
Citation: Li, L.; Yan, F. How Does

Density Impact Carbon Emission

Intensity: Insights from the Block

Scale and an Optimal

Parameters-Based Geographical

Detector. Land 2024, 13, 1036.

https://doi.org/10.3390/

land13071036

Academic Editors: Wen Wu

and Shuhan Liu

Received: 9 May 2024

Revised: 7 July 2024

Accepted: 9 July 2024

Published: 10 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

How Does Density Impact Carbon Emission Intensity: Insights
from the Block Scale and an Optimal Parameters-Based
Geographical Detector
Liutong Li and Fengying Yan *

School of Architecture, Tianjin University, Tianjin 300072, China; llt1021206029@tju.edu.cn
* Correspondence: fengying@tju.edu.cn

Abstract: Density is a crucial indicator for urban sustainable development and is considered a critical
factor influencing the carbon emission intensity of construction land (CICL). The impact of density
on carbon emissions has been extensively explored, mainly focusing on grid-scale and single-factor
effects. However, how density and its interactions affect carbon emissions at the block scale is unclear.
Therefore, based on multiple data sources such as energy consumption, remote sensing, and the
point of interest (POI) in the urban block of Changxing County, this study constructed a density
system that reflects the block’s physical environment and socioeconomic characteristics. An optimal-
parameters-based geographical detector was employed to investigate the effects and interactions of
density factors on the carbon emission intensity of residential blocks (CIRB), carbon emission intensity
of commercial blocks (CICB), and carbon emission intensity of public blocks (CIPB). The results
indicate the following: (1) The impact of density factors on different types of CICL varied significantly.
Physical environmental factors (PEFs) had greater explanatory power than socioeconomic factors
(SEFs) across the CIRB, CICB, and CIPB, with the floor area ratio (FAR) being the most influential.
The spatial morphology of blocks also influenced the relationship between density factors and the
CICL. (2) The interactions between the FAR and building density (BD), the FAR and commercial
outlet density (COD), and the FAR and population density (PD) had the strongest explanatory
power for the CIRB, CICB, and CIPB, respectively, and all exhibited nonlinear enhancements. Some
factors exhibited more significant effects only when interacting with others. (3) An association chain
encompassing the interactions of multiple density factors was extracted for the CIRB, CICB, and CIPB,
respectively, as the basis for conducting collaborative management and control in spatial planning.
The research findings can provide decision support for urban planners to consider the comprehensive
effects of density factors and promote the development of low-carbon urban spaces.

Keywords: density system; carbon emission intensity; block scale; optimal-parameters-based
geographical detector; association chain; sustainable development

1. Introduction

Urban areas are major sources of carbon emissions [1,2]. Urban construction land,
serving as the primary carrier for human economic production and daily life, is where car-
bon emissions are concentrated [3]. Reducing the carbon emission intensity of construction
land (CICL) is crucial for addressing global climate change and achieving low-carbon urban
development. By the end of 2022, China’s urbanization rate had reached 65.2% (National
Bureau of Statistics data, https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm,
accessed on 8 November 2023). The development approach of urban areas is shifting
from extensive expansion based on scale growth to refined regulation based on optimizing
existing resources and enhancing intrinsic qualities [4,5]. This shift also signifies a transition
in the low-carbon governance of urban spaces from promoting low-carbon construction
to achieving low-carbon and efficient operation [6]. Density is an essential indicator for
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quantitatively describing urban spatial forms, measuring the efficiency of material resource
allocation in cities, and understanding the operating principles of urban spaces [7,8]. It
represents the objective distribution of various urban components per unit of land area
and encompasses multidimensional attributes related to the physical environment, socio-
economics, and more [9]. Density has become an essential tool in spatial planning to achieve
the low-carbon and efficient operation of urban spaces by optimizing the distribution of
resources. Therefore, exploring the relationship between density and the CICL will enhance
the rationality and effectiveness of carbon emission control in spatial planning, thereby
supporting the achievement of carbon peaking and carbon neutrality goals in cities.

Currently, exploring the impact of density on carbon emissions is a hot topic in domes-
tic and international research. Extensive research has been carried out at regional, city, and
block scales to provide a basis for achieving urban carbon emission reductions by control-
ling and guiding density development. The first thing that needs to be illustrated is that
the existing research primarily focuses on reflecting the spatial physical characteristics of
density, often represented by indicators such as the floor area ratio (FAR), building density
(BD), building height (BH), or green area ratio (GAR) [10,11]. Some studies define density
as population density (PD) [12,13], while exploring a density system that reflects spatial
multidimensional composite attributes is still in progress. As a result, current studies
exploring the relationship between density and carbon emissions are mainly conducted
in the context of urban morphology, the built environment, or urban spatial structures.
Density is often one of the core indicators used to investigate its relationship with energy
consumption or carbon emissions related to urban land use or transportation [14,15]. Re-
searchers have extensively investigated the relationship between typical density indicators
such as the FAR, BD, BH, PD, and carbon emissions in construction land. They have utilized
various methods, including correlation analysis [14,16], regression models [17–19], panel
econometric models [20,21], and STIRPAT [22,23], to assess the impacts of these indicators
on carbon emissions quantitatively.

Regarding specific research contents, the current research mainstream is to explore
the relationship between carbon emissions and density based on grid-based land units at
different scales. R. Gudipudi et al. investigated the relationship between PD in residential
areas and carbon efficiency based on 1 km2 grid units in the United States. They found that
doubling the PD would typically lead to a reduction of at least 42% in carbon emissions
from the building and transportation sectors [24]. It also needs to be realized that increased
population density will also increase congestion in cities, affecting residents’ well-being
and daily lives. F. Chen et al. explored the impact of urban density on spatial carbon per-
formance in Shanghai based on 1 km2 grid units. They discovered an inverted “U”-shaped
relationship between spatial carbon performance and BD [25]. E. Resch et al. estimated the
urban operational energy consumption on 1 km2 grid units and explored its relationship
with PD and BH. They discovered that an optimal BH exists within the range of 7–27 floors,
depending on the variations in population and building lifespan [26]. S.J. Quan et al.
constructed grid blocks of 200 feet by 200 feet. They simulated buildings’ annual heating
and cooling energy consumption within these blocks and investigated their relationship
with density. Their study revealed that under different BDs, a U-shaped relationship exists
between BH and energy consumption per unit area [27]. Additionally, several studies on
block-level land units explore the relationship between carbon emissions and density. For
example, W.Q. Wang et al. estimated the carbon emissions of 54 communities in Shanghai’s
Chaoyang Xincun through a questionnaire survey, investigating the relationship between
residential density and carbon emissions. They found that the FAR, average building height
(ABH), and PD exhibited segmental fluctuations with carbon emissions [28]. Q.H. Dong
et al. evenly distributed grid-based carbon data onto block-level land units to investigate
the relationship between urban form and carbon emissions. They found that density had
bidirectional effects on carbon emissions, with a predominant positive driving effect [15].

Although current research has made significant contributions to understanding the
relationship between typical density indicators and carbon emissions, there are still certain
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limitations. Firstly, regarding research methods, existing studies have mainly explored
the impact of individual density factors on carbon emissions, overlooking the interactions
among the driving factors of land carbon emissions [29]. Generally, the driving factors of
carbon emissions are interrelated, and the interactions between these factors can affect the
total carbon emissions [30]. Regarding research content, for studies based on grid-based
land units, it is essential to note that these units are not the fundamental units of urban
development. In reality, independent land functions and building forms are often divided
into different grid units. The corresponding grid-based carbon emission data are usually
derived from calculating the total carbon emissions based on macroscopic annual statistical
data and then spatially allocating them [31], which may lead to inaccuracies and unrealistic
carbon emission data. For studies based on block-level land units, the estimated carbon
emissions data often have certain deviations from actual energy consumption due to the
lack of verification with measured data. These factors hinder a clear understanding of the
relationship between density and land carbon emissions and limit the practical guidance
of research findings. Therefore, as the basic units that constitute the living of residents
and the urban environment, as well as the basic unit of urban function and management,
conducting research on blocks is beneficial for controlling carbon emissions [32].

Therefore, compared to existing research, this study made the following key contribu-
tions: Firstly, it attempted to construct a measurable density system that effectively reflects
the distribution characteristics of the physical environment and socioeconomic factors on
blocks. Secondly, based on real data sources, an empirical study was carried out at the block
scale so that the research results could more accurately reflect the relationship between
the density system and CICL. Lastly, this study employed an optimal-parameters-based
geographical detector (OPGD) to explore the impact of density factors and their interac-
tions on the carbon emission intensity of different block types from the perspective of
spatial heterogeneity. Subsequently, it studied the spatial planning method to carry out the
collaborative management and control of the CICL. This research provides an important
reference for conducting refined urban management and spatial resource optimization
from a density perspective to promote low-carbon urban development.

2. Materials and Methods
2.1. Study Area and Data Sources

This study focused on the central urban area of Changxing County, Zhejiang Province
(Figure 1). At the end of 2018, the central urban area covered an area of 82.51 km2, including
four streets: Zhicheng Street, Taihu Street, Longshan Street, and Huaxi Street. The popula-
tion size was approximately 300.000, making it a typical small city. Changxing County is
located in the north of Zhejiang Province, on the southwest bank of Taihu Lake, and in the
center of the Yangtze River Delta. It has typical climate characteristics of hot summers and
cold winters. As one of China’s top 100 counties in terms of economic competitiveness and
top 100 in terms of industry, according to the 2010–2017 Changxing County Greenhouse Gas
Inventory Report, the level of total carbon emissions and intensity in Changxing County
is relatively high, and it faces a severe carbon emission control situation. Simultaneously,
the study area serves as the political, economic, and cultural center of Changxing County,
with a dense distribution of various elements such as buildings, businesses, population,
public service facilities, etc. Therefore, exploring the relationship between density and
CICL by taking the central urban area of Changxing County as an example is significantly
representative and typical.

This study involved the following data: (1) The Land Use Map of the Central Urban
Area of Changxing County: The land use vector map for the year 2018 was provided by the
Changxing County Construction Bureau, which displays the area and spatial distribution
of different types of blocks in the urban area. (2) Building footprints: Based on the 2018
Changxing County central urban digital elevation map (DEM) data, the area, perimeter, and
floor number of buildings of different properties were extracted by classification and then
combined with manual correction to obtain complete building information. (3) Green area
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information: Based on Google’s high-precision historical remote sensing images in 2018 on the
Ovi Maps platform, the extraction of green space information on blocks was achieved using the
Alibaba DAMO Academy’s AI Earth platform (https://engine-aiearth.aliyun.com, accessed
on 8 September 2023). (4) Population data: The population data at the block level in the
central urban area in 2018 were provided by the Public Security Bureau of Changxing County.
(5) Point of interest (POI): This was obtained based on the Peking University Open Research
Data Platform (https://opendata.pku.edu.cn, accessed on 15 September 2023). (6) Energy
consumption data: The annual electricity consumption data for block-level land units in 2018
was provided by Changxing County Power Supply Company.
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Figure 1. Study area.

2.2. Quantification of Variables
2.2.1. Quantification of the CICL

In this study, urban construction land primarily refers to residential blocks (RBs),
commercial blocks (CBs), and public blocks (PBs). Industrial blocks were not included
in this study, mainly due to the fact that the carbon intensity of industrial blocks is more
affected by the type of industry, technology level, and energy structure, etc. [33]. This
research employed a sampling survey approach to select samples from these three types
of urban blocks. The sample sizes of RBs, CBs, and PBs were selected as 106, 49, and 54,
respectively, representing 27.3%, 31.6%, and 47.8% of the total number of corresponding
blocks. The samples were widely distributed across different regions of the central urban
area (Figure 2a), ensuring the representativeness of the samples in terms of quantity and
spatial distribution. It is worth noting that the energy consumption of these three types of
block accounts for a relatively high proportion of the city’s total energy consumption [34].
Moreover, the electricity consumption of the sampled blocks accounted for over 93% of the
total energy consumption during the building operation stage, with most ratios exceeding
99% [14]. These findings were consistent with existing research conclusions [35]. This
study used electrical energy consumption to represent the total energy consumption of
the building operations. Therefore, based on the annual electricity consumption data of
the sampled blocks, carbon emissions were calculated using the carbon emission factor
method [36]. The carbon emission intensity for the different block types was determined
by the total carbon emissions ratio on that block compared to the block area. Figure 2a

https://engine-aiearth.aliyun.com
https://opendata.pku.edu.cn
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illustrates the spatial distribution of the sample blocks; Figure 2b shows the carbon intensity
of the blocks expressed in terms of building form.

C = e × f (1)

Ec = C/S (2)

where C is the total carbon emissions from the blocks (in kg); e denotes the electricity
consumption (in kWh); f is the carbon emission coefficient for electricity (in kgCO2/kWh);
this study used the local carbon emissions per unit of electricity consumption in Changxing,
and the value was 0.8463 kgCO2/kWh; Ec is the carbon emission intensity of the blocks (in
kgCO2/m2); and S is the block area (in m2).
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2.2.2. Description and Quantification of Density System

Based on previous research, this paper constructed a comprehensive density mea-
surement system that reflects the distribution characteristics of the physical environment
and socioeconomic factors on the blocks (Figure 3). Among them, physical environmen-
tal factors (PEFs) mainly refer to artificial environments such as buildings, facilities, and
landscapes on the blocks. Factors such as the floor area ratio (FAR), building density
(BD) [37], building height (BH) [38], building facade index (BFI) [39], building quantity
density (BQD), land use mix density (LMD) [40], building congestion degree (BCD), and
green area ratio (GAR) were selected to represent these factors. Considering the diver-
sity of building heights on the blocks, three factors [41,42], namely, the average building
height (ABH), maximum building height (MBH), and standard deviation of the building
height (SDBH), were selected to describe the building height characteristics accurately.
Socioeconomic factors (SEFs) mainly refer to population distribution, economic vitality,
and other non-physical environments on the blocks. Three factors, namely, the population
density (PD), commercial outlet density (COD), and business enterprise density (BED),
were selected to represent the SEFs. Among them, PD represents social factors on the blocks.
The density of commercial outlets and business enterprises, as the main body of the city’s
tertiary industry, can indicate the level of economic activity on blocks [43]. Commercial
outlets mainly include life services, catering, shopping, automobile and motorcycle services,
and other commercial types. Business enterprises mainly include corporate enterprises,
financial insurance enterprises, and other enterprise types. Table 1 and Figure 3 show the
specific descriptions of the density factors. Table 2 reports descriptive statistics for the
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dependent variable and all the independent variables. The blocks’ density and carbon
emission intensity characteristics are shown in the Supplementary Materials.
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Table 1. Description of density system.

Density System Equation Indicator Description

Physical Environmental
Factors (PEFs)

Floor area ratio (FAR) FAR = ∑N
i=1 si li

S
Reflecting the block

development intensity.

Building density (BD) BD = ∑N
i=1 si
S

Reflecting the proportion of the block
covered by buildings.

Average building
height (ABH) ABH = ∑N

i=1 si li
∑n

i=1 si

Reflecting the average height of
buildings on the block.

Highest building
height (HBH) HBH = max(Hi)

Reflecting the maximum building
height on the block.

Standard deviation of
building height (SDBH) SDBH =

√
∑N

i=1(Hi−MBF)2

N

Reflecting the dispersion and
variation in building heights on

the block.

Building facade
indicators (BFIs) BFI = ∑N

i=1 Zi Hi

∑N
i=1 si li

Reflecting the conditions of natural
light, landscape, spatial perception,

etc., for buildings on the block.
Building congestion

degree (BCD) BCD = ∑N
i=1 Vi

HBH∗S
Reflecting the proportion of building

volumes on the block.
Land use mix

density (LMD) LUMD =
∑m

j=1 sj lj

∑N
i=1 si li

Reflecting the degree of mixed block
use functionality.

Building quantity
density (BQD) BQD = N

S

Reflecting the quantitative
characteristics of buildings on

the block.

Green area ratio (GAR) GAR = G
S

Reflecting the level of green areas on
the block.

Socioeconomic
Factors (SEFs)

Population density (PD) PD = M
S

Reflecting the characteristics of the
population distribution on the block.

Commercial outlet
density (COD) COD = C

S

Reflecting the characteristics of the
commercial outlet distribution on

the block.

Business enterprise
density (BED) BED = B

S

Reflecting the characteristics of the
distribution of business companies on

the block.

si is the base area of building i. li is the number of floors of building i. Hi is the height of building i. N is the
number of building types on the block. Zi is the perimeter of building i. The height of each floor in building i is
3 m. Vi is the volume of building i. sj is the area of building j of the j-th type. m is the number of buildings of
type j. G is the green area. M is the number of people. C is the number of commercial outlets. B is the number of
business enterprises. S is the block unit area.
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Table 2. Descriptive statistics of the variables.

Variable
RB CB PB

MEAN SD Min Max MEAN SD Min Max MEAN SD Min Max

CICL 22.522 12.079 1.711 59.635 80.190 71.790 1.277 270.547 27.843 30.089 2.135 120.176
FAR 1.227 0.588 0.299 2.855 2.063 1.266 0.639 6.735 0.798 0.389 0.254 1.882
BD 0.256 0.057 0.125 0.409 0.359 0.099 0.164 0.558 0.222 0.091 0.102 0.424

ABH 15.289 9.072 4.665 41.726 18.196 12.371 4.344 64.458 10.772 3.057 4.479 20.056
HBH 29.208 20.790 9.000 96.000 34.714 22.450 9.000 84.000 18.167 8.153 9.000 54.000
SDBH 7.692 7.133 0.722 33.020 12.410 10.927 0.000 50.912 4.798 2.537 0.000 12.096

BFI 1.010 0.266 0.497 1.608 0.573 0.262 0.144 1.358 0.767 0.244 0.323 1.288
BCD 0.051 0.023 0.013 0.106 0.040 0.026 0.006 0.112 0.037 0.024 0.006 0.130
BQD 0.002 0.001 0.000 0.006 0.001 0.001 0.000 0.003 0.001 0.001 0.000 0.003
LMD 0.031 0.045 0.000 0.204 0.057 0.115 0.000 0.445 0.041 0.099 0.000 0.423
GAR 0.321 0.102 0.104 0.638 0.122 0.129 0.000 0.551 0.255 0.188 0.000 0.694
PD 0.251 0.984 0.000 8.902 0.992 1.852 0.000 8.716 0.860 1.557 0.002 8.580

COD 0.001 0.001 0.000 0.006 0.002 0.002 0.000 0.010 0.000 0.001 0.000 0.005
BED 0.000 0.000 0.000 0.002 0.001 0.001 0.000 0.002 0.000 0.001 0.000 0.004

2.3. Optimal-Parameters-Based Geographical Detector (OPGD)

A Geodetector is a spatial statistical method used to measure spatial variations, detect
explanatory factors, and analyze the interaction relationships between variables [44]. This
method has several characteristics, such as not requiring a linear assumption between
the dependent and explanatory variables [45], not needing to consider multicollinearity
issues with explanatory variables [46], and determining how the interaction between two
explanatory variables affects the dependent variable [47]. It also offers more advantages in
assessing the impact of explanatory variables compared to principal component analysis
and geographically weighted regression [48]. This study employed an OPGD. Compared
to a traditional Geodetector, this model does not require manual setting when discretizing
continuous variables. Instead, it automatically selects the parameter combination with the
highest q-value (classification method and number of intervals) for spatial discretization.
The classification method is determined based on statistical rules such as the equal interval,
natural interval, quantile range, and geometric interval. The number of intervals is typically
set between 3 and 10 [49].

This study employed three components of the model: factor detection, interaction
detection, and risk detection. In the factor detection module, the q-value of each continuous
factor was calculated under different classification methods and numbers of intervals. The
q-value ranges from 0 to 1; a higher q-value indicates a stronger explanatory power of the
density factors for the spatial variation in the CICL. Generally, a q-value greater than 0.3
shows a relatively strong driving force on the CICL [50].

q = 1 −

(
∑L

h=1 Nhσ2
h

)
(Nσ2)

= 1 − SSW
SST

(3)

where h = 1 . . . L is the stratification of the block carbon emission intensity or density factors;
Nh and N denote the number of units in layer h and in the total district; σ2

h and σ2 are the
variance values of the block carbon emission intensity in the h layer and in the total district,
respectively; SST is the total sum of squares; and SSW is the within sum of squares.

The interaction detection module compares the q-value of factors X1 and X2 with the
interaction q-value (X1∩X2) to quantify the interaction between the two explanatory factors.
This evaluation helps to determine whether the factors are mutually weakening, strength-
ening, or independent. Generally, the results of the interaction detector can be classified
into five types: 1⃝ nonlinear weakening: q(X1∩X2) < min(q(X1), q(X2)); 2⃝ single-factor
nonlinear weakening: min(q(X1), q(X2)) < q(X1∩X2) < max(q(X1), q(X2)); 3⃝ dual-factor
strengthening: q(X1∩X2) > max(q(X1), q(X2)); 4⃝ independent: q(X1∩X2) = q(X1) + q(X2);
and 5⃝ nonlinear strengthening: q(X1∩X2) > q(X1) + q(X2). The risk detection module was
used to identify the suitable range or type of impact of different density factors on the
CICL [51], providing a basis for density factor regulation.
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3. Results
3.1. Discretization Results of Density Factor

Based on the OPGD, the interval number was set to 3–10 during the discretization
process of each density factor. Taking the FAR and BD of RB as an example, for the FAR,
when the classification method was the quantile range and the number of categories was
ten, the q-value was the highest (Figure 4a), so the quantile range was used to divide the
FAR into ten categories (Figure 4b). In the same way, the geometric interval was used to
divide BD into ten categories (Figure 4c,d). The principle of discretization of the other
density factors was the same.
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3.2. Analysis of Driving Forces of CIRB

The factor detection results (Table 3, column a) indicated that the other eleven factors
passed the significance test except for the BD and GAR. Overall, the single-factor driving
force showed that the explanatory power of the PEFs (q: 0.2133–0.7086) was greater than
that of the SEFs (q: 0.2345–0.3143). Among them, in the PEFs, the explanatory power of
the FAR (0.7086) was the strongest, indicating that the driving effect of land development
intensity on the CIRB was very strong. The three indicators reflecting the building height
characteristics, namely, the SDBH (0.5265), MBH (0.5003), and ABH (0.4849), all had a
substantial impact, highlighting the importance of building height as a driving force for the
CIRB. In the SEFs, the COD (0.3143) had a relatively strong explanatory power, reflecting
that the distribution of commercial outlets significantly increased the CIRB.

Table 3. Single-factor detection results.

Density System a. CIRB b. CICB c. CIPB

PEFs

FAR 0.7086 ** 0.5378 ** 0.5652 **
BD / / 0.5433 **

ABH 0.4849 ** 0.4902 ** 0.3609 **
HBH 0.5003 ** / 0.3871 *
SDBH 0.5265 ** 0.4088 * 0.5062 **

BFI 0.3537 ** / /
BCD 0.2133 * / /
BQD 0.3428 ** 0.3715 * 0.2932 *
LMD 0.3463 * / /
GR / / 0.3780 **

SEFs
PD 0.2345 ** 0.4204 * 0.3732 *

COD 0.3143 ** / /
BED 0.2770 * 0.4993 * 0.4541 *

Note: * and ** represent significance at the 0.05 and 0.01 levels, respectively.
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The results of the interaction detection (Figure 5a) indicated that, firstly, in terms of
the interaction among the PEFs, the explanatory power after the interaction between the
FAR and each factor was significantly enhanced, with an average q-value reaching 0.8169.
Notably, the explanatory power was strongest when interacting with the BD, showing a
nonlinear enhancement with a q-value of 0.8694. This result indicated that the synergistic
effect of the two could explain 86.94% of the CIRB, highlighting the dominant role of the
interaction between land development intensity and building coverage on the CIRB. This
study also found that the BD showed no correlation in the single-factor detection with
the CIRB, but its explanatory power experienced a significant nonlinear enhancement
after interacting with the FAR and ABH. This result suggested that the BD only exhibited
its driving effect on the CIRB when interacting with other factors. Additionally, the
interaction between the FAR and BFI was strong, with a q-value of 0.8626, second only to
the maximum q-value, reflecting that the interaction between land development intensity
and building form had a relatively strong driving effect on the CIRB. Secondly, in terms of
the interaction among the SEFs, the explanatory power of the interaction between various
factors performed well. Notably, the interaction between the PD and BED showed a stronger
performance, exhibiting a nonlinear enhancement with a q-value of 0.5661. Compared
with the interaction of the PEFs, it was evident that the interaction of the SEFs was not the
dominant factor in the CIRB. Finally, in terms of the interaction between the PEFs and SEFs,
the overall performance of the explanatory power of each factor was enhanced. Among
them, the interaction of the FAR with the SEFs and the interaction of the BFI with the
SEFs had relatively strong explanatory power for the CIRB, with average q-value of 0.8208
and 0.6595, respectively. Notably, the q-value of the interaction between the FAR and PD
reached 0.8575, indicating a strong driving effect of their interaction on the CIRB.
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This study found that for the RB, which serves as the primary space for urban residents’
daily life functions, the intensity of its carbon emissions was mainly driven by the PEFs
and their interactions. Additionally, the interaction between the PEFs and SEFs also played
a significant driving role.

3.3. Analysis of Driving Forces of the CICB

The factor detection results (Table 3, column b) indicated that six factors, including
the FAR, ABH, SDBH, BQD, PD, and BED, passed the significance test. Overall, the single-
factor driving force showed that the explanatory power of the PEFs (q: 0.3715–0.5378) was
greater than that of the SEFs (q: 0.4204–0.4993). In the PEFs, the FAR (0.5378) had the
strongest explanatory power. The ABH (0.4902), SDBH (0.4088), and BQD (0.3715) also
had a high impact, indicating that the intensity of land development, building height, and
quantity characteristics significantly had a significant driving effect on the CICB. In the
SEFs, the BED (0.4993) and PD (0.4204) showed a high explanatory power. However, the
COD did not exhibit a correlation with the CICB.

The results of the interaction detection (Figure 5b) indicated that, firstly, in terms of
the interaction among the PEFs, the explanatory power significantly increased after the
interaction among various factors. In particular, the interaction between the FAR, ABH, and
SDBH with other factors showed significant enhancement, with average q-value of 0.7036,
0.6947, and 0.6946, respectively. This study also observed that the interaction of the BD with
the ABH and the interaction of the BFI with the SDBH exhibited a significant non-linear
enhancement, with q-value reaching 0.8540 and 0.8357, respectively. However, the BD and
BFI showed no correlation in the factor detection, reflecting that their driving effects on
the CICB need to be manifested in interaction with other factors. Secondly, in terms of the
interaction among the SEFs, the interaction effects of various factors performed well in
explaining the CICB, with an average q-value of 0.6208. Notably, the interaction between
the PD and BED showed slightly better explanatory power and a linear enhancement,
with a q-value of 0.7254. Finally, in terms of the interaction between the PEFs and SEFs,
the explanatory power significantly increased, especially the interaction between the FAR
and SEFs, with an average q-value of 0.8713. In particular, the interaction with the COD
exhibited the strongest explanatory power and a non-linear enhancement, with a q-value
of 0.9127. This result indicated that the synergistic effect of the two could explain 91.27%
of the CICB, clearly highlighting the decisive role of land development intensity and the
distribution of commercial points in determining the CICB. Notably, the COD showed no
correlation in the single-factor detection, but its impact became significantly manifest in the
interaction with factors such as the FAR and SDBH. Additionally, the explanatory power of
the interaction between the FAR and BED, as well as the PD and ABH, reached q-value of
0.8842 and 0.8420, respectively, which were second only to the highest q-value.

The above research results fully demonstrated that for the CB, which serves as the
space to support the economic development of the service industry, its carbon emission
intensity resulted from the combined effects of the PEFs and SEFs. At the same time, the
interaction among the PEFs also played an essential driving role.

3.4. Analysis of Driving Forces of the CIPB

The factor detection results (Table 3, column c) indicated that the other nine factors
passed the significance test except for the BFI, BCD, LMD, and COD. Overall, the single-
factor driving force showed that the explanatory power of the PEFs (q: 0.2932–0.5652) was
greater than that of the SEFs (q: 0.3732–0.4541). Among them, in the PEFs, the explanatory
power of the FAR (0.5652) was the highest, and the impact of the BD (0.5433) and SDBH
(0.5062) was also significant. This result indicated that the intensity of land development,
building coverage, and variations in building height had a significant driving effect on
the CIPB. In the SEFs, the explanatory power of the BED (0.4541) was relatively strong,
indicating a significant driving effect of the distribution of business enterprises on carbon
emissions, and the impact of the PD (0.3732) was also significant.
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The results of the interaction detection (Figure 5c) indicated that, firstly, in terms of
the interaction among the PEFs, the explanatory power of the FAR, BD, and SDBH after
interaction with various factors performed well, with average q-value of 0.7035, 0.7041,
and 0.6853, respectively. Among them, the interactions between the FAR and MBH and
between the MBH and BCD showed relatively strong explanatory power with linear and
nonlinear enhancements, respectively, and with q-value of 0.8326 and 0.8067. Secondly, in
terms of the interaction among the SEFs, the explanatory power of each factor’s interaction
was moderate, with average q-value of 0.5078. The interaction between the PD and BED
showed a slightly better explanatory power. It showed a linear enhancement with a q-value
of 0.6366, indicating that the interaction of the SEFs was not the dominant factor in the CIPB.
Finally, in terms of the interaction between the PEFs and SEFs, the overall explanatory
power of their interactions was quite strong. In particular, the interaction between the FAR
and PD exhibited the strongest explanatory power and a showed significant nonlinear
enhancement, with a q-value of 0.9396. This result indicated that the synergistic effect of the
two could explain 93.96% of the CIPB, highlighting the decisive role of land development
intensity and population distribution in determining the CIPB. It is worth noting that
during the individual factor detection, there was no correlation between the COD, BFI,
and CIPB. However, after considering the interaction between the COD and FAR and the
interaction between the PD and SDBH, their explanatory power significantly increased,
showing a significant nonlinear strengthening effect, with q-value of 0.9220 and 0.8337,
respectively, ranking just below the highest value.

This study found that for the PB, which serves as a space that undertakes urban
social management and service functions, its carbon emission intensity resulted from the
interaction between the PEFs and SEFs. Additionally, the interaction among the PEFs also
played a significant role.

4. Discussion

As a key indicator related to the sustainable development of cities [8], density has
gained growing attention in academic circles regarding its impact on the CICL. It is worth
noting that different land use types serve different functions in the urban operation process,
leading to significant differences in carbon emissions regarding generation methods, inten-
sity, and other aspects. These differences also result in substantial variations in the effects of
density factors and their interactions on the land carbon emission intensity. However, the
OPGD effectively detected the impact of the PEFs and SEFs and their interactions on the
carbon emission intensity in different block types. Understanding the relationship between
the urban physical environment, socioeconomic characteristics, and carbon emissions is
significant for implementing effective carbon reduction actions [52].

4.1. Analysis of Single-Factor Driving Forces on CICL

From the perspective of single-factor analysis, at least one factor from the density
system consisting of thirteen factors constructed in this study was correlated with either
the CIRB, CICB, or CIPB, confirming the rationality of selecting density indicators. Among
these factors, the FAR, ABH, SDBH, BQD, PD, and BED played a driving role in all three
types of CICL. Furthermore, the overall impact of the density factors on the carbon emission
intensity in the different land uses revealed that the PEFs had a stronger influence than the
SEFs. Among them, the FAR exhibited the strongest impact, affirming its dominant role in
driving carbon emission intensity, which aligns with previous studies [53,54].

For other density factors, previous research has mainly focused on the relationship
between residential land density indicators and carbon emissions, with differences primar-
ily observed in terms of building density [28,55]. As density is a quantitative indicator
that describes the urban form and has significant three-dimensional characteristics, this
study aimed to further clarify the relationship between the building density (BD) and the
CICL by analyzing the spatial form of blocks. First, based on Table 2, we extracted and
compared the SD values reflecting the dispersion of the density indicators (Figure 6). We
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found that three indicators reflecting the building height on construction land, namely, the
ABH, HBH, and SDBH, had very high discretization levels. Additionally, the variation
in the building height on the RB and CB was significantly greater than that on the PB,
indicating that the three-dimensional spatial diversity of the RB and CB was much higher
than that of the PB, suggesting a certain level of convergence in the spatial form of the
PB. When we selected three typical blocks separately from the RB and CB, with similar
levels of BD, we observed significant differences in the spatial forms of the same block type,
representing three common spatial patterns in cities: high-rise, multi-story, and low-rise
buildings. Figure 7 clearly demonstrates the differences in the spatial patterns of the blocks
at similar levels of BD in the RB and CB. We found that the carbon emission intensity
increased for the selected RB units as the FAR and ABH increased. However, due to the
differences in the three-dimensional spatial form (Figure 7a), the BD remained unchanged,
indicating no correlation between the BD and CIRB. This finding was similarly observed
in the CB (Figure 7b). However, the significant driving effect of the interaction of these
factors on the CICL indicated that the influence of the BD may be mediated, meaning that
the driving impact of the BD needs to be manifested significantly through interactions with
factors such as the FAR and ABH. The convergence of the three-dimensional spatial form
on the PB also resulted in a correlation between the BD and CIPB. Overall, the spatial form
of specific land types affects the relationship between density factors and the CICL. This
result aligns with existing research conclusions that “different community forms, such as
BD and building form, have varying effects on residential energy consumption” [56,57].
This study also discovered that this characteristic applies to other land types.
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Regarding the SEFs, there were apparent differences in their impact on the carbon
emission intensity of the different land types. For the CIRB, the strongest driving factor
was the COD, highlighting the positive influence of the distribution of commercial and
service facilities on the carbon emission intensity in this block type. However, some
studies have also found that the COD has an inhibitory effect on transport-related carbon
emissions [58,59]. As for the CICB and CIPB, the strongest driving factor was the BED,
indicating that businesses had a strong promoting effect on the carbon emission intensity
in these block types.
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4.2. Analysis of Factor Interaction Driving Forces on the CICL

From the results of the factor interactions, the explanatory power of the interaction of
the FAR with the BD for the CIRB, the interaction of the AR with the COD for the CICB,
and the interaction of the FAR with the PD for the CIPB were 0.8694, 0.9127, and 0.9396,
respectively. This result clarified the necessity of conducting carbon emission research from
the perspective of density. We also found that the strongest explanatory power for the
carbon emission intensity in the three block types was the combination of the FAR and other
factors, and they all exhibited a nonlinear enhancement. It is worth noting that the factors
interacting with the FAR adequately reflect the characteristics of the different block types.
For example, the interaction between the FAR and COD exhibited the strongest explanatory
power for the CICB. In this case, the FAR reflects the intensity of land development, while
the COD, as the primary business format, reflects the level of economic activity in the
service industry in the CB. Furthermore, combined with the factor detection results, we
found that a specific density factor had an impact or a high degree of impact on the CICL,
and its influence was not necessarily reflected in the interaction of factors. Some factors
only exhibited a more significant impact after interacting with others. For example, the BD
showed no correlation with the CIRB, but its interaction with the FAR had the strongest
driving force, suggesting that when the level of FAR is determined for a given RB, the BD
determines the distribution of the floor area in the block, thereby influencing the formation
of wind, thermal, and light environments in the block [60], which, in turn, affects the level
of the CIRB.

The above conclusions clearly indicate that the CICL results from the synergistic effects
of multiple density factors. The nonlinear characteristics exhibited by the factor interactions
align with the conclusion emphasized in previous studies that “the influence of density on
carbon emissions is nonlinear and requires the analysis of other socioeconomic factors” [25].
This finding also reflects the limitations of predicting land carbon emissions based solely
on individual physical environment or socioeconomic factors, such as POI data [61] and
population density [62]. This study provides a basis for exploring carbon emission predic-
tions and simulations based on multi-source data [63,64]. At the same time, it implies that
when formulating carbon emission control policies and measures, urban planners should
consider the interactions among various factors based on the differences in land use types
rather than simply relying on a single density factor as the sole control criterion.
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4.3. Policy Implications

Based on the OPGD analysis results, this paper attempted to propose a coordinated
spatial planning and control method for carbon emission intensity in different block types.
It is important to note that in order to ensure the realization of socioeconomic benefits
for construction land, it is not feasible to simply suppress the carbon emission intensity
by reducing the FAR. Therefore, by comparing the explanatory power of the two-by-two
interactions of multiple density factors on the carbon emission intensity of blocks, this
study extracted an associative chain covering multiple density factors for RBs, CBs, and
PBs, respectively. Following this, an appropriate interval value for the density factor
in the associative chain was specified based on the risk detection results. The results
of the risk detection of some density factors on the CIRB, CICB, and CIPB are partially
presented in the bar charts in Figure 8. Taking the RB as an example, Figure 8a demonstrates
the risk detection results of the three factors SDBH, BQD, and BD, whereas Figure 8(ai)
demonstrates the average CIRB corresponding to different numbers of intervals when the
number of intervals of SDBH values was 8. The curves in Figure 8a show a degree of
consistency in the average carbon intensity of the SDBH, BQD, and BD factors at different
interval values, i.e., high–high–high and low–low–low. Based on this correspondence, this
study determined the appropriate values of the SDBH, BQD, and BD.
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For the RB, the three factors in the association chain “BD–BQD–SDBH” exhibited a rel-
atively high explanatory power through pairwise interactions (Figure 8a), with an average
q-value of 0.6940. Therefore, while ensuring the intensity of land development, focusing
on appropriately increasing the number of buildings, reducing the building coverage, and
minimizing the difference in height between individual buildings can effectively reduce
the CIRB. The optimal solution is to control the BQD within the range of (0.00158, 0.00262],
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the SDBH within the range of (0.722, 3.03], and the BD within the range of (0.153, 0.183] or
(0.243, 0.275]. Similarly, for the CB, the association chain consisted of “ABH–SDBH–BFI”
(Figure 8b), with an average q-value of 0.7530. Therefore, focusing on appropriately reduc-
ing the height difference between individual buildings by lowering the average height and
adjusting the aspect ratio of buildings can effectively reduce the CICB. Considering the
higher intensity of CB development, the optimal solution would be to control the ABH
within the range of (23.4, 29.5], the SDBH within the range of (18.5, 27.1], and the BFI within
the range of (0.53, 0.654]. For the PB, the association chain was “BFI–BD–SDBH” (Figure 8c),
with an average q-value of 0.7540. Hence, focusing on reducing the building coverage
appropriately, combining it with minimizing the difference in height between individual
buildings, and adjusting the aspect ratio of buildings can help lower the CIPB. Considering
the higher intensity of PB development, an optimal solution could be to control the BD
within the range of (0.286, 0.332], the SDBH within the range of (5.2, 5.62], and the BFI
within the range of (0.537, 0.752].

4.4. Limitations and Future Outlook

This study investigated the impact of density indicators on the CICL. However, it has
the following limitations and the possibility of further research: Firstly, considering the
dynamic evolution of urban density, future studies could examine the impact of density
changes on the carbon intensity of a site over a more extended period in conjunction with
technological advances, policy changes, or economic shifts. This research would contribute
to spatial planning and guiding urban spaces toward a more low-carbon direction. Secondly,
this study only focused on the central urban area of Changxing County. The research
findings may be limited to providing insights into the coordinated control of carbon
emissions in small county-level cities in the Yangtze River Delta region. Future studies
could select more small cities from different areas to investigate the differences in the impact
of density factors on the intensity of land carbon emissions. Lastly, this study represented
the total energy consumption in a block using its electricity consumption. There may
still be some discrepancies compared to actual data. Future research could collect more
comprehensive energy consumption data.

5. Conclusions

Based on multiple data sources such as energy consumption, remote sensing, and POI
in the urban block units of Changxing County, this study constructed a density system
that reflects the physical environment and socioeconomic characteristics of construction
land. By employing an OPGD and selecting the best discretization method and interval
count as the optimal combination of parameters to convert the continuous density factor
into a discrete factor, this study investigated the effects and interactions of density factors
on the CIRB, CICB, and CIPB. The main conclusions are as follows: (1) Regarding the
single-factor analysis, at least one factor from the density system consisting of thirteen
factors constructed in this study was related to either the CIRB, CICB, or CIPB. Among
these factors, the FAR, ABH, SDBH, BQD, PD, and BED played a driving role in all
three types of CICL. Additionally, the degree of influence of the different density factors
on the carbon emission intensity was closely related to the land use type and its three-
dimensional spatial morphology. Furthermore, the explanatory power of the PEFs for the
carbon emission intensity in the three types of construction land was stronger than that
of the SEFs, with the FAR exhibiting the strongest influence. (2) Regarding the interaction
analysis, the CICL resulted from the interaction of multiple density factors. The interactions
between the FAR and BD, the FAR and COD, and the FAR and PD demonstrated non-linear
enhancements in their explanatory power for the CIRB, CICB, and CIPB, respectively.
Additionally, this study found that the factors interacting with the FAR adequately reflected
the characteristics of the different types of construction land. However, when combining
the results of the single-factor analysis, we found that a specific density factor had an impact
or a high degree of impact on the CICL, and its influence was not necessarily reflected
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in the interaction of factors. Some factors only exhibited a more significant impact after
interacting with others. (3) Based on the results of the OPGD analysis, by comparing the
explanatory power of the pairwise interactions among multiple factors, a correlated chain
encompassing the interactions of multiple density factors was extracted for the CIRB, CICB,
and CIPB, respectively. They respectively corresponded to the following three chains:
“BD–BQD–SDBH”, “ABH–SDBH–BFI”, and “BFI–BD–SDBH”.

The above results indicated that the OPGD effectively assessed the impact of dif-
ferent density factors and their interactions on the CICL. The research findings can also
provide valuable decision support for urban planners in considering the comprehensive
effects of density factors and promoting the development of low-carbon and sustainable
urban spaces.
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