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Abstract: The advancement of the big data industry is playing a pivotal role in urban land man-
agement refinement. Recently, China initiated a big data strategy, establishing national big data
comprehensive pilot zones (NBDCPZs) across diverse regions. These initiatives present substantial
opportunities for enhancing the urban land green use efficiency (ULGUE). Consequently, in this
study, we utilized the super-efficiency slack-based measure (SBM) model with undesirable outputs
to assess the ULGUEs across 281 prefecture-level cities in China from 2006 to 2021. Subsequently,
leveraging the NBDCPZ establishment as a quasi-natural experiment, we employed the difference-in-
differences (DID) method to empirically explore the impact of the NBDCPZ policy on the ULGUE for
the first time. The findings revealed the following: (1) The implementation of the NBDCPZ policy
significantly enhances the ULGUE; (2) the effects are mediated through mechanisms such as fostering
technological innovation, mitigating resource misallocation, and promoting industrial agglomeration;
(3) the heterogeneity analysis emphasizes the increased policy effectiveness in cities characterized by
fewer natural resources, lower economic growth pressures, stable development stages, and moderate
digital infrastructure and human capital levels; and (4) further analysis demonstrates the significant
positive spillover effects of the NBDCPZ policy on the ULGUEs of neighboring non-pilot cities, with a
diminishing impact as the proximity between pilot and non-pilot cities decreases. Overall, this study
contributes to the literature on the relationship between the digital economy and land utilization,
offering valuable insights for achieving sustainable urban development.

Keywords: national big data comprehensive pilot zone; urban land green use efficiency;
difference-in-differences; industrial agglomeration; spillover effect

1. Introduction

Since the turn of the 21st century, China’s urbanization has surged, with the urbaniza-
tion rate jumping from 36.09% at the beginning of the century to 66.16% by the end of 2023.
However, this rapid, land-intensive urban growth has posed serious threats to land-use
efficiency and sustainable resource utilization, resulting in the scarcity of arable land [1], the
significant depletion of natural resources [2], and increased environmental degradation [3].
According to the National Land Planning Outline, between 2006 and 2016, China’s water
and energy consumption per unit of GDP were 3.3 times and 2.5 times the global average,
respectively, with 16.1% of the nation’s soil exceeding the pollution standards. Despite
these high land-use costs, the returns have been disproportionate [4,5]. In 2018, industrial
land constituted nearly 20% of China’s total land use—about double the global average at
the time—and the per capita industrial added value was only USD 2726, merely 29.7% of
that in Germany, the global leader. It is clear that enhancing the land-use efficiency and
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achieving sustainable urban development have emerged as critical challenges in China’s
modernization efforts.

In response, the Chinese government highlighted the need for an accelerated transition
to sustainable environmental practices and more intensive land use in the “14th Five-Year
Plan for National Economic and Social Development (2021–2025)”, released in 2021. This
policy underscores a pivotal shift in China’s urban land-use strategy from the sole emphasis
on GDP growth to a more integrated and comprehensive evaluation framework. This shift
is in line with the evolving concept of the urban land green use efficiency (ULGUE), which
seeks to optimize the urban land economic and ecological benefits while minimizing
the resource consumption and environmental impact [6,7]. Unlike land-use efficiency
concepts that focus solely on the economic output per unit of land, the ULGUE encompasses
both economic and ecological dimensions, reflecting an economy’s production scale and
technological level [8]. The ULGUE is crucial, as it reflects the material and environmental
quality of urban living conditions [9]. Discussion on the factors that improve the ULGUE
has been a focal point in recent research [10,11].

Traditionally, studies have focused on enhancing labor productivity [12], adjusting
the land supply [13], and improving transportation infrastructure [14]. However, with the
widespread application of internet technology and the development of digital services such
as cloud computing and the Internet of Things, big data has emerged as a new production
factor that is being rapidly integrated into various aspects of urban production, consump-
tion, and distribution [15–17]. There are two main reasons for this shift. First, in the context
of the digital economy, land management departments can leverage technologies such as
land information systems to improve urban planning, scientifically allocate land construc-
tion quotas, and monitor land pollution in real time, directly impacting the ULGUE [18–20].
Second, businesses can use big data technology to identify target customers [21], shape
consumer perceptions [22], predict market risks [23], and monitor their energy consump-
tion [24], thereby indirectly enhancing the ULGUE by improving their production processes
and optimizing their operational efficiencies [25]. To stimulate the development of China’s
digital economy, the State Council issued the “Big Data Development Outline” in 2015,
officially designating Guizhou Province as the nation’s first comprehensive big data pi-
lot zone. In October 2016, to further implement China’s big data strategy, the National
Development and Reform Commission, in conjunction with the Ministry of Industry and In-
formation Technology and other relevant departments, approved the initiation of NBDCPZ
construction in seven regions, including Beijing, Tianjin, Inner Mongolia, and Henan (see
Figure 1 for the spatial distribution of the NBDCPZ regions). According to the construction
plan, the pilot cities aim to explore data center integration and utilization, data resource
open sharing, and the development of data industry clusters within the big data domain.
Additionally, the big data industrial parks focus on key digital economy industries such as
artificial intelligence, 5G, blockchain, and the Internet of Things, promoting the application
of cutting-edge digital technologies within the pilot zones to spur overall digital economic
development in these areas.

Notably, the policy document emphasizes the role of these initiatives in enhancing land
data collection, improving the allocation of land and other resources, and promoting urban
sustainability. Local governments are urged to utilize big data technologies within their
NBDCPZs, such as satellite remote sensing, drones, and the Internet of Things, to establish
environmental monitoring systems and achieve precise urban ecosystem management.

Has the NBDCPZ construction truly improved the ULGUE? If so, what are the possible
mechanisms of influence? Clarifying these questions is crucial for advancing green and
sustainable land utilization. Utilizing panel data from 281 prefecture-level cities from 2006
to 2021, in this study, we made the first attempt to investigate the impact of the NBDCPZ
policy on the ULGUE. The potential contributions of this study are as follows:

1. The existing research primarily focuses on either the economic benefits [26,27] or the
environmental benefits [28,29] of the digital economy in isolation. By incorporating
pollutant emissions as undesirable outputs in the assessment of the ULGUE, in this
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paper, we provide a more comprehensive understanding of the consequences of the
NBDCPZ policy on land use;

2. While prior studies tend to analyze the economic and environmental benefits of the big
data industry from perspectives such as technological innovation, resource allocation,
and industrial structures [30,31], in this paper, we identify and validate an important
but overlooked channel: the policy’s role in promoting the ULGUE by attracting big
data enterprises and talent, thereby facilitating industrial agglomeration;

3. When analyzing the heterogeneous effects of the NBDCPZ policy, the existing lit-
erature often focuses on the city size and location [24,30]. However, in this paper,
we highlight the importance of a city’s economic conditions, hardware, and talent
availability. Moreover, we investigate the policy’s effects across various development
stages, economic growth pressures, and digital infrastructure and human capital levels,
providing clearer guidance for the selection of suitable big data pilot zones;

4. The high mobility of data elements implies that the impact of the NBDCPZ policy
is likely to spill over to non-pilot cities [32,33], potentially violating the stable-unit
treatment value assumption (SUTVA) of the difference-in-differences (DID) model.
Therefore, we employ a spatial difference-in-differences (SDID) method to further
explore the spillover effects, offering valuable insights for policymakers aiming to
optimize land utilization.
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The subsequent sections of this paper are organized as follows: Section 2 outlines
the theoretical analysis and hypotheses. Section 3 introduces the model setting, variable
descriptions, and data sources. Section 4 reports the empirical results, including those
from the benchmark regression, parallel-trend, and robustness tests. Section 5 delves into
the mechanisms underlying the impact of the NBDCPZ policy on the ULGUE. Section 6
examines the heterogeneity impact and spatial spillover effects of the NBDCPZs. The
conclusions and implications are presented in Section 7. The research framework is shown
in Figure 2.
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2. Theoretical Analysis and Hypothesis
2.1. Technological Innovation

The ULGUE, defined as the achievement of the maximum economic, social, and eco-
logical outputs with minimal land input under specific technological conditions [34], is
heavily reliant on technological advancement. The establishment of NBDCPZs influences
the ULGUE via two mechanisms. First, it accelerates technology dissemination and applica-
tion by leveraging big data platforms and enhancing knowledge sharing among enterprises,
thereby boosting productivity [35,36]. Second, it mitigates the risks associated with inno-
vation. Given the long-term and uncertain nature of innovation, enterprises often lack
motivation due to insufficient returns [37]. Big data technologies can offer precise match-
ing and communication platforms for enterprises and consumers, reducing information
asymmetry and boosting innovation investment success rates [38].

The NBDCPZ policy mainly enhances the ULGUE through four avenues. First, the
policy encourages technological innovation in agriculture, accelerating the digitization of
the production and management services in rural areas, thereby increasing the total factor
productivity of rural land. Second, it fosters innovation in construction by integrating
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Internet of Things sensing devices and communication systems into projects, enabling high-
performance algorithms to optimize the building operations and reduce the daily energy
consumption [39]. Third, it advances land monitoring and planning through digital remote-
sensing technology, facilitating efficient land allocation [40]. Lastly, it drives technological
innovation in road transportation, improving logistics management and reducing urban
air pollution. Correspondingly, we propose the following hypothesis:

H1. The NBDCPZ policy enhances the ULGUE by elevating technological innovation.

2.2. Resource Misallocation

Under perfect competition, production factors flow towards regions and sectors with
the highest marginal outputs until the law of diminishing returns equalizes the outputs
across the economy, achieving optimal resource allocation. However, administrative bar-
riers, industry monopolies, and information asymmetry often prevent efficient resource
use. This issue is exacerbated in emerging economies with underdeveloped markets [41,42].
Estimates by Hsieh and Klenow [43] suggested that China’s manufacturing productivity
could increase by 86–110% in the absence of resource misallocation. Thus, addressing
resource misallocation is crucial for improving the ULGUE in China [44].

Due to the rigidity of the land supply in China, public land transactions often show
irrational allocation [45]. Big data technologies such as satellite remote sensing and the ter-
restrial Internet of Things can help land authorities collect land information promptly and
optimize land-use decisions [31]. Banks within NBDCPZs can integrate digital technology
with conventional financial models to detect non-compliant behaviors among enterprises
and individuals utilizing vast data resources, reducing the likelihood of loan defaults stem-
ming from moral hazards and adverse selection, thereby promoting green innovation [46].
Additionally, the establishment of NBDCPZs increases the demand for high-skilled labor
and correspondingly reduces low-skilled employment [47,48]. This process continues un-
til the labor resources achieve equilibrium across regions and industries, leading to the
optimization of the ULGUE [49]. Therefore, the following hypothesis is proposed:

H2. The NBDCPZ policy enhances the ULGUE by reducing capital misallocation.

2.3. Optimization of Industrial Structure

The industrial structure refers to the composition, proportion, and interrelationship
of various sectors within an economy. As society evolves, this structure is constantly
optimized. The existing studies describe this dynamic adjustment through two main
concepts: industrial structure rationalization and industrial structure upgrading. Industrial
structure rationalization involves adjusting the resource allocation and factor inputs to
achieve a balanced proportion and productive relationships among industries. Industrial
structure upgrading refers to the transition of industries from low-efficiency utilization to
high-efficiency utilization [50,51].

In line with the NBDCPZ policy, pilot cities are expediting industrial structure ra-
tionalization through various methods. For example, the NBDCPZs have established a
nationwide big data exchange, aiming to standardize data circulation. By constructing
a smart financial platform covering the provincial, municipal, and county levels, the ex-
change has improved the cities’ capabilities in inclusive finance, green finance, and financial
regulation and has, thereby, facilitated cross-sectoral resource mobility and promoted in-
dustrial structure rationalization [52]. Additionally, the construction of NBDCPZs supports
industrial structure upgrading via the use of internet development funds to channel re-
sources to high-tech sectors, which do not generate a lot of physical pollution. This process
phases out outdated, high-energy-consuming, and high-polluting industries and drives
the digital transformation of industries such as phosphorus chemical, tobacco, and energy
enterprises, thereby enhancing production processes and improving the ULGUE [53,54].
Correspondingly, the following hypotheses are proposed:
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H3a. The NBDCPZ policy enhances the ULGUE by promoting industrial structure rationalization.

H3b. The NBDCPZ policy enhances the ULGUE through industrial structure upgrading.

2.4. Industrial Agglomeration

New economic geography theory and external economy theory suggest that industrial
agglomeration can generate interrelated production networks within the regional scope,
leading to economies of scale and scope, thereby increasing the output per unit of land area
and enhancing the ULGUE [55].

Specifically, the establishment of NBDCPZs can influence the ULGUE through two
pathways: industrial specialization enhancement and collaborative agglomeration in pilot
cities. Industrial specialization agglomeration involves the concentration of the same
industry within a specific area [56]. Local governments are constructing 5G base stations
and international internet data channels, as per the NBDCPZ development plan, creating
favorable conditions for the specialization agglomeration of the big data industry. These
digital infrastructures not only foster the growth of the data element market [57,58], but
they also attract talent by offering high-quality public services, contributing to a “reservoir
of highly skilled labor” [59] and improving the matching efficiency between enterprises
and workers. Furthermore, recognizing the dispersed nature of big data enterprises [60],
governments have established numerous industrial parks in response to the NBDCPZ
policy, addressing the challenge of the low ULGUEs caused by scattered industrial land
locations [61]. Additionally, specialized enterprises generally have lower organizational
management costs and stronger technological absorption capabilities compared to large,
integrated enterprises [62], indicating that specialization agglomeration can improve the
ULGUE by promoting enterprise specialization [63].

Collaborative industrial agglomeration refers to the clustering of interrelated indus-
tries within a geographic area [64]. Unlike specialization agglomeration, collaborative
industrial agglomeration emphasizes the connections between different industries. Accord-
ing to the NBDCPZ policy, regional governments must support both upstream and down-
stream enterprises, facilitating the coordinated development of various industries. Jacobs’
externality theory suggests that collaborative agglomeration can improve the ULGUE by
facilitating resource acquisition, accelerating technology dissemination and cross-industry
interaction, and promoting the sharing of customers and suppliers [65]. Thus, the following
hypotheses are proposed:

H4a. The NBDCPZ policy enhances the ULGUE by promoting industrial specialization agglomeration.

H4b. The NBDCPZ policy enhances the ULGUE by promoting collaborative industrial agglomeration.

3. Model Setting, Variables, and Data Sources
3.1. Model Setting

Given the regional and temporal variations in the NBDCPZ policy, in this study, we
employed a multi-period DID method to investigate its impact on the ULGUE. The model
is formulated as follows:

ULGUEit = α0 + α1NBDCPZit + ∑ αkControlsit + µi + λt + εit (1)

where the subscripts i and t denote cities and years, respectively; ULGUEit denotes the
urban land green use efficiency of city i in year t; NBDCPZit indicates whether city i
initiated the construction of a national big data comprehensive pilot zone in year t, and
its coefficient (α1) measures the policy’s impact on the ULGUE (an α1 significantly greater
than 0 suggests that the increases in the ULGUEs in the pilot cities exceed those in the
non-pilot cities, addressing the questions raised in the Section 1); Controlsit denotes a series
of control variables, with αk representing their coefficients; α0 is the intercept term; µi and
λt denote the city and time fixed effects, respectively; εit reflects the error term.
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3.2. Variables
3.2.1. Dependent Variable

The measurement of the ULGUE has been a significant research topic. Traditional
data envelopment analysis (DEA) methods determine the indicator weights through op-
timization under multiple input and output scenarios, providing an objective reflection
of the ULGUE [53]. However, as land eco-efficiency has gained more attention, the DEA
model’s inability to incorporate undesirable outputs has become a notable limitation. To
address this, Tone [66] developed the super-efficiency slack-based measure (SBM) model
with undesirable outputs, enhancing the efficiency measurement in such contexts. This
model’s advantage has led to its widespread use in assessing the ULGUE. Its calculation
formula is as follows [67]:

minθ =

1
m ∑m

i

(
x

xi0

)
1

q1+q2

(
∑

q1
s

yd

yd
s0
+ ∑

q2
k

yu

yu
k0

) (2)

s.t.



x ≥
n
∑

j=1,j ̸=0
λjxij;

yd ≤
n
∑

j=1,j ̸=0
λjyd

sj;

yu ≥
n
∑

j=1,j ̸=0
λjyu

kj;

x ≥ xi0; yd ≤ yd
s0; yu ≥ yu

k0; λj ≥ 0

(3)

where θ represents the ULGUE; m, q1, and q2 denote the numbers of input, desirable output,
and undesirable output indicators, respectively; λj indicates the weight of each indicator;
xij, yd

sj, and yu
kj represent the input, desirable output, and undesirable output matrices

for the cities, respectively; x, yd, and yu denote the slack terms for the corresponding
variables [14,30].

The variables required for the measurement are as follows: (1) The inputs: Specifically,
the urban construction land area gauges the land input, the fixed-asset investment serves as
an indicator of the urban capital input, and the number of employees in the secondary and
tertiary industries within the urban area represents the labor input indicator. (2) The desired
outputs: The desired land outputs include the economic, social, and ecological benefits. To
quantify the economic benefits of land, we utilized the value added from the secondary
and tertiary industries within the urban area, as these sectors are the primary drivers of the
urban economic activity. For the social benefits, we used the per capita disposable income
of urban residents as an indicator. As a measure of the ecological benefits, we chose the
green coverage rate of built-up areas, which directly reflects the ecological status of the
land. (3) The undesirable outputs: The undesirable outputs represent the by-products of
the urban land use that were not anticipated by society. Following previous studies, we
selected industrial wastewater discharge, industrial sulfur dioxide emissions, and industrial
smoke (dust) emissions as the undesirable output indicators. To reduce data dispersion
and heteroscedasticity, logarithmic transformations were applied to these indicators [68].
Detailed descriptions of the indicators used to calculate the ULGUE are shown in Table 1.
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Table 1. ULGUE measurement indicators.

Input and Output Indicators Variables References

Input

Land Urban construction land area Xue et al., 2022 [14]
Capital Fixed-asset investment Zhou et al., 2024 [69]

Labor Employees in the secondary and
tertiary industries Fan et al., 2023 [70]

Desired output

Economic benefits Value added from the secondary and
tertiary industries Zhou et al., 2024 [69]

Social benefits Per capita disposable income of
urban residents Gu et al., 2023 [28]

Ecological benefits Green coverage rate of built-up areas Tan et al., 2021; Shang et al., 2022 [7,71]

Undesired output Pollutant emissions
Industrial wastewater discharge Xie et al., 2018 [72]

Industrial sulfur dioxide emissions Lu and Tao, 2023; Ma et al., 2024 [73,74]
Industrial smoke (dust) emissions Feng et al., 2023; Ma et al., 2024 [67,74]

Figure 3 illustrates the spatial distributions of the ULGUEs in the sample cities for the
years 2006, 2011, 2016, and 2021. Overall, the ULGUEs in China have shown a significant
improvement over the years. Spatially, the ULGUEs are higher in the southeastern coastal
and western regions, exhibiting a clear spatial clustering tendency. This finding is consistent
with the results reported in other literature [67].
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3.2.2. Independent Variable

In this study, we regarded the NBDCPZ policy as a quasi-natural experiment. The core
explanatory variable, the NBDCPZ variable, was derived from the interaction term of the
TREAT and TIME variables. Specifically, the TREAT variable was a dummy variable taking
the value of 1 if a city was included on the NBDCPZ policy list and a value of 0 otherwise.
The TIME variable was determined based on the implementation timing of the NBDCPZ
policy. If the pilot city was approved for construction in the year or before, it took a value
of 1; otherwise, it took a value of 0.

3.2.3. Control Variables

Referring to the relevant literature, the control variables used in the model were as
follows: (1) the per capita GDP (PGDP) logarithm, used to measure a city’s affluence [67];
(2) the urban gross domestic product (GDP) logarithm, used to measure the economic
development level [34]; (3) the infrastructure level (INF), represented by the logarithm
of the ratio of the urban road mileage to the urban construction land area [70]; (4) the
government intervention intensity (GOV), represented by the proportion of the urban fiscal
expenditure to the urban gross domestic product [30]; (5) the urban resource endowment
(RES), measured by the proportion of mining workers to the total employment [75]; and
(6) the population density (DEN), represented by the logarithm of the number of people
per unit area in the city [24]. All the continuous variables were winsorized at the 1st and
99th percentiles to mitigate the impact of outliers.

3.3. Data Sources

The NBDCPZ policy was initiated in 2015 and has been gradually expanded to various
cities across China. By 2021, the policy had been implemented in 55 cities nationwide.
Based on the policy timeline and data availability, in this study, we followed the existing
literature and excluded cities with significant data gaps, mainly cities in Tibet, Xinjiang,
and Ningxia [30,67]. The research period was set from 2006 to 2021, compiling panel data
from 281 prefecture-level cities in China. To address missing observations in certain years,
methods such as linear interpolation were applied for completion. The data utilized in
this study were predominantly sourced from official documents or websites including the
China City Statistical Yearbook, China Energy Statistical Yearbook, China Research Data
Services Platform, Express Professional Superior Data Platform, and Macroeconomic and
Real Estate Database, among others. The descriptive statistics for all variables are shown in
Table 2.

Table 2. Descriptive statistics of variables.

Variable Obs Mean Std. Dev. Min. Max.

ULGUE 4496 0.7497 0.1219 0.3924 1.1388
NBDCPZ 4496 0.0743 0.3100 0.0000 1.0000

PGDP 4496 11.6658 0.7121 8.8433 14.3869
GDP 4496 16.3604 1.0095 14.1215 19.0140
INF 4496 2.5732 0.3908 0.2328 4.7631

GOV 4496 0.1839 0.0998 0.0427 1.0268
RES 4496 0.0289 0.0857 0.0000 3.9874
DEN 4496 0.2293 0.4934 −1.6174 2.6077

4. Results
4.1. Parallel-Trend Test

Using a multiple-period DID model to evaluate the impact of the NBDCPZ policy on
the ULGUE, we assumed that there were no significant differences between the experimen-
tal and control groups before the policy implementation. To test this assumption, we set up
the following equation:
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ULGUEit = β0 + β−10NBDCPZ−10
i + β−9NBDCPZ−9

i + · · ·+ β6NBDCPZ6
i + ∑ γkControlsit + µi + λt + εit (4)

where NBDCPZ±t
i denotes a series of dummy variables. A value of 1 is assigned to

NBDCPZ−t
i if city i is on the NBDCPZ policy list and if the observation period is precisely

t years before the NBDCPZ establishment. Similarly, a value of 1 is assigned to NBDCPZt
i

if the observation period is exactly t years after the NBDCPZ establishment. Otherwise,
the value is set to 0. The first year before the NBDCPZ establishment (i.e., NBDCPZ−1

i )
serves as the benchmark year. Figure 4 presents the parallel-trend test results, with the
horizontal axis indicating the years relative to the NBDCPZ establishment and the vertical
axis indicating the estimated results.
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4.2. Benchmark Regression

Table 3 presents the results from Equation (1). Column (1) does not include the
control variables, while Columns (2) and (3) progressively add various city-level controls.
All regressions were controlled for time and city fixed effects. As shown in Table 3, the
coefficient for the key variable, the NBDCPZ variable, is consistently positive and significant
at the 1% level, indicating a positive correlation between the NBDCPZ establishment and
ULGUE. Regarding the control variables, PGDP, INF, RES, and DEN exhibit positive
impacts on the ULGUE, while GDP and GOV exhibit negative correlations with it.
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Table 3. Benchmark regression results.

(1) (2) (3)

ULGUE ULGUE ULGUE

NBDCPZ 0.0283 *** 0.0258 *** 0.0223 **
(0.0099) (0.0095) (0.0093)

PGDP 0.0170 ** 0.0582 ***
(0.0068) (0.0125)

GDP −0.0657 *** −0.0917 ***
(0.0160) (0.0176)

INF 0.0399 *** 0.0370 ***
(0.0072) (0.0074)

GOV −0.1123 * −0.1172 **
(0.0591) (0.0573)

RES −0.0178
(0.0113)

DEN 0.0551 ***
0.0223 **

Constant 0.7476 *** 1.5426 *** 1.4832 ***
(0.0007) (0.2434) (0.2356)

City FE Yes Yes Yes
Year FE Yes Yes Yes

Observations 4496 4496 4496
R2 0.825 0.835 0.838

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively, with the standard errors
clustered at the city level in parentheses.

4.3. Robustness Tests
4.3.1. Placebo Test

Although the benchmark model included a series of control variables and city–year
fixed effects to address potential confounders affecting the ULGUE, other unknown factors
may have still interfered with the results. To further validate the reliability of the results,
we randomly selected 55 cities from the pool of 281 cities, matching the actual number of
pilot cities. For each selected city, a year between 2006 and 2021 was randomly chosen
as the policy implementation year. This process was repeated 500 times, with an empir-
ical regression conducted for each iteration. Figure 5 illustrates the distribution of these
500 “false” estimated results, which are centered around zero, confirming that unobservant
factors did not significantly affect the benchmark result accuracy.
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4.3.2. Dependent Variable Substitution

Given the close relationship between the urban input–output and city size, we adjusted
the input variables (capital stock and labor) and output variables (industrial value added
and pollution emissions) by dividing them by the city’s built-up area. The dependent
variable, the ULGUE variable, was then recalculated based on this rescaling. Column (1) of
Table 4 presents the results after this adjustment, with the NBDCPZ coefficient remaining
significantly positive at the 1% level.

Table 4. Robustness tests results.

(1) (2) (3) (4) (5) (6) (7)

ULGUE ULGUE ULGUE ULGUE ULGUE ULGUE ULGUE

NBDCPZ 0.0165 * 0.0192 ** 0.0183 ** 0.0185 ** 0.0257 ** 0.0228 ** 0.0028 **
(0.0085) (0.0088) (0.0084) (0.0085) (0.0107) (0.0095) (0.0092)

NBDCPZ_pre1 0.0044
(0.0063)

URB 0.0152
(0.0231)

SCI 0.0952
0.6446

FIN −0.0266
0.0184

Constant 0.8233 *** 1.7571 *** 1.8587 *** 2.0271 *** 1.4746 *** 1.4815 *** 1.7180 ***
(0.1905) (0.2351) (0.2206) (0.2335) (0.2338) (0.2356) (0.3170)

Controls Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes

Observations 4496 4496 4496 4496 4496 4496 4496
R2 0.843 0.857 0.865 0.864 0.838 0.838 0.838

(8) (9) (10) (11) (12) (13) (14)

ULGUE ULGUE ULGUE ULGUE ULGUE NBDCPZ ULGUE

NBDCPZ 0.0223 ** 0.0215 ** 0.0224 ** 0.0224 ** 0.0231 ** 0.3434 *
(0.0093) (0.0094) (0.0093) (0.0106) (0.0093) (0.1796)

LCC −0.0026
(0.0084)

CETC 0.0175 *
(0.0103)

SC −0.0007
(0.0059)

IV 0.0048 **
(0.0024)

Constant 1.4820 *** 1.5177 *** 1.4830 *** 1.5414 *** 1.4459 *** — —
(0.2358) (0.2358) (0.2356) (0.2410) (0.2208)

Controls Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes

Kleibergen–Paap rk
LM statistic — — — — — 3.917 *

Cragg–Donald Wald
F statistic — — — — — 51.322 ***

Observations 4496 4496 4496 4016 4352 4496 4496
R2 0.838 0.839 0.838 0.817 0.842 — —

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively, with the standard errors
clustered at the city level in parentheses.

In the baseline regression, the green coverage rate was used to measure urban eco-
logical benefits, and the industrial emission wastewater, sulfur dioxide, and industrial
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smoke (dust) were used as the undesirable outputs [14,30,71,72]. However, the carbon
dioxide (CO2) impact was not considered. To address this, we employed two methods.
First, following the approach of Fan et al. [70], we replaced the green coverage rate with
the urban green space carbon sink to re-measure the ULGUE, with the updated results
presented in Column (2) of Table 4. Second, we included CO2 emissions as an undesirable
output indicator, with the results shown in Column (3) of Table 4. Column (4) of Table 4
presents the results when both methods were applied simultaneously. In all cases, the
results are significantly positive.

4.3.3. Core Explanatory Variable Substitution

Given that the NBDCPZ policy was typically implemented in October, close to the
year’s end, some studies set the policy execution time to the following year [76]. Column
(5) of Table 4 reports the coefficient after adjusting the explanatory variable accordingly.
The coefficient of the NBDCPZ variable remained significantly positive at the 1% level.

4.3.4. Testing for Anticipation Effects

A critical assumption of the DID method is that cities in the treatment group should not
exhibit anticipatory behavior before the policy takes effect. To validate the DID estimates,
we introduced a time dummy variable for the year prior to the policy implementation (pre_1)
and its interaction term with the NBDCPZ variable. This interaction term, NBDCPZ_pre1,
was then included in model (1). A NBDCPZ_pre1 coefficient significantly different from
zero suggests that the residents anticipated the policy before its announcement, potentially
biasing the estimates [77]. The result shown in Column (6) of Table 4 indicates that the
NBDCPZ_pre1 coefficient is not significant, confirming the exogeneity of the NBDCPZ policy.

4.3.5. Inclusion of Additional Control Variables

Although our baseline regression model includes several key variables that could
influence the ULGUE, omitted variable bias remains a concern. To address this, we drew on
the study by Lyu et al. [30] and added more control variables: the urbanization level (URB),
measured by the urban-to-total population ratio; the scientific expenditure proportion (SCI),
measured by the city scientific expenditure-to-fiscal expenditure ratio; and the financial
potential (FIN), measured by the logarithm of the year-end RMB deposit balances in
financial institutions. Column (7) of Table 4 shows that including these controls renders a
significantly positive NBDCPZ coefficient.

4.3.6. Excluding the Impact of Similar Policies

The Chinese government attaches great importance to the development of the digital
industry and has implemented the “Smart City” policy to accelerate its growth. To exclude
the influence of this policy on the ULGUE, we introduced a dummy variable, SC, reflecting
whether a city entered the “Smart City” construction list in the regression. Additionally,
the government’s focus on transitioning to green development is evident through policies
such as “Low-Carbon City” (LCC) and “Carbon Emission Trading City” (CETC). Dummy
variables representing membership in these categories were also included in the economet-
ric model to control for their impacts. Columns (8)–(10) of Table 4 present the results after
controlling for these policy effects. The NBDCPZ coefficients remain significantly positive
at the 1% level, once again demonstrating the robustness of the benchmark results.

4.3.7. Change Regression Samples

Central cities, including municipalities, sub-provincial cities, and provincial capitals,
often have higher political and economic statuses, and their big data industries were well
developed before the policy was enacted. To avoid skewing the policy effect estimation, we
excluded these central cities and re-ran the regression. Column (6) of Table 4 shows that
the NBDCPZ coefficient remains significantly positive at the 1% level. Additionally, we
previously used the urban green coverage rate to measure the ecological benefits. However,
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in the desertification-threatened northwest regions, long-standing government afforestation
programs could skew this metric, particularly in areas such as Inner Mongolia. To account
for this, we excluded observations from Inner Mongolia, and the NBDCPZ coefficient
in Column (12) of Table 4 remains significantly positive, confirming the robustness of
our findings.

4.3.8. The Instrumental Variable Method

The NBDCPZ list was declared by provincial and municipal local governments, and
it formally took effect upon the receipt of approval from the central government, which
implies that the formulation is not entirely exogenous. To address the potential endogeneity,
we used the interaction between the number of post offices per square kilometer in each city
in 2000 and the year as the instrumental variable (IV) and re-estimated the effect using the
two-stage least squares (2SLS) method [78]. Historically, post offices facilitated information
transmission, satisfying the IV relevance requirement. Moreover, it is unlikely that the
number of post offices in 2000 has a direct influence on the current ULGUE, satisfying
the exogeneity condition. Columns (7) and (8) of Table 4 present the results for the first
and second stages of the regression. The first-stage result indicates that the IV coefficient
is 0.0048 and significant at the 5% level, suggesting a positive correlation between the
NBDCPZ establishment and the historical post office density. The second stage shows that
the Kleibergen–Paap rk LM statistics and Cragg–Donald Wald F statistics are 3.917 and
51.322, respectively, indicating no weak-instrument or identification issues. The NBDCPZ
coefficient remains positive and significant, affirming that the NBDCPZ establishment
improves the ULGUE even after the endogeneity concerns are addressed.

5. Mechanism Test Regression
5.1. Enhancing Technological Innovation

Patent applications, a key output of technological innovation, are widely used to
assess innovation levels [79]. Column (1) of Table 5 presents the regression results with
the logarithm of the total number of patent applications in the cities as the dependent
variable. The NBDCPZ coefficient is 0.2748 and significant at the 10% level, indicating that
the NBDCPZ establishment has increased patent applications. Furthermore, within the
existing frameworks, technological innovation can be classified into substantial innovation,
which fundamentally changes organizational activities, and strategic innovation. Following
previous research, we used the logarithm of the number of invention patent applications to
measure the substantial innovation and the total number of utility model patent and design
patent applications to measure the strategic innovation [80,81]. Columns (2)–(3) of Table 5
show that the NBDCPZ coefficients are significant at least at the 10% level, indicating that
the NBDCPZ policy has improved the technological innovation of cities from both the
substantial and strategic innovation perspectives, thereby validating H1.

Table 5. Mechanism test regression results.

(1) (2) (3) (4) (5)

Innovation Substantial
Innovation

Strategic
Innovation

Capital
Misallocation

Labor
Misallocation

NBDCPZ 0.2748 * 0.1955 *** 0.2584 *** −1.9268 *** 0.4740 **
(0.1492) (0.0481) (0.0579) (0.7387) (0.2076)

PGDP 0.5955 *** 0.5073 *** 0.2368 ** 0.7671 2.1849 ***
(0.2098) (0.0844) (0.1004) (0.8419) (0.3399)

GDP −0.2998 −0.0305 0.2072* −6.1028 *** −2.6064 ***
(0.2466) (0.0988) (0.1133) (1.1614) (0.4993)

INF 0.1408 −0.0043 −0.0475 0.5893 0.0824
(0.0872) (0.0338) (0.0415) (0.3594) (0.1187)
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Table 5. Cont.

(1) (2) (3) (4) (5)

Innovation Substantial
Innovation

Strategic
Innovation

Capital
Misallocation

Labor
Misallocation

GOV 0.8940 −0.0349 1.0747 *** −10.2378 *** −2.1460
(0.7562) (0.3006) (0.3227) (3.9207) (1.3812)

RES 0.0687 0.0346 −0.0472 −0.1182 0.1721
(0.0931) (0.0442) (0.0833) (0.3102) (0.1248)

DEN −0.4961 ** −0.2123 ** −0.2984 *** −1.1713 0.0473
(0.2002) (0.0824) (0.0856) (0.7129) (0.2885)

Constant −0.2901 −3.2377 *** −4.8172 *** 96.1162 *** 20.0705 ***
(3.1103) (1.2309) (1.3207) (15.9171) (6.4120)

City FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Observations 4496 4496 4496 4496 4496
R2 0.855 0.938 0.875 0.874 0.938

(6) (7) (8) (9) (10)

Rationalization Upgrading Manufacturing
Agglomeration

Service
Agglomeration

Collaborative
Agglomeration

NBDCPZ −0.0268 −0.0331 0.1123*** 0.0074 0.0784*
(0.0367) (0.0297) (0.0399) (0.0301) (0.0449)

PGDP 0.0044 0.0597 0.0267 0.0496 0.0459
(0.0539) (0.0415) (0.0503) (0.0306) (0.0590)

GDP −0.5040 *** −0.2303 *** 0.1549 ** −0.1016 * 0.0851
(0.0831) (0.0553) (0.0706) (0.0519) (0.0871)

INF 0.0318 −0.0043 0.0339 0.0338 ** 0.0524 *
(0.0269) (0.0207) (0.0265) (0.0148) (0.0281)

GOV 0.3438 0.9260 *** 0.2401 * 0.1932 0.3194
(0.2942) (0.1559) (0.1412) (0.1563) (0.2191)

RES −0.0654 −0.0022 0.0582 −0.0176 0.0853
(0.0528) (0.0887) (0.0941) (0.0383) (0.0869)

DEN 0.0221 0.0829* −0.0269 0.0235 −0.0532
(0.0585) (0.0455) (0.0494) (0.0305) (0.0609)

Constant 9.0158 *** 3.2887 *** −2.1341 ** 1.7415 ** 0.2315
(1.1677) (0.7553) (0.9590) (0.7213) (1.1256)

City FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Observations 4496 4496 4496 4496 4496
R2 0.859 0.797 0.824 0.739 0.782

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively, with the standard errors
clustered at the city level in parentheses.

5.2. Alleviating Resource Misallocation

Resource misallocation leads to inefficient resource utilization, causing issues such
as land resource wastage, irrational industrial structures, and environment pollution,
constraining the ULGUE. To measure the resource misallocation, the primary method
employed in the current literature stems from Hsieh and Klenow [43], which quantifies
factor market distortions by calculating the difference between the real allocation and
the ideal allocation under profit maximization conditions. The measurement formula is
as follows:

τKi =

∣∣∣∣ 1
φKi

− 1
∣∣∣∣ (5)

τLi =

∣∣∣∣ 1
φLi

− 1
∣∣∣∣ (6)
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where φKi and φLi denote the distortion of capital (K) and labor (L) in city i, respectively; τKi
and τLi represent the capital and labor misallocation indexes in city i (the larger the absolute
value of the misallocation index, the more severe the degree of resource misallocation).

The results in Column (4) of Table 5 allow for an examination of the impact of the policy
on capital misallocation, with a coefficient of −1.9268 for the NBDCPZ variable, which is
significant at the 1% level. This suggests that the NBDCPZ establishment has effectively
guided capital flow towards sectors with higher efficiencies, justifying H2. However, the
Column (5) results tell a different story: The policy worsens labor misallocation, which
aligns with the findings of Chen et al. [82] and Yang et al. [48], suggesting that digital
technology can negatively impact labor markets, leading to unemployment rate increases,
which may exacerbate the labor resource misallocation in the NBDCPZs in the short term.

5.3. Industrial Structure Optimization

Based on the preceding theoretical analysis, industrial structure optimization includes
two aspects: rationalization and upgrading. Regarding rationalization, in the existing re-
search, the Theil index is often employed to measure the industrial structure rationalization
(RA) [83], the formula of which is as follows:

RA =
3

∑
i=1

(
Yi
Y

)
ln
(

Yi
Li

/
Y
L

)
(7)

where Y represents the industrial output of the city; L represents the number of employees;
and i = 1, 2, and 3 correspond to the primary, secondary, and tertiary industries, respectively.
The logic behind this index is that a rational industrial structure is indicated by similar
efficiencies across industries and a labor proportion that aligns with the output value
proportions. Consequently, the further the RA deviates from 0, the more imbalanced the
industrial structure.

Regarding industrial structure upgrading, with the development of urban economics,
resources gradually shift from agriculture and manufacturing to commerce and services,
increasing the tertiary industry proportion. Therefore, industrial structure upgrading (UP)
is measured by the ratio of the tertiary industry to the secondary industry [84], expressed
as follows:

UP =
Y3

Y2
(8)

Columns (6) and (7) in Table 5 present the results with the RA and UP as the dependent
variables. Neither result is statistically significant, suggesting that the NBDCPZ establish-
ment has not significantly facilitated the rationalization and upgrading of urban industrial
structures. One possible explanation is that it takes time to achieve the dynamic opti-
mization process of industrial structures within cities, which results in an under-optimal
industrial structure in the short term.

5.4. Industrial Agglomeration Enhancement

Industrial agglomeration can be categorized into specialization agglomeration and
collaborative agglomeration. Both types enhance cooperation and resource sharing among
enterprises, creating economies of scale and synergies, thereby improving the ULGUE.
Specialization agglomeration occurs when there is a significant increase in enterprises
within a particular industry in a region, attracting a concentrated workforce. To measure the
specialization agglomeration levels in the manufacturing and productive service industries,
we used the number of employees in these sectors [85], calculated as follows:

LQij =
eij/Ej

ei/E
(9)

where eij represents the number of employees in industry j in city i; Ej denotes the total
number of employees in industry j nationwide; ei represents the total number of employees
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in city i; E represents the total number of employees nationwide; and LQij indicates the
degree of industrial specialization agglomeration of industry j in city i.

For collaborative industrial agglomeration, the modified E–G index is commonly used,
as it considers both the geographic proximity and synergy between different industries [86].
This index is widely used to measure the collaborative agglomeration degree between
productive service industries and manufacturing industries. The measure is as follows:

COAGG =

(
1 − |LQman − LQser|

LQman + LQser

)
+ |LQman + LQser| (10)

where LQman and LQser denote the specialization agglomeration of the manufacturing
industry and productive service industry, respectively; COAGG denotes the collaborative
agglomeration degree between them.

The results in Columns (8) and (10) of Table 5 show that the NBDCPZ coefficients are
positive and significant at least at the 10% level, indicating that the policy has effectively
promoted the specialization agglomeration of the manufacturing industry in the NBDCPZs
via the building of information-sharing platforms, allowing manufacturing enterprises
convenient access to information. Additionally, the NBDCPZ establishment has also
strengthened the correlation between the manufacturing industry and the productive
service industry, confirming H4a and H4b.

6. Further Analysis
6.1. Heterogeneity Analysis
6.1.1. Resources

China’s vast geography has resulted in highly heterogeneous resource distributions.
Resource-based cities rich in natural resources such as minerals and forests initially focused
on crude, low-end industries such as extraction and processing, resulting in an over-
reliance on resource-trading benefits while neglecting sustainable land use [87]. Given
their dependence on natural resources, integrating big data technology into these cities is
challenging in the short term [30]. Therefore, the NBDCPZ policy’s impact on improving
the ULGUE in resource-based cities is expected to be limited.

To validate this hypothesis, the cities were categorized into resource-based and
non-resource-based cities according to the “National Sustainable Development Plan for
Resource-based Cities”. The results in Columns (1) and (2) of Table 6 show that the NBD-
CPZ policy has had significant positive effects on the non-resource-based cities but no clear
impact on the resource-based cities, reflecting the challenges faced by resource-based cities
due to severe ecological degradation and low resource utilization efficiencies. Consequently,
the rapid transition from extensive resource utilization to big data industry integration is
difficult to achieve in the short term, leading to an unclear improvement in the ULGUEs in
these cities.

Table 6. Heterogeneity analysis results.

(1) (2) (3) (4) (5) (6)

Resource-
Based Cities

Non-Resource-
Based Cities

Developing
City Clusters

Mature City
Clusters

Low Economic
Growth Pressure

High Economic
Growth Pressure

NBDCPZ 0.0272 0.0206 * 0.0173 0.0299 *** 0.0334 ** 0.0115
(0.0169) (0.0116) (0.0222) (0.0102) (0.0131) (0.0098)

Constant 1.8293 *** 1.2965 *** 2.1994 *** 0.7466 ** 1.4402 *** 1.5291 ***
(0.3178) (0.3441) (0.3533) (0.3493) (0.3453) (0.2656)

Controls Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Observations 1776 2720 1376 3120 2216 2199
R2 0.800 0.857 0.820 0.846 0.865 0.841
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Table 6. Cont.

(7) (8) (9) (10) (11) (12)

Low Digital
Infrastructure

Medium Digital
Infrastructure

High Digital
Infrastructure

Low Human
Capital

Medium
Human Capital

High Human
Capital

NBDCPZ −0.0037 0.0540 *** 0.0292 ** 0.0129 0.0316 ** 0.0054
(0.0097) (0.0185) (0.0136) (0.0388) (0.0159) (0.0618)

Constant 1.0259 *** 1.7720 *** 1.2944 *** 1.5816 *** 1.4831 *** 1.2569 ***
(0.2861) (0.3483) (0.3703) (0.4065) (0.3042) (0.5576)

Controls Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Observations 1392 1398 1398 1493 1491 1487
R2 0.871 0.865 0.878 0.802 0.816 0.803

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively, with the standard errors
clustered at the city level in parentheses.

6.1.2. Types of City Clusters

A key feature of the regional development in China is the reliance on central cities to
drive the growth of neighboring clusters. According to the “Fourteenth Five-Year Plan for
National Economic and Social Development and the Long-Range Objectives Through the
Year 2035”, city clusters are categorized into the developing and mature categories. These
categories exhibit significant differences in terms of their urbanization levels, economic
growth, and industrial structures. Developing clusters lag in network construction and
have smaller markets and capital scales, while mature clusters have modernized their
digital industries and have established high-end industrial layouts [88].

The sub-sample results, shown in Columns (3) and (4) of Table 6, indicate that the
NBDCPZ policy has improved the ULGUEs only in the mature city clusters. This may be
attributed to the relatively low regional development clusters, where factors such as the
industrial network density, integrated factor markets, and fair land distribution have yet
to mature [89], making a full realization of the advantages brought about by the big data
industry difficult, such as information dissemination and technological diffusion.

6.1.3. Economic Growth Pressure

One crucial indicator for assessing local officials in China is the regional economic
growth. Faced with limited promotion opportunities, local officers are pressured to meet
economic growth targets, which leads to short-term gains over environmental sustainabil-
ity [89]. Considering this, we utilized the ratio of the target growth rate to the actual growth
rate of the previous year to measure the economic growth pressure [90], and we conducted
sub-sample regressions.

The results are presented in Table 6, Columns (5) and (6). For cities experiencing
higher growth pressure, the NBDCPZ coefficients are noticeably smaller. This confirms that
policymakers may exhibit short-foresightedness and allocate resources irrationally when
the economic growth pressure intensifies, thereby diminishing the impact of the NBDCPZ
policy on improving the ULGUE.

6.1.4. Digital Infrastructure

Stable and efficient digital infrastructure is crucial for the development of the big data
industry, but its impact appears to be complex. On the one hand, cities with advanced
digital infrastructure tend to have more mature data markets, and the emergence of big
data technology may not be as disruptive, limiting the NBDCPZ policy’s effect on the
ULGUE [91]. On the other hand, cities with less developed digital infrastructure may
lack the hardware support for effective policy implementation, weakening its impact as
well [92].
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We measured the urban digital infrastructure using the proportion of urban residents
with access to broadband internet and divided the observations into three groups. Columns
(7)–(9) in Table 6 present the results for each group. In cities with moderate–high levels
of digital infrastructure, the NBDCPZ policy has significantly improved their ULGUEs,
with the largest effects in cities with moderate levels. Conversely, the policy has not had a
significant effect in cities with the lowest digital infrastructure levels, suggesting that big
data technology requires a well-established digital infrastructure and a labor force familiar
with internet usage. Therefore, cities with inadequate digital infrastructures may struggle
to promote their ULGUEs in the short term, while those with the highest levels rely on
other factors for ULGUE improvements [93], resulting in a limited policy effect.

6.1.5. Human Capital

The establishment of NBDCPZs can promote the adoption of big data technology
in cities and enhance the ULGUE improvement. In this process, the policy effectiveness
varies across cities with different human capital levels. On the one hand, highly skilled
workers possess stronger knowledge absorption capacities, enabling them to meet the
big data utilization requirements at lower costs [94]. On the other hand, the scarcity of
highly skilled talent often leads to lower urban productivity, and theoretically, the marginal
big data technology benefits in the corresponding areas might be greater [95]. Therefore,
how the NBDCPZ policy affects the ULGUEs in cities with different human capital levels
is unpredictable.

Due to the lack of education data at the prefecture level in China, the accurate mea-
surement of human capital is challenging. However, Barros et al. [96] suggested that the
number of teachers is a significant indicator of human capital. Therefore, we used the
number of teachers reported in the “China City Statistical Yearbook” as a proxy for human
capital and divided the sample into three groups. Columns (10)–(12) in Table 6 show that
the NBDCPZ construction has significantly improved the ULGUEs in cities with moderate
human capital levels, while this effect is not significant in the other groups.

6.2. Spatial Spillover Effect

The establishment of NBDCPZs has enhanced the digital technology and information
services in the pilot cities, reducing the spatial and temporal distances between regions,
breaking down the barriers to green technology dissemination, and promoting the cross-
regional flow and allocation of resources. In earlier sections, using the conventional DID
method, we compared the ULGUE differences between pilot and non-pilot cities, assuming
that the NBDCPZ establishment did not affect the land-use efficiencies in nearby non-pilot
cities. However, due to the non-exclusive nature of digital information, the policy’s impact
may extend beyond the pilot zones, leading to spillover effects on neighboring non-pilot
areas and thus contradicting the SUTVA of the DID method. Therefore, to estimate the
direct and spillover effects of the NBDCPZ policy, we employed the spatial difference-in-
differences (SDID) method. The econometric model is as follows:

ULGUEit = ρ1W × ULGUEit + ρ2NBDCPZit + ρ3W × NBDCPZit

+∑ ρkControlsit + µi + λt + εit
(11)

where W denotes the spatial weight matrix; W × ULGUEit denotes the spatial lag of
the ULGUE variable; and W × NBDCPZit captures the spatial spillover effect. The ρ3
coefficient reflects the average spillover effect of the NBDCPZ policy on neighboring areas,
encompassing both the spillover effects among pilot regions and from pilot regions to
non-pilot regions. However, as Chagas et al. [33] pointed out, the likelihood of these two
types of spillover effects may differ. To accurately examine the spatial spillover effect of
the NBDCPZ policy, we followed the methodology of Chagas et al. [33], decomposing the
spatial lag term of the policy (W × NBDCPZit) into two parts:
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ULGUEit = γ1W × ULGUEit + γ2NBDCPZit + γ3WTT × NBDCPZit

+γ4WNT × NBDCPZit + ∑γkControlsit + µi + λt + εit
(12)

where WTT × NBDCPZit indicates the spillover effects among the pilot cities, and
WNT × NBDCPZit indicates the spillover effects of the NBDCPZ policy between the pilot
and non-pilot cities. Significantly positive γ3 and γ4 coefficients indicate that the NBDCPZ
policy has had notable spatial spillover effects among pilot cities and between pilot and
non-pilot cities, respectively.

Columns (1)–(3) in Table 7 present the results using first–third-order nearest-neighbor
matrices, respectively. Consistent with the benchmark results, the NBDCPZ coefficients
remain significantly positive, indicating that the NBDCPZ establishment has promoted
the ULGUEs in the pilot cities. The WNT × NBDCPZit variable is only significant with the
first-order spatial matrix. As the order increases, this effect diminishes, indicating a positive
indirect spillover effect merely on the nearest non-pilot cities. However, this spillover effect
is weak, with the WNT × NBDCPZit coefficient at 0.0003, which is a much smaller value
than that of the NBDCPZ coefficient. This may be due to the strong administrative and
market barriers in China, which limit data flow and the policy’s spillover effects [97]. The
WTT × NBDCPZ coefficients are not significant, indicating no substantial mutual influence
among the pilot cities.

Table 7. Spatial spillover effect results.

(1) (2) (3)

KNN1 KNN2 KNN3

W × ULGUE 0.0388 0.0724 * 0.1048 **
(0.0361) (0.0381) (0.0423)

WTT × NBDCPZ −0.0063 0.0111 0.0090
(0.0161) (0.0128) (0.0131)

WNT × NBDCPZ 0.0003 ** −0.0002 0.0002
(0.0001) (0.0003) (0.0002)

NBDCPZ 0.0270 ** 0.0161 * 0.0165 *
(0.0104) (0.0091) (0.0087)

Constant 1.4049 *** 1.3885 *** 1.3136 ***
(0.2390) (0.2396) (0.2471)

Controls Yes Yes Yes
City FE Yes Yes Yes
Year FE Yes Yes Yes

Observations 4,496 4,496 4,496
R2 0.839 0.839 0.839

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively, with the standard errors
clustered at the city level in parentheses.

7. Conclusions and Implications
7.1. Conclusions

Using panel data from 281 prefecture-level cities in China from 2006 to 2021, in this
study, we employed the NBDCPZ policy as a quasi-natural experiment and constructed a
multi-period DID model to investigate its impact on the ULGUE. The findings are as follows:
(1) The NBDCPZ policy has significantly improved the ULGUE, confirmed by parallel-trend
tests, placebo tests, and other robustness checks; (2) the mechanism analysis revealed that
the NBDCPZ construction has improved the ULGUE through three pathways: technological
innovation, resource allocation, and industrial agglomeration; (3) the heterogeneity analysis
results suggest that the positive effect is more pronounced in cities with lower economic
growth pressures and moderate digital infrastructure and human capital levels and that it is
more significant in non-resource-based cities and mature city clusters; and (4) the NBDCPZ
construction exhibits spillover effects, primarily enhancing the ULGUEs in nearby non-pilot
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cities; however, this spillover effect diminishes as the proximity of the pilot cities to the
non-pilot cities decreases.

7.2. Policy Implications

This study provides empirical evidence for the hypothesis that NBDCPZ establishment
can enhance the ULGUE. Based on this, the following targeted suggestions are proposed:

1. The development of the big data industry should be advanced and supported to
enhance the ULGUE. Local governments should leverage big data technologies for
efficient information processing, transforming land data into digital formats to aid in
land-use management, thereby improving the rational allocation of land resources [30].
Furthermore, the government should prioritize the modernization of traditional high-
energy-consumption and high-pollution industries using big data technologies. By
replacing outdated industries with emerging green, high-tech sectors, the overall
resource utilization efficiency can be significantly improved;

2. Big data industry policies should be tailored to local conditions, addressing the specific
needs of different cities. For cities with limited digital infrastructure and human capital,
the central government should provide financial support to help local governments
enhance their data infrastructure and attract skilled talent [93,96]. This targeted
assistance will create a solid foundation for ULGUE enhancement through big data,
ensuring that the benefits of these technologies are accessible to all regions;

3. The free flow of data elements should be facilitated by removing the administrative
and market barriers between cities. Governments outside pilot areas should capitalize
on the non-competitive, replicable, and highly mobile nature of data elements. They
should actively absorb information dissemination and technological spillovers from
the big data industries in pilot cities, leveraging these advantages to improve their
own ULGUEs [32,74]. This approach ensures that the positive impacts of big data
technologies are widely distributed, fostering coordinated ecological development.

7.3. Limitations

This study has certain limitations. First, due to data availability constraints, we
investigated the improvement in the ULGUE as a consequence of the implementation
of the NBDCPZ policy at the city level and did not conduct a more specific analysis of
the resource utilization by enterprises within the NBDCPZs. Second, there are variations
in the positioning of the policy planning schemes for each NBDCPZ, which may lead
to differences in effectiveness across different NBDCPZs. Hence, it is crucial for future
research to undertake a more comprehensive comparison and analysis of the variations in
the ULGUEs among different NBDCPZs, considering their actual positioning.
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