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Abstract: The existing digital soil maps are mainly characterized by coarse spatial resolution and
are not up to date; thus, they are unable to support the physical process-based models for improved
predictions. The overarching objective of this work is oriented toward a data-driven approach and
datacube-based tools (Soil Data Cube), leveraging Sentinel-2 imagery data, open access databases,
ground truth soil data and Artificial Intelligence (AI) architectures to provide enhanced geospatial
layers into the Revised Universal Soil Loss Equation (RUSLE) model, improving both the reliability
and the spatial resolution of the final map. The proposed methodology was implemented in the
agricultural area of the Imathia Regional Unit (northern Greece), which consists of both mountainous
areas and lowlands. Enhanced soil maps of Soil Organic Carbon (SOC) and soil texture were generated
at 10 m resolution through a time-series analysis of satellite data and an XGBoost (eXtrene Gradinent
Boosting) model. The model was trained by 84 ground truth soil samples (collected from agricultural
fields) taking into account also additional environmental covariates (including the digital elevation
model and climatic data) and following a Digital Soil Mapping (DSM) approach. The enhanced layers
were introduced into the RUSLE’s soil erodibility factor (K-factor), producing a soil erosion layer
with high spatial resolution. Notable prediction accuracy was achieved by the AI model with R2 0.61
for SOC and 0.73, 0.67 and 0.63 for clay, sand, and silt, respectively. The average annual soil loss of
the unit was found to be 1.76 ton/ha/yr with 6% of the total agricultural area suffering from severe
erosion (>11 ton/ha/yr), which was mainly found in the mountainous border regions, showing the
strong influence of the mountains in the agricultural fields. The overall methodology could strongly
support regional decision making and planning and environmental policies such as the European
Common Agricultural Policy (CAP) and the Sustainable Development Goals (SDGs).

Keywords: spaceborne data; remote sensing; Copernicus; machine learning; earth observation; soil
properties; agriculture; big data

1. Introduction

In the European Union (EU) alone, 70% of the soils are estimated to be at an un-
healthy condition with carbon loss, erosion, land take and contamination being the major
threats [1]. Soils are integral in the functioning of the Earth’s systems by enabling the provi-
sion of vital ecosystem services [2] while soil erosion, a critical global environmental issue,
poses substantial challenges to sustainable land management, agricultural productivity,
and ecosystem health [3,4]. Agricultural fields suffer by soil erosion with nutrient loss,
increased runoff and decreased water availability to plants [5]. Thus, the quantification
and spatial characterization of soil erosion rates play a pivotal role in understanding and
mitigating its far-reaching socio-environmental impacts [6,7]. Traditional methods involv-
ing field-based assessments and empirical models, while informative, often encounter
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limitations in providing comprehensive and spatially explicit erosion estimations across
diverse landscapes. To address these challenges, the integration of Earth Observation (EO)
technologies and remote sensing methodologies has emerged as a promising approach, fa-
cilitating a more comprehensive, dynamic, and spatially explicit assessment of soil erosion
patterns [8].

The Revised Universal Soil Loss Equation (RUSLE), a widely acclaimed empirical
model, serves as a foundational tool in the field of soil erosion modeling [9]. Originally
developed by Wischmeier and Smith in the late 20th century, RUSLE calculates soil loss
rates by factoring in key variables encompassing rainfall erosivity, soil erodibility, slope
length and steepness, vegetation cover, and conservation practices, and it is the most popu-
lar soil erosion prediction model [10]. RUSLE has been applied across diverse landscapes
and terrain types, including watersheds [11,12] and lakes [13,14], mountainous [15] or hilly
areas [16], and agricultural lands [17]. While RUSLE has been instrumental in estimating
soil erosion rates at regional scales, its application in conjunction with EO data and re-
mote sensing techniques offers a transformative potential to enhance its spatial resolution,
accuracy, and applicability across diverse geographic and land-use settings [18,19].

The integration of EO data and remote sensing techniques with RUSLE presents
an innovative pathway to overcome the limitations inherent in traditional soil erosion
modeling methods. Remote sensing platforms, including satellite imagery and aerial
photography, offer an unprecedented ability to capture Earth’s surface dynamics [20],
allowing for the derivation of crucial input parameters for RUSLE. Variables such as
land cover, topography, vegetation indices, and rainfall patterns derived from EO data
empower the enhancement of RUSLE’s predictive capabilities, enabling high-resolution
and spatially explicit soil erosion mapping at various scales. Most of the studies employ
remote sensing products to estimate RUSLE’s C and LS-factors, which describe the crop
cover and management and slope length and steepness, respectively [8]. A key factor
in RUSLE is also the soil erodibility, known as the K-factor, which characterizes a soil’s
inherent susceptibility to erosion caused by rainfall and runoff; different soil types display
varying levels of vulnerability to water-induced erosion. This erosion susceptibility is
influenced by a broad range of physical and chemical properties of the soil, including
primary particle size distribution, organic matter content, soil structure, and permeability.
Most studies use traditional sampling and either calculate the K-factor per each soil type in
the area [11,21] or use simple geostatistics (e.g., ordinary kriging [22–24]) to generate maps
of these properties.

In Digital Soil Mapping (DSM), multiple covariates are used to predict the soil proper-
ties, and they may be broadly categorized as follows according to the SCORPAN model [25]:
soil (other or previously measured properties at a given point), climate, organisms (in-
cluding land cover and natural vegetation), relief or topography, parent material, age,
and space (spatial or geographic position). Relief, organisms, and climate are the three
most frequently used environmental covariates with SOC and texture being amongst the
most well-researched soil properties [26]. DSM has been applied at various spatial scales
across the globe [27] with varying levels of accuracy and with limited studies to use this
approach to improve the K-factor [28–31].

In this paper, the goal is to improve the spatial resolution of the final erosion map by
providing highly detailed soil maps of SOC and soil texture, into the K-factor, using the DSM
approach and by specifically relying on high-resolution Sentinel-2 EO data. In essence, two
different flows are implemented where the first flow generates enhanced geospatial maps of
SOC content and soil texture, while the second flow will introduce these maps as enhanced
layers into the RUSLE providing improved soil loss predictions. All the aforementioned
indicators have already been recognized from various official European documentation
reports [32] as critical indicators for soil health as well as for their importance in several
policies such as the European Green Deal, EU Common Agriculture Policy (CAP) and
Sustainable Development Goals (SDGs).
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2. Materials and Methods
2.1. Proposed Architecture Pipeline

The goal of the proposed architecture pipeline is to create an end-to-end framework
that will generate a final soil erosion layer with high spatial resolution (10 m). For the
convenience of the reader, Figure 1 illustrates the proposed pipeline separated into two
different flows.

Figure 1. The Soil Data Cube pipeline flow diagram for the generation of the soil erosion map.

To efficiently generate all the necessary layers as well as to handle and to process the
large volume of EO data needed, the Soil Data Cube (SDC) was utilized. It is a self-hosted
custom tool, powered by the Open Data Cube [33]; further details of the system may be
found in [34,35]. Concerning the soil erosion process, the RUSLE formula was chosen, as it
is among the most commonly used predictive erosion models and aligns perfectly with
the objectives of this study. However, this formula has demanding input requirements.
Considering the limitations of existing digital soil maps, which have a relatively coarse
grid resolution and lack up-to-date data, incorporating enhanced soil spatial layers as
input datasets could significantly enhance the spatial resolution and reliability of the
final soil erosion simulations. Keeping this in mind, and recognizing that SOC and soil
texture are primary indicators of soil health, we leveraged Sentinel-2 imagery data and
AI to initially generate SOC and soil texture maps with a pixel-based spatial resolution
of 10 m. Subsequently, these maps were integrated into the RUSLE model to enhance soil
erosion predictions.

It should also be noted that in both processes, various datasets, primarily from open-
access sources, are utilized to generate layers and calculate factors. Detailed descriptions of
these processes will be provided in the following sections.

2.2. Study Area

The study area is located in the Region of Central Macedonia in northern Greece and
more specifically focuses on the Regional Unit of Imathia (according to EU Nomenclature of
Territorial Units for Statistics). Its central coordinates are 40◦36′24.77′′ N and 22◦11′59.05′′ E,
while it encompasses a total area of 1702 km2. In general, the Regional Unit of Imathia
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is rich in natural resources, especially in surface water bodies, with one of the largest
rivers in the country, namely the Aliakmonas River, crossing it. It has large and fertile
agricultural areas of high productivity with an emphasis in intensive crops (fruit, beet,
cotton, horticulture, etc.) as well as livestock.

According to the Köppen climate classification, the area is classified as Csa (hot-
summer Mediterranean climate), which is also known as “typical Mediterranean climate”.
Although the coastal area of the Unit is small, the proximity of the sea has a strong influence,
while the mountainous areas in the west significantly contribute to the differentiation of
the Unit’s meteorological and climatic characteristics in relation to the lowland part (agri-
cultural area) in the east. The average temperature most of the year (January–September)
exceeds 20 ◦C, but during the winter season in the mountains, the temperature often drops
down to 0 ◦C, while in summer, the temperature reaches around 34 ◦C (generally the
temperature varies from −11 to 30 ◦C). The annual amount of rain varies between 400 and
600 mm in the lowlands, while in the mountains, it is around 830 mm. The topography of
the area is equally divided with the eastern side having a low altitude while the western
side is dominated by mountainous areas with a maximum altitude of 2040 m (Figure 2a).
Moreover, according to the FAO (Food and Agriculture Organization of the United Nations)
soil classification, the four predominant soil classes are the Lithosols (I) covering 31% of
the total area and the substratum of the mountainous area, while the classes of Calcaric
Fluvisols (Jc) with 25%, Chromic Luvisols (Lc) with 38% and Calcaric Regosols (Rc) with
6% cover mainly the agricultural area of the Unit (Figure 2b). Furthermore and based
on the Corine 2018 classification, the area is covered by croplands (56.3%), forest (27.7%),
grasslands (13.30%), urban (1.74%) and industrial (0.89%) (Figure 2c), while almost the
same class coverage was validated by the WorldCover classification, which is an annual
product with 10 m of spatial resolution provided by the European Space Agency (ESA).

Figure 2. Maps of the study area presenting (a) is the EU-DEM, (b) the soil classes according to FAO,
(c) Corine LULC, and (d) LULC by ESA WorldCover.
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2.3. Datasets

In this study, several datasets were used, including satellite imagery data, topographic
data, meteorological data, land use land management data as well as ground truth soil
data. The datasets will be described in detail in this section while they are referring to both
modeling flows (AI and erosion).

2.3.1. Satellite Imagery Data

As far as the optical data are concerned, 427 L2A Sentinel-2 images were ingested in the
SDC from 2019 to 2021 across 4 tiles and using a cloud filter percentage of <20%. The cloud
coverage filter is responsible for the variance in the file counts per year. For each pixel,
the following statistical moments were calculated per each of the 10 Sentinel-2 bands (i.e.,
without B09 and B10 that correspond to water vapour and cirrus, respectively) across the
multi-temporal data: the minimum, maximum, mean, and standard deviation. Moreover,
the same moments were calculated for NDVI as an additional vegetation index.

2.3.2. Topographic Data

The EU-DEM (Digital Elevation Model over Europe) was used in this study, which is
a product produced by the Copernicus programme with 30 m of spatial resolution. It is a
hybrid product based on SRTM (Shuttle Radar Topography Mission) and ASTER GDEM
data that are fused by a weighted averaging approach.

2.3.3. Meteorological Data

ERA5-Land, a product of the European Centre for Medium-Range Weather Forecasts
(ECMWF), constitutes a comprehensive dataset offering insights into surface-level water
and energy cycles from 1950 onward [36]. Within the ERA5-Land monthly averaged data
subset, two significant variables which are instrumental in understanding atmospheric
conditions and hydrological processes were extracted. These are the temperature and total
precipitation. The temperature represents the air temperature at a height of 2 ms above land,
sea, or inland waters. Meanwhile, total precipitation encompasses the cumulative liquid
and frozen water, including rain and snow, reaching the Earth’s surface. The ERA5-Land
dataset employs a temporal resolution of 1 h and originally features a spatial resolution
of 9 km on a reduced Gaussian grid, which is subsequently calculated with a horizontal
resolution of 0.1◦ × 0.1◦ (corresponding to native resolution of 9 km) within the Copernicus
Climate Data Store. After downloading the monthly averaged data for 2007–2021, the same
statistical moments (i.e., the minimum, maximum, mean, and standard deviation) were
extracted for each pixel value, to represent annual trends, seasonality, and extreme values.

2.3.4. Land Use Land Cover data

The Land Use Land Cover (LULC) data utilized in this study were derived from the
CORINE (Coordination of Information on the Environment) Land Cover dataset via the
Copernicus Land Monitoring Service portfolio (https://land.copernicus.eu/en/products/
corine-land-cover, accessed on 10 October 2023). This dataset was mainly used for the AI
flow in order to filter out LULC classes that do not correspond to agricultural areas.

2.3.5. Ground Truth Soil Data

A soil sampling campaign was carried out during the year of 2020, and a total of 84 soil
samples were collected. All samples were taken from agricultural fields, covering to a
satisfactory extent the entire agricultural area of the Unit. Figure 3 presents the soil sample
distribution in the cropland area. After the field collection, the samples were carefully
stored and transferred to a chemical laboratory.

Regarding the sample preparation and chemical analysis, possible non-soil particles
such as vegetation, roots, stones, etc. were carefully removed from the original soil sample
and air-dried. Furthermore, each of the samples was crushed and passed through a 2 mm
sieve, and then the final chemical analysis followed. It should be highlighted that all the

https://land.copernicus.eu/en/products/corine-land-cover
https://land.copernicus.eu/en/products/corine-land-cover
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samples were analyzed in the same chemical laboratory under the same measurement
methods and protocols in order to construct a homogenized reference dataset. Specifically,
the SOC content was measured with the Walkley–Black method [37], and the soil texture
was determined using the Bouyoucos hydrometer method [38].

Figure 3. The 84 soil samples distribution in the Imathia Regional Unit agricultural area.

2.4. Methodological Approach
2.4.1. Generation of SOC and Soil Texture Maps Using Artificial Intelligence Techniques

To generate the maps of SOC content and soil texture through DSM, we employed
an AI-based approach [39]. As input to the model, we used data from multiple sources
(Section 2.3): specifically, (i) multi-temporal Sentinel-2 satellite imagery, (ii) climate data
from ERA5, and (iii) terrain data from the EU–DEM.

To ensure that the analysis was focused solely on croplands, the collected data were
carefully processed by masking it with the Corine Land Cover data and with Sentinel-2’s
Scene Classification Layer (SCL). Specifically, we included from Corine all classes under
“2. Agricultural areas” except 2.3.1. (Pastures) and 2.4.4. (Agro-forestry areas). With respect
to SCL, we included values 4 (Vegetation), 5 (Not-vegetated), and 7 (Unclassified). This
masking procedure facilitated the extraction of the relevant data pertaining specifically to
cropland areas, eliminating irrelevant regions from the dataset and enhancing the accuracy
of subsequent analyses.

Following this step, at the specific soil sample locations, the required data for modeling
SOC and texture were extracted, i.e., the values from the three aforementioned data sources.
The collected datasets were meticulously organized to form a comprehensive dataset for
modeling purposes. To train and evaluate the predictive models, we randomly split the data
into training (70%) and independent test sets (30%). Moreover, the XGBoost algorithm [40]
was employed for modeling, utilizing a 5-fold cross-validation strategy to optimize the
hyperparameters of the model. We specifically developed models for SOC, clay, and sand
content; silt content was calculated as the difference between 100% and the predicted values
for clay and sand in order to ensure that the particle size distribution added up to 100%.
Clay and sand content were chosen because these two are the most commonly modeled
from EO data, and they are in the two extremes of the distribution.

XGBoost, an abbreviation for eXtreme Gradient Boosting, is a powerful machine
learning algorithm widely used for regression tasks due to its exceptional performance and
efficiency. It operates on the principle of boosting, sequentially combining weak learners,
usually decision trees, to form a robust and accurate predictive model. One of the key
strengths of XGBoost lies in its ability to handle complex relationships within data while
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mitigating overfitting through regularization techniques. To optimize the model, the focus
was placed on three important hyperparameters:

1. Learning Rate (or η): This hyperparameter controls the contribution of each tree to
the final prediction. A lower learning rate makes the model more robust by shrinking
the contribution of each individual tree, potentially improving generalization but
requiring more trees in the ensemble. The grid space used was {0.1, 0.2, 0.3, 0.4}.

2. Maximum Depth: Determines the maximum depth of each tree in the boosting process.
A deeper tree can capture more complex patterns in the data but can also lead to
overfitting if not properly controlled. The optimal value was selected from {3, 4, 5, 6}.

3. Subsampling: The fraction of samples that are randomly selected to build each tree in
the ensemble. It controls the sampling of the training dataset to prevent overfitting
and improve the model’s generalization ability and was selected from {0.6, 0.8, 1.0}.

Finally, to ascribe feature importance scores to each of the input features used and to
thus identify how the input–output association is modeled, the importance metric based
on gain was chosen. This represents the average gain of the feature when it is used in trees
and is calculated by measuring the improvement to the model’s accuracy brought by a
particular feature to each split. High values of this metric indicate that the given feature is
more important for generating a prediction.

2.4.2. Generation of Soil Erosion Map Using RUSLE Formula

This section provides the methodological framework to produce the soil erosion layer
based on the enhanced soil layers generated through AI architectures, open access EO data
and the RUSLE formula. Figure 4 illustrates at a high level the key factors for RUSLE as
well as the sources from which the necessary information were extracted and also the final
inputs used on the model.

Figure 4. RUSLE formula pipeline [41].

The annual soil loss was estimated following the RUSLE model [9]:

A = R × K × C × LS × P (1)
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where A is the average annual soil loss (ton/ha/yr), R is the rainfall erosivity factor (MJ
mm/ha/h/yr), K is the soil erodibility factor [(t ha h)/(ha MJ mm)], LS is the topographic
factor, C is the vegetation cover factor and P is the soil conservation protection factor
(dimensionless).

The following steps explain in detail the process, formulas and sources used in this
study to calculate each of the RUSLE factors.

• R-factor—Rainfall
The erosive force of a specific rainfall in particular location could be measured by
the rainfall erosivity factor (R), and it depends on the amount and the intensity of
rainfall [42,43].
For the R-factor, the ERA-5 dataset was used, which offers data with 1km of spa-
tial resolution. As already mentioned, meteorological data from 2007 to 2021 were
downloaded and the equation of Wichmeier and Smith (1978) [44] was used:

R = 1.735 × 101.5 log
(

Pm2
Pa

)
−0.08188 (2)

where Pm is the monthly precipitation in mm and Pa is the annual precipitation in mm.
• K-factor—Soil erodibility

The soil erodibility factor (K) is perhaps the most critical factor governing soil erosion,
and it expresses the susceptibility of soils toward erosion and measures the contribu-
tion of soil types [45]. At this point, it should be highlighted that the K-factor (soil
erodibility) is related mainly to soil texture and SOC (see also Equation (3)). By using
a time-series analysis of Sentinel-2 imagery data and ground truth point estimations
from a soil survey, an AI approach was implemented (Section 2.4.1) to generate the
soil spatial explicit indicators of SOC and soil texture with higher spatial resolution
than the existing soil digital soil maps. These enhanced products are used as inputs to
calculate the K-factor based on the equation described in [46]:

K =

[
0.2 + 0.3 · exp

(
−0.0256 · Sand ·

(
1 − Silt

100

))]
×

(
Silt

Clay + Silt

)0.3
×[

1.0 − 0.25 · OC
OC + exp(3.72 − 2.95 · OC)

]
×

[
1.0 − 0.7SN

SN + exp(−5.51 + 22.9SN)

]
× 0.1317 (3)

where Sand, Silt, Clay and OC are the percentage contents of sand, silt, clay and
organic carbon, while SN equates to 1 − Sand/100.

• C-factor—Crop cover and management
Generally, various formulas exist in the literature for calculating the C-factor, which
often involve the use of vegetation indices derived from satellite imagery data. In this
study, the C-factor is determined by taking the median value of the NDVI index, which
is calculated using bands B4 and B8 from multi-temporal Sentinel-2 imagery with a
spatial resolution of 10m. This approach is applied in accordance with the equation
described by van Der Knijff et al. (1999) [47], who suggest that employing this scaling
approach yields better outputs compared to assuming a linear relationship:

C = exp
(
−a

NDVI
b − NDVI

)
(4)

where α and b are unitless parameters that determine the shape of the curve relating
to the values of the NDVI and C factors.

• LS-factor—Slope length and steepness
The RUSLE topographic factor (LS) in general is defined by the combination of the
slope length factor (L) and slope steepness factor (S), describing the effect of to-
pography and terrain morphology on the complicated soil erosion processes [48].
The aforementioned factors in most cases can be calculated by using the DEM, which
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was generated either from topographic maps or from satellite data [49,50], while the
reliability and accuracy factors depend on the topographic dataset precision [51–53].
In this study, the required input data in order to calculate the LS-factor are the slope
values extracted from the Copernicus DEM (30 m) and the flow accumulation, down-
loaded from https://github.com/davidbrochart/flow_acc_3s, accessed on 18 Novem-
ber 2023, which is a 3 s flow accumulation derived form HydroSHEDS. After that, the
equation proposed by [54] was used:

LS = L · S (5)

L =

(
λ

22.13

)m
(6)

m =
β

(1 + β)
(7)

S =

{
10.8 · sin θ + 0.03 if θ < 9%,
16.8 · sin θ − 0.5 if θ ≥ 9%.

(8)

where L is the slope length factor; S is the slope steepness factor; λ is the horizontal
projected slope length (based on flow accumulation); m is a variable length-slope
exponent; β is a factor that varies with slope gradient; and θ is the slope angle.

• P-factor—Support practices
According to Panagos et al. (2015) [41], p-values can be derived either from image
classifications using remote sensing data from previous studies or expert knowledge.
As this study focuses on an agricultural area inside Europe, we decided to utilize the
estimated P-factor data developed by [41] for all arable lands in Europe, which is based
on the Common Agricultural Policy (CAP) implementation. This dataset has a spatial
resolution of 1 km and was downloaded from the European Soil Data Centre (ESDAC)
official platform (https://esdac.jrc.ec.europa.eu/themes/support-practices-factor,
accessed on 2 February 2023).

2.4.3. Artificial Intelligence Model Performance Metrics

The models were validated on the independent test set using the following metrics:

1. The coefficient of determination R2, quantifying the degree of any linear correlation
between the observed and the model predicted output; it usually ranges from 0 to 1
(higher is better) and is calculated as:

R2(y, ŷ) = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2

(9)

with ŷi being the prediction for the i-th pattern, yi being its ground truth value, and y
being the mean ground truth value across all N patterns.

2. The root mean squared error (RMSE) which is calculated via:

RMSE(y, ŷ) =

√
∑N

i=1(yi − ŷi)

N
(10)

3. The ratio of performance to interquartile range (RPIQ) which takes both the prediction
error and the variation of observed values into account without making assumptions
about the distribution of the observed values. It is defined as the interquartile range
of the observed values divided by the RMSE of prediction [55]:

RPIQ(y, ŷ) =
Q3 − Q1

RMSE(y, ŷ)
(11)

https://github.com/davidbrochart/flow_acc_3s
https://esdac.jrc.ec.europa.eu/themes/support-practices-factor


Land 2024, 13, 174 10 of 21

where Q1 is the lower quartile or the 25th percentile of the data, whereas Q3 is the
upper quartile which corresponds to the 75th percentile.

3. Results
3.1. SOC and Soil Texture Analysis in the Laboratory

Table 1 provides the summary statistics of the SOC and soil texture measurements
from the 84 collected soil samples. The SOC content (in g C/kg) exhibits a rather low mean
value of 9.32 g C/kg and a standard deviation of 1.28, indicating that the agricultural soils
of the region have low SOC concentrations. The distribution of SOC content displays a
very slight positive skewness, which is indicated by the rightward shift of the mean relative
to the median (Q2) and the lower quartile (Q1), suggesting a small tail extending toward
higher values.

Table 1. Summary statistics of SOC content and soil texture measurements from the collected soil
samples in the region.

Property N Mean Std Min Q1 Q2 Q3 Max

SOC (g C/kg) 84 9.32 1.28 6.90 8.40 9.05 10.00 13.00
Sand (g/kg) 84 356.42 48.2 185 346 373 383 396
Clay (g/kg) 84 244.08 61.2 164 187 230 300 402
Silt (g/kg) 84 399.50 63.3 262 353 424 439 575

Conversely, the clay content (in g/kg) indicates a mean of 244.08 g/kg with a standard
deviation of 61.2. The clay content statistics portray a different distribution with a less
pronounced skewness. The values of the particle size distribution suggest a soil texture
that ranges from loamy soils to clayey soils. Specifically, the higher clay content within
the observed range indicates a soil texture tending toward clayey, potentially influencing
soil properties such as water retention and nutrient availability in the agricultural setting
under consideration.

The sand content, however, is skewed to the left and has a large left tail. The bulk of
the values is concentrated between 346 and 383 g/kg with the minimum standing at over
three standard deviations to the left of the mean value.

3.2. AI Model Performance; Predicting SOC and Soil Texture from EO Data
3.2.1. Model Accuracy

The model accuracy of XGBoost for both soil properties in the independent test set
is provided in Figure 5. The RMSE for SOC is at 0.68 g C/kg, with an R2 of 0.61 and an
RPIQ of 1.58, with the two samples that have higher SOC content being underpredicted.
With respect to the clay content, the RMSE stands at 27.48 g/kg, while the R2 is 0.73
and the RPIQ is 3.24, indicating that the model could predict this property with higher
precision. Among the three soil separates (i.e., clay, silt, and sand), the results for clay are
the most precise.

3.2.2. Feature Importance

The ascribed feature importances, calculated by considering the contribution of each
feature across all trees in the model, are shown in Figure 6. Depicted are the normalized
values of the importance calculated using the gain, i.e., based on the training error reduced
by each split in all trees. Interestingly, the standard deviation of NDVI is considered
important for both soil properties, while the climate data tend to have higher importance
for clay content estimations. Conversely, the height parameter (as extracted from DEM)
appears to have a limited effect on the model. All in all, the Sentinel-2 data appear to be the
most important source of information.
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Figure 5. Scatter plot between observed and predicted values in the independent test set for the SOC,
clay and sand content using the developed AI models. The predictions for silt content are derived
using a mathematical expression from the predicted sand and clay values in order for the particle
size distribution to sum up to 100%. The dashed line is the 1:1 line, while the straight line is the least
squares fit.

Figure 6. Feature importance for the SOC, clay, and sand content models using the developed
AI models.
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3.2.3. Generating Enhanced Geospatial Layers

The geospatial layers of SOC content and soil texture were generated utilizing remote
sensing data from Sentinel-2 and an AI model trained with ground truth soil data. Figure 7
presents the resulting maps of SOC and clay content, showcasing local variations in these
indicators with a spatial resolution of 10 m, covering the agricultural area of the Imathia
Regional Unit. The maps reveal higher SOC and clay values predominantly in the north-
ern agricultural part of the Unit, while lower values for both indicators are observed in
the western part, which is associated with the mountainous area. Moreover, it should
be highlighted that areas with flat topography, corresponding to Calcaric Fluvisol soil
types, exhibit higher indicator values, whereas lower values are found in regions near the
mountains, which are characterized mainly by Chromic Luvisols soils.

Figure 7. Spatial distribution of SOC and clay content in the agricultural area of the Imathia Re-
gional Unit.

3.3. Soil Erosion Assessment
3.3.1. Spatial Layers of RUSLE Factors

In the current study, the six RUSLE factors were generated through various methods,
combining remote sensing data and other open datasets as well as input layers produced
through AI architecture.

The C-factor was generated based on Sentinel-2 imagery data, the NDVI index and
the Corine LULC dataset. The factor ranges from 0.19 to 0.31 with the highest values in the
mountainous areas and lower values in the flat topography (Figure 8a).

The LS-factor represented in Figure 8b describes the influence of the topographic
characteristics of the area on soil erosion. The LS-factor varies from 0.08 to 1. Low LS-factor
values prevailed in the region with flat topography, increasing significantly near the river
borders and in the areas with high elevation.

The generated rasterized layer of the K-factor (Figure 8c) varies from 0.033 to 0.048 with
a mean value of 0.038. As the soil erodibility is influenced by the soil texture, the highest
values are spatially correlated with the high values of SOC and clay content corresponded
mainly to Calcaric Fluvisols (Jc) soil types.

The used P-factor value shows values ranging from 0.36 to 1 (Figure 8d). The effective-
ness of the technique for reducing soil erosion increases with a decreasing P-factor value.
The map reveals that the highest P-factor values were in the main agricultural areas of the
Unit with 0.88 being the mean value of the area.
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Figure 8. Spatial distribution of the produced RUSLE factors: (a) C-factor, (b) LS-factor, (c) K-factor
and (d) P-factor.

3.3.2. Map of Average Annual Soil Erosion in the Unit

The SDC was used to produce the map of the average annual soil loss, corresponding to
2021, in the agricultural area of the Imathia Regional Unit at 10 m resolution by multiplying
the six RUSLE factors. Figure 9 portrays the estimated average annual soil erosion for
the Unit, and in order to provide a more comprehensive map, we utilized the erosion
classification as proposed by [56] where soil erosion values are classified into low (<2),
moderate (2–5), high (5–8), very high (8–11) and extremely high (>11) with the unit of
ton/ha/yr for all values, while we followed the accepted limit of more than 11 ton/ha/yr in
arable lands considered as severe erosion (threshold set by the Organisation for Economic
Co-operation and Development) as previous studies [57,58].

The Unit has a mean average annual soil loss of about 1.76 ton/ha/yr with a range of
0 to 58 ton/ha/yr. Figure 10 illustrates the portions of the total agricultural area per erosion
class (from low to extremely high). More than 80% of the total agricultural area classified
as low erosion, covering 894 km2. 6% of the total agricultural area, suffers from severe
erosion. These fields are particularly located in the mountainous border areas, showing the
significant influence of the mountains in the total soil loss of the Unit. Low to moderate soil
loss values mainly prevail in the flat topography areas of the Unit with some exceptions
across the river side banks where there are higher values (>5 ton/ha/yr) compared to the
rest of the flat area.

Figure 11 provides a close-up view of two distinct areas within the Unit, depicting
SOC and clay content, the K-factor, and the final soil erosion map. The resolution achieved
at 10 m enables discrimination even at the field level, offering a more detailed spatial
distribution of the indicators.
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Figure 9. Average annual soil erosion for agricultural area in Imathia Regional Unit for 2021.

Figure 10. Portions of total agricultural area per erosion class (from low to extremely high).

Figure 11. SOC, clay content, K-factor and soil erosion in two different demonstration areas in
the Unit.
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4. Discussion
4.1. Generation of the Enhanced Soil Property Layers
4.1.1. Accuracy of the AI Models

Three separate models were developed to predict the SOC, clay, and sand content
in the croplands of the Imathia region from the EO data which covered optical data from
Sentinel-2, meteorological data, and topography, following the DSM approach. Silt content
was estimated from the prediction values of the other two soil separates. The accuracy
results were acceptable (Figure 5) with SOC content noting the lowest performance with an
R2 0.61, while soil texture was predicted more robustly (R2 of 0.73, 0.67, and 0.63 for clay,
sand, and silt, respectively).

Compared to other studies in the literature, it can be noted that the performance for
both SOC and soil texture is similar. In a recent review on EO data-driven cropland soil
monitoring that included only studies that focused on the detection of bare soil [59], it
was noted that at a regional scale, the median R2 for SOC was 0.67, while for clay, it was
0.39. Extending the comparison with other DSM studies, i.e., papers which include other
covariates like in the present study, it should be highlighted that most make use of terrain
variables with multiple studies using also machine learning models [60,61]. With respect
to the accuracy of SOC, the R2 value in landscape-scale assessments in Tanzania was
reported as 0.60 for the 0–30 cm topsoil [62]. A value of 0.57 was noted in China for the
first layer (0–5 cm) [63], while a mean of 0.58 was reported in a study of Central Nova
Scotia, Canada [64]; all these values are slightly higher than the median value noted in the
review of Chen et al., which was 0.49 [26]. In the same review, DSM studies focusing on
topsoil texture have a median R2 of about 0.50 with notable variance. For example, at the
0–5 cm depth in China, a performance of 0.45 for clay, 0.49 for sand, and 0.48 for silt were
noted [65]. Higher values (R2 of 0.74, 0.69, and 0.37 for clay, sand, and silt, respectively)
were reported for Brazil [66].

4.1.2. Relative Feature Importance Results

The relative feature importance scores across the three models (Figure 6) indicate
that the optical and meteorological data are the most important sources of information
across all soil properties, while, interestingly, the topographical parameters are ascribed
low importance scores. In a 2022 review that analyzed papers employing DSM techniques
to map SOC in agricultural lands at regional or broader scales, it was ascertained that
across the studies, the parameters that were categorized as “influential” or “very influential”
are (in order): precipitation, temperature, elevation, slope, NDVI or other vegetation
indices [67]. The lower importance of the topography noted in our models, despite the
excellent 30 m resolution of EU-DEM, may be due to the small differences in topography in
the examined area (Figure 3), which covers the mostly flat part of the Imathia region that
contains the agricultural land. This is potentially offset with the models relying more on
the optical data to infer the soil properties, giving rise to higher feature importance scores
to the Sentinel-2 data.

It is also noteworthy to highlight that the SOC model focuses mainly on the deviation
of NDVI, which may be used to potentially identify correlations between SOC and crop
type (including permanent versus perennial crops) and on the infrared portion of the
spectrum using the minimum values, which may be directly correlated with SOC from
bare soil signatures or indirectly noted from vegetated areas. The mean soil color is
also noted as important, albeit a bit less, which is known to be correlated with SOC [68].
With respect to soil texture, the use of bands in the SWIR which is correlated with the
presence of clay minerals and the increased importance of climate variables is noted.
The latter are significant due to their influence on the soil formation processes, affecting the
rate of weathering, decomposition of organic matter, and mineral transformations, thereby
shaping soil texture composition.

Considering the drivers of SOC storage, in a meta-analysis of the strength and direction
of changes in SOC stocks caused by irrigated agriculture, it was determined that climate
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(and in particular aridity), the irrigation method, and soil texture were strong predictors of
change in SOC in irrigated agricultural systems; while the average annual precipitation
and temperature, elevation, crop type, and other management practices had no or only
minor importance [69]. Moreover, conservation agriculture practices such as minimum
tillage, the use of cover crops in perennial systems, and direct drilling has been found to
facilitate the increase of organic matter and carbon sequestration in Mediterranean rainfed
agro-ecosystems [70,71]. In this study, the agronomic management practices and the type of
irrigation were not recorded; considering also that data from the Land Parcel Information
System are not publicly available, examining the estimation accuracy and variation of SOC
within such groups was not feasible.

4.2. Spatial Distribution of the Soil Erosion

Soil erosion is one of the most important land processes with many hot spots of soil
erosion (rates > 20 ton/ha/y) in the Mediterranean region [72]. Moreover, Greece is among
the EU countries (including Slovenia, Italy, Austria and Spain) that suffer from severe
erosion in cultivated areas (11.6% eroded) [57] and present high P-factor values, which
is also considered the most uncertain RUSLE factor [73]. The importance of the K-factor
in the RUSLE is indisputable, and this work offers an approach to improve the spatial
resolution and the reliability of this layer through DSM techniques and ground truth soil
data. To our knowledge, a limited number of studies have used remote sensing and DSM
approaches to spatially predict the K-factor. Thomas et al. in 2018 [28] implemented
DSM processes using a Random Forest (RF) model trained by 356 in situ soil samples,
covering three different catchments in Australia, and generated a K-factor map with 90 m
resolution. Taghizadeh et al. (2019) [30] produced a K-factor layer with 30 m resolution,
at the watershed scale in the West Corn Belt (WCB) in the USA, by using DSM techniques.
An Artificial Neural Network (ANN) was trained with 200 K-factor soil samples, achieving
an R2 value of 0.71. Recently, Jahandideh et al. (2021) [31] used Landsat-8 satellite imagery
data and several environmental covariates to produce a K-factor map with 30 m resolution
in two adjacent sites in the Behbahan region in Iran. Here, 150 soil samples were used
to train two models: RF and ANN. Both models resulted in good and unbiased K-factor
estimates.

Based on our results, our case study area is generally characterized by low to moderate
erosion levels. Nevertheless, it serves as an excellent example as it encompasses both flat
and mountainous terrain simultaneously, highlighting the substantial impact of elevated
lands on agricultural fields. The areas with lower erosion align with regions where SOC
and soil texture exhibit higher values along with corresponding K-factor values.

Due to the lack of soil erosion ground truth measurements, we examined the corre-
lation with existing generated results from a previous study that was based on, to some
extent, a similar approach that is considerable reliable and is freely available. Thus, our
mean value for the area (1.76 ton/ha/yr) approaches, but falls short, of the mean value of
1.18 ton/ha/yr provided by the erosion product from Panagos et al. (2015) [74] (available
upon request via the https://esdac.jrc.ec.europa.eu/content/soil-erosion-water-rusle2015,
accessed 20 October 2023). The difference between the two products can be considered
reasonable for a variety of reasons: (i) the products refer to different simulation years (2016
and 2021), (ii) the use of different ground truth soil data for organic carbon and soil texture
(LUCAS, study’s sampling campaign), (iii) the use of different formulas and methods to
calculate the six different RUSLE factors as well as (iv) the uncertainties included on the
methods. Also, again, according to Panagos et al. (2015) [74] for the study area, the per-
centage difference in soil erosion from 2010 to 2016 was estimated to be between 3 and 5%,
verifying in this way the findings of this research for increasing erosion in the Unit.

In addition, having in mind that the main difference of our soil erosion map with other
products is the spatial resolution, the ready to use product by [74] was re-selected, and
an additional simulation was carried out using the MODIS satellite data for comparison.
The produced soil erosion product by [74] has 100 m resolution and used all the available

https://esdac.jrc.ec.europa.eu/content/soil-erosion-water-rusle2015
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LUCAS points in order to calculate the K-factor, while for the new simulation, we used
the SOC and soil texture layers from the SoilGrids (https://soilgrids.org/, accessed on 11
October 2023) platform with 250 m resolution. Figure 12 presents the three different prod-
ucts following the same classification criteria (from low to extremely high). As presented,
there is a correlation regarding the soil erosion values (with differences for various reasons,
mentioned above); however, subsequent differences occurred in the spatial distribution of
the soil layer and in the maps’ spatial resolution. All three products present advantages
and disadvantages; however, regarding the spatial resolution of the layers and considering
also that about two-thirds (63.8%) of the EU’s agricultural area consists of parcels less than
5 ha in size, it is a necessity to improve the spatial resolution of the maps [35], and the
current work findings offer an alternative approach to this dimension.

Figure 12. Soil erosion maps produced with different spatial resolution.

4.3. Limitations and Future Perspectives

Significant results were obtained during the current work; however, there are certain
limitations that should be addressed. This research focused only on agricultural areas
excluding the permanent vegetated classes such as forests, grasslands, etc. Further research
could focus on using DSM approaches for the generation of improved soil layers (e.g., SOC
and clay content) for the areas with permanent vegetation as well as exploring alternative
formulas for the K-factor calculation. Moreover, it should be pointed out that except for the
K-factor, which was produced with 10 m resolution, the other input data in the RUSLE have
a resolution of more than 30 m, creating a future need to use improved spatial products
for these data as well. Additionally, while this research provides pixel-level results for soil
erosion, the European Integrated Administration and Control System (IACS) could be also
used in future research to provide parcel-level estimations, supporting in that way policies
that demand this resolution such as the CAP. Furthermore, inevitably, the AI soil products
of SOC and soil texture, and soil erosion as well, are vulnerable to uncertainties for various
reasons; therefore, the overall estimation of the uncertainty level should be investigated
and estimated in the future. Also, due to the recognized importance of the soil health
indicators SOC, texture, and erosion, a potential combination of them to construct a land
degradation index could also be explored [75], while the overall methodology at the end
could be integrated as part of a wider soil digital twin framework [76]. It should be also
highlighted that the current work did not make an in-depth analysis per the RUSLE factor,
as the pros and cons of the model has already been described in previous studies [18,77].

5. Conclusions

This study delved into the crucial realm of soil erosion assessment, emphasizing the
significance of finer spatial resolution and the innovative integration of Artificial Intelli-
gence within the RUSLE. We successfully generated a soil erosion map for the Imathia
Regional Unit in northern Greece with special focus on the agricultural area. A significant
novelty of this work lies in the utilization of SOC and texture maps at an unprecedented
10 m resolution, which influences the K-factor. These were derived through a DSM ap-
proach incorporating DEM, climate data, and Sentinel-2 imagery through the Soil Data
Cube. Specifically, the learning algorithm was XGBoost, which indicated a fair accuracy,

https://soilgrids.org/
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with the generated high-resolution maps providing a detailed spatial distribution of soil
erosion indicators. The resulting maps were rigorously compared with existing prod-
ucts, showcasing the effectiveness and innovation brought forth by the integration of
fine-resolution SOC and texture data into the soil erosion modeling process. Moreover, our
findings indicate that the complexity of the topography in the study area highlights the
limitations of coarse spatial resolution products in identifying the spatial distribution of
soil loss in sensitive and vulnerable areas, such as near stream networks where eroded soils
are present.

As we navigate an era of heightened environmental awareness and the imperative for
sustainable land use practices, our work underscores the pivotal role of advanced technolo-
gies in shaping the future of soil erosion research. The integration of finer spatial resolution
products and the spatially explicit nature of our AI-driven RUSLE enables stakeholders to
prioritize intervention strategies, allocate resources judiciously, and implement sustainable
land management practices with unprecedented accuracy.
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