

Development
Scenario/103 t

Change Rate
Low-Carbon-

Oriented
Scenario/103 t

Change Rate
Economic
Priority

Scenario/103 t
Change Rate

Cultivated land 330 425 28.77% 407 23.44% 407 23.44%
Forest −187 −173 −7.48% −188 0.10% −169 −9.88%

Grassland −0.0070 −0.0044 −36.27% −0.0104 50.11% −0.0050 −27.51%
Water −11 −7 −37.75% −11 0 −11 0

Construction land 52,550 51,213 −2.54% 42,488 −19.15% 51,626 −1.76%
Unused land −0.0008 −0.0008 −4.13% −0.0008 4.76% −0.0008 4.76%

Total 52,682 51,458 −2.32% 42697 −18.95% 51,854 −1.57%

Under the economic priority scenario, total carbon emissions decrease by 1.57%
from 2020, with the lowest decrease compared with the two remaining scenarios. Construc-
tion land increases by 26.28% compared with 2020. Due to the orientation of economic
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efficiency priority, more cultivated land, forest, and grassland will be converted into con-
struction land and decrease by 2.71%, 9.88%, and 27.51%, respectively.

3.3. Simulated Spatial Pattern of Land Use in 2035
3.3.1. Performance Comparison of ANN–CA Model and CNN–RF–CA Model

The land use change data from 2010 to 2015 and the driving factors in 2015 were used
to predict the land use spatial pattern in 2020. The kappa coefficient and overall accuracy
were used to assess the performance of the ANN–CA model and the CNN–RF–CA model,
respectively. The overall accuracy and kappa coefficient of the CNN–RF–CA model are
better than those of the ANN–CA model. More specifically, the kappa coefficient is 0.85 in
ANN–CA and 0.89 in CNN–RF–CA, which means the classification effect of CNN–RF–CA
is higher than that of ANN–CA. In addition, the overall accuracy of the two models is 0.90
in ANN–CA and 0.93 in CNN–RF–CA, which means the total number of pixels correctly
predicted by the CNN–RF–CA model is more than that of the ANN–CA model.

Differences were also observed in the predictive effectiveness of the two models in
different regions. Three classic places, namely, the central part of Conghua District, the
northern part of Huadu District, and the southern part of Nansha District, were selected to
compare the effectiveness of spatial prediction (Figure 5). In the central part of Conghua
District, the simulated result of the ANN–CA model is different from in other images,
in which forest is encroached upon by construction land. The output of CNN–RF–CA is
more similar to the ground conditions, which means CNN–RF–CA performs better than
ANN–CA in modeling forest and built-up land. In the northern part of Huadu District,
part of the Pearl River is encroached upon by construction sites in the output of ANN–CA;
however, according to the ground condition, this area should be water, which is more
similar to the result of CNN–RF–CA. In the southern part of Nansha District, according to
the ground truth, the circled area in Figure 5 should be construction land. The CNN–RF–CA
model’s simulation results are biased in this area.
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The above analysis proves that the performance of the CNN–RF–CA model is better
than that of the ANN–CA model. Therefore, the CNN–RF–CA model was used to simulate
the spatial pattern in 2035 under multiple scenarios in this paper.

3.3.2. Simulation Results

Figure 6 shows the simulation results of land use pattern in 2035 among different
scenarios based on the CNN–RF–CA model. The land use structure under the natural
development scenario is set to follow its natural development pattern, with a rapid increase
in the construction land under the natural development scenario, and the gradual expansion



Land 2023, 12, 1903 15 of 19

from the central city to surroundings area. At the same time, nature reserves are being
encroached upon, and forests will be taken over by construction land. Water areas in the
west of Guangzhou are to be occupied by construction land. Especially in the southern
Baiyun and Yuexiu Districts, most areas of the Baiyun Mountain and Pearl River will be
occupied by construction land.
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Conghua District, southern Baiyun and Yuexiu District, and western Panyu District, respectively;
ND, LC, and EP denote the natural development scenario, the low-carbon-oriented scenario, and the
economic priority scenario, respectively.

The substantial expansion of construction land is limited in the scenario of low-carbon
orientation. Construction land will expand around the original urban area, which is smaller
than in other scenarios. A minor increase in forest is noted. Fragmented cultivated land
will be convert into forest, such as the areas surrounding Liuxi Lake in the northern
Conghua District.

In the economic priority scenario, construction land will expand remarkably, and
its density will increase. Other land types interspersed with construction land will be
converted into construction land after 2020. Many cultivated lands and forests will turn
into construction land compared with the other scenarios, especially in the central city of
Guangzhou. Compared with the natural development scenario, the red line of ecological
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protection in Panyu and Nansha Districts is not to be encroached upon, and the ecological
protection zones will be preserved.

Comparing the results of optimizing the land use structure and spatial layout under
different scenarios reveals that the simulation results of the three future scenarios show
the effects of different development strategies on the spatial layout of the land use in
Guangzhou. Due to technological progress and the adjustment of the energy structure,
the per unit carbon emissions of construction land will be limited, so the total carbon
emissions of the three scenarios are reduced compared with that of 2020. In the low-
carbon-oriented scenario, the expansion of construction land is inhibited, such as in the
northern Huadu District. In the northeastern Conghua District, the forest intensity under
the low-carbon-oriented scenario is higher than in other scenarios. In the economic priority
scenario and the natural development scenario, the construction land use will still increase.
More ecological land in the areas of Baiyun Mountain and Pearl River will be encroached
upon under the natural development scenario than in the economic priority scenario.
Both the natural development scenario and the low-carbon-oriented scenario show carbon
reductions; however, there are great differences with respect to the land use pattern in
these two scenarios. An example is that the building density in the central city under the
economic priority scenario is higher than that in the low-carbon-oriented scenario, and the
forest density in Conghua District under the economic priority scenario is less than that
under the low-carbon-oriented scenario.

4. Discussion

China still faces tremendous pressure and challenges in achieving the “dual carbon”
goal. Although scholars have conducted substantial research on land use changes in the
context of carbon mitigation, there is an urgent need to explore how to achieve the “dual
carbon” goal through the optimization of land use patterns to support the low-carbon
transformation of the urban development with adequate local studies and experiments.
There are two contributions made by this study, which are the integration of pragmatic
urban planning in Guangzhou in the process of the prediction of land use, and the em-
bracing of socioeconomic factors in the process of land spatial simulation. At present, the
traditional studies on land use and carbon emission primarily apply “ecological–economic”
benefit trade-offs to optimize the land use spatial pattern and then evaluate the carbon
emissions. This solution undoubtedly ignores the importance of the pre-integration of
carbon mitigation into land use planning, as well as the technical prediction and simulation
processes [49,50]. In this paper, considering land spatial planning for the city, predictions
of land use structure are formed considering carbon reduction goals, and the simulation
of low-carbon land use patterns is realized with the adjusted CA models. The simulation
results reveal that land use patterns and carbon emissions in different scenarios show great
discrepancies, and the low-carbon-oriented scenario demonstrates considerable carbon
reduction benefits compared with the natural and economic-oriented scenarios. Intuitively,
bottom-up land conversion is driven by the land market, and construction land is the
land use type with the highest probability of increasing, which has been justified in a
number of extant studies [14,29]. However, with food security and ecological security as
the bottom lines in land spatial planning in China, the spatial distributions of cropland and
ecological land are necessarily conserved and protected. The top-down control of land use
management attempts to balance and synthesize the ecological and socioeconomic benefits.
Our study embeds the needs and constraints within land spatial planning into the spatial
optimization of land use patterns, which makes low-carbon city development pragmatic.

Technically, the critical procedures involved in calculations or spatial simulation are
adjusted and optimized based on empirical studies as well as local situations. First, carbon
emission coefficients are determined through the combination of the historical carbon emis-
sion data and land use data, as well as extant experiments in Guangzhou. This approach
makes carbon emission accounting and linear programming model construction more in
line with local characteristics, allowing us to improve the reliability of the model. Second,
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the data are integrated into land spatial planning to optimize the results. For instance, in the
low-carbon-oriented scenario, the construction land area is 1517.76 km2, which conforms
to the requirement of the urban development boundary of Guangzhou in 2035. Finally, the
simulation uses CNN to generate conversion probabilities, and socioeconomic factors in
the research area are integrated during the generation. The simulation accuracy using the
Kappa index increases from 0.90 to 0.93, indicating the superiority of the model considering
anthropogenic activities. Compared with other similar studies in Guangzhou, the accuracy
of the optimized model in this study has been significantly improved [51,52].

In summary, this study focuses on the optimization of the land use pattern in the con-
text of carbon mitigation using the linear programming method and a series of geospatial
technologies. It provides theoretical and technical references for green sustainable develop-
ment and land management, and to achieve synergy between low-carbon transformation
and socioeconomic development. In future research, the differentiated demand of land
types due to diverse local policies and the regional spatial interaction will be integrated
to achieve more accurate and pragmatic planning guidance. Due to the limitations of the
experimental dataset, this paper only estimates the carbon emission per unit of each land
category based on empirical studies, and does not consider the internal variability of carbon
emission intensity within a land category due to population, industry, and tree species.
In subsequent studies, carbon emission estimations can be adjusted by combining field
experiments, questionnaires, and extant studies to optimize land use robustly in the context
of climate change.

5. Conclusions

In this paper, land use pattern is simulated and optimized with the integration of
the linear programming model, the Markov Chain model, and the adjusted CA model
in different scenarios to realize low-carbon city development, taking Guangzhou as the
case study area. The carbon emission coefficient of construction land will decrease from
66,055.34 t/km2 to 27,993.95 t/km2 annually from 2005 to 2035, whereas the carbon emis-
sion coefficient of cultivated land will increase from 84 t/km2 to 181 t/km2. Lands with
a carbon sink function, such as forest land, grassland, water, and unused land, are stable
with respect to areas and related carbon mitigation capabilities. In the natural development
scenario, cultivated land area and construction land area increase. The low-carbon-oriented
scenario shows an increase in forest area and grassland area and a slight rise in the area
of construction land and unused land. The expansion of construction land is revealed
in the economic priority scenario. In the low-carbon-oriented scenario, the expansion
of construction land is effectively controlled, and the density and land use efficiency of
construction land are improved. Forest land and grassland show an upward trend, which
ensures the normal development of the economy and minimizes carbon emissions. Techni-
cally, considering the influence of neighborhood factors for each pixel in the simulation
of land use spatial layout, the CNN–RF–CA model performs better than ANN–CA in the
simulation. In the future, the spatial land use pattern can be realized through robust models
with the integration of land spatial planning, as well as anthropogenic activities, to make
spatial optimization more accurate and pragmatic.
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