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Abstract: Building height is a crucial indicator when studying urban environments and human
activities, necessitating accurate, large-scale, and fine-resolution calculations. However, mainstream
machine learning-based methods for inferring building heights face numerous challenges, including
limited sample data and slow update frequencies. Alternatively, satellite laser altimetry technology
offers a reliable means of calculating building heights with high precision. Here, we initially calculated
building heights along satellite orbits based on building-rooftop contour vector datasets and ICESat-2
ATL03 photon data from 2019 to 2022. By integrating multi-source passive remote sensing observation
data, we used the inferred building height results as reference data to train a random forest model,
regressing building heights at a 10 m scale. Compared with ground-measured heights, building
height samples constructed from ICESat-2 photon data outperformed methods that indirectly infer
building heights using total building floor number. Moreover, the simulated building heights strongly
correlated with actual observations at a single-city scale. Finally, using several years of inferred
results, we analyzed building height changes in Tianjin from 2019 to 2022. Combined with the
random forest model, the proposed model enables large-scale, high-precision inference of building
heights with frequent updates, which has significant implications for global dynamic observation of
urban three-dimensional features.

Keywords: satellite laser altimetry; ICESat-2; building height; random forest; Sentinel-1; Sentinel-2;
VIIRS; dynamic monitoring

1. Introduction

High-precision urban three-dimensional (3D) information serves as a critical reference
for tasks such as urban planning, emergency management, and autonomous driving [1–3]
and forms the foundation for further advancements in technologies such as city informa-
tion models and 3D real scenes [4,5]. Building heights constitute a principal geographical
element in urban 3D morphology and are important indicators of complex systems in-
volving urbanization, heat island effects, and human–environment interactions. Therefore,
achieving long-term, large-scale, and highly accurate extraction of building heights is of
considerable importance [6–9].
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Numerous methods exist for acquiring 2D building outlines; however, obtaining
high-precision height data remains challenging. Currently, the widely used methods for
building height extraction fall into three main categories [10–13]: (1) 3D laser scanning
technology, (2) oblique photogrammetry, and (3) satellite stereo-mapping technology. Three-
dimensional laser scanning and oblique photogrammetry rapidly capture high-precision
building height information using unmanned aerial vehicles (UAVs). However, these
technologies are constrained by external environmental factors, flight restrictions, and high
costs, rendering it difficult to satisfy the demands of large-scale urban applications [14–16].
Alternatively, with the rapid development of Earth observation technologies, satellite stereo
mapping employing dual- or triple-line mapping cameras for the large-scale stereoscopic
mapping of areas has emerged as a dominant means of acquiring global building heights
because of its high spatial and temporal resolution, extensive coverage, and ready data
accessibility [17–19]. Nevertheless, issues such as clouds and fog obscuring image quality,
reliance on prior control points, and the poor precision of elevation inversion hinder its
direct application to height extraction in densely built areas [16,20,21].

The ICESat-2 satellite, launched in 2018, is the first to carry the multi-beam photon-
counting light detection and ranging (LiDAR) Advanced Topographic Laser Altimeter
System (ATLAS), enabling direct acquisition of elevation profiles along its track over urban
areas. However, realizing the large-scale, high-precision, and automated extraction of
building heights in complex scenes presents numerous technical challenges [22]. Although
ICESat-2 can generate vast amounts of photon point-cloud data in a short timeframe, these
data are contaminated by substantial background noise. Density-based spatial clustering,
local distance statistics, and machine learning theories have been employed to differentiate
and remove noise based on the differences in spatial distribution [23–26]. Although these
algorithms are not optimal for processing building photons given the significant variations
in vertical photon distributions across different ground types [27–29], an overall accuracy
of building height measurements of up to 1.5 m has been attained using the ICESat-2
ATL03 product in dense urban areas [30,31]. Moreover, local precision has been further
improved to 8–17 cm by adopting a strategy of selecting building heights based on height
differences between adjacent photons in small regions. However, this threshold approach
has substantial limitations in broader applications [32]. Furthermore, relying solely on
along-track elevation profiles for building height extraction introduces some uncertainty
stemming from factors such as measurement errors caused by complex terrain within the
laser spot footprint and potential forward-scattering effects along the laser transmission
path [33–35].

Against this backdrop, research institutions such as the United States National Aero-
nautics and Space Administration (NASA) have explicitly outlined their decadal devel-
opment plans for surface 3D mapping, including technological advances such as the
Concurrent Artificially Intelligent Spectrometry and Adaptive LiDAR System (CASALS).
This system was designed to integrate advanced spectral cameras and LiDARs to acquire
cross-orbit, true 3D information and enhance the understanding of the drivers and pro-
cesses underlying height variations [36]. Achieving accurate identification of 3D building
features through the fusion of active and passive satellite sensors and multi-source reference
data is an inevitable trend in current mainstream technology. For example, Zhao et al. [37]
combined ICESat-2 and Google Earth image data to propose a deep learning height esti-
mation model based on building shadows and offset distances; however, such methods
require an azimuth angle between the sensor and the sun to both deviate from the nadir
and be <180◦ [37–39]. Wu et al. [38] utilized building floor count data from Baidu Maps and
Earth observation data to develop a random forest-based building height prediction model
using a joint shadow index, achieving height inversion at a 10 m resolution. However, the
building height samples were constructed by multiplying the building floor counts by an
assumed floor height of 3 m, resulting in lower accuracy. Furthermore, this method relies
solely on data from the year 2020, precluding the longitudinal observations of building
height dynamics over multiple years.
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To address the issues of limited sample data, low precision, and slow update frequency
in the existing building height footprint research, in this study, we utilized the ICESat-2
ATL03 product combined with building rooftop vector data to construct annual building
height samples for Tianjin, China as a representative large, complex urban area. Through in-
tegrating these samples with multi-source remote sensing data, a random forest model was
employed to derive 10 m resolution building heights for the period 2019–2022. Studying
the overall building heights of such megacities offers critical insights regarding the dynam-
ics of urban structures, highlighting the significance of these data for academic research
and urban planning. Moreover, the developed building height inversion methodology
transcends the temporal and spatial constraints of previous approaches, and has profound
implications for the dynamic monitoring of urban 3D structures on a global scale.

2. Materials and Methods
2.1. Overview of the Study Area

Tianjin, one of the four municipalities directly under the Central Government of China,
is a typical megacity with a permanent population of 13,630,000 individuals and covers an
area of 11,966.45 km2. It is located along the coast of Bohai Bay in North China and features
flat terrain and convenient transportation, making it the largest port city in northern China
and an important component of the Jing-Jin-Ji metropolitan region. The city’s economy
is vibrant and is divided into six core districts: Heping, Hexi, Hedong, Hebei, Nankai,
Hongqiao, and 10 other districts: Binhai New Area, Jinnan, Xiqing, Beichen, Dongli, Baodi,
Wuqing, Jinghai, Ninghe, and Jizhou. Densely built areas account for approximately 8.25%
of Tianjin’s total area. The old city area, with its long history, hosts a multitude of modern as
well as historic structures, whereas new city areas are predominantly modern and include
many rural buildings. Overall, Tianjin boasts a rich variety of building types along with
differing construction rates between its core and other districts, providing an excellent
research setting for observing urban dynamics.

2.2. Data Collection

We employed multi-source remote sensing data from various satellites, including
ICESat-2, Sentinel-1, Sentinel-2, and National Oceanic and Atmospheric Administration
(NOAA)/Visible Infrared Imaging Radiometer Suite (VIIRS). We also utilized multiple
reference datasets, such as Vectorized Rooftop Area Data for 90 Cities in China [38] and the
90 m-resolution Global Digital Elevation Model (DEM) product Shuttle Radar Topography
Mission (SRTM).

2.2.1. ICESat-2

We utilized the ICESat-2 onboard photon counter to invert building heights. Equipped
with ATLAS, ICESat-2 operates at a 532 nm wavelength using an emitter, sensitive receiver,
and high-precision timing system. ATLAS fires three pairs of laser beams, spaced 3.3 km
apart along-track with an intra-pair separation of 90 m, at a repetition rate of 10 kHz,
scanning the Earth’s surface and producing overlapping footprints 17 m in diameter every
0.7 m. Each pair consists of a strong and a weak beam in a 4:1 energy ratio, as depicted
in Figure 1a. Compared with the measures from the Geoscience Laser Altimeter System
(GLAS) aboard ICESat-1, ATLAS significantly increases the ground track density and cover-
age area. Whereas ICESat-2 is primarily designed for generating geophysical products for
various surface types, such as land ice (ATL06), sea ice (ATL07), land/vegetation (ATL08),
atmosphere (ATL09), ocean (ATL12), and inland waters (ATL13), it also offers measure-
ments over densely built regions, enabling the estimation of urban building heights [32]. As
shown in Figure 1b, the laser footprints form a two-dimensional profile distribution along
the orbit; however, ATLAS is susceptible to background noise, with signal photons that
are not directly distinguishable from noise photons [32]. Nonetheless, the strong energy
reflected from both the ground and building tops results in significantly higher photon
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densities than those obtained from ICESat-1 regardless of beam strength. Leveraging this
characteristic allows the separation of signal photons from noise photons.
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Figure 1. ICESat-2 photon data. (a) Basic distribution of ICESat-2 data. (b) Distribution of photons
from a pair of strong and weak beams in the ICESat-2 data in the along-track direction. (c) Distribution
of ICESat-2 data in the Tianjin area.

A substantial amount of ICESat-2 footprint data is available for the Tianjin region from
2019 to 2022, as illustrated in Figure 1c, which covers all major urban areas within the Tianjin
Municipality. This extensive coverage provides a robust foundation for constructing a
uniform and comprehensive sample of building heights. Although the number of footprints
in 2019 is relatively low, a marked increase in footprint density can be observed in the
subsequent three years.

2.2.2. Other Datasets

As presented in Table 1, additional data sources utilized to estimate building heights
included vectorized rooftop area, synthetic aperture radar (SAR), multispectral imagery,
nighttime light, reference terrain, and UAV photogrammetry data. The detailed characteris-
tics of each dataset are listed in Table 1.

The Vectorized Rooftop Area Data for 90 Cities in China [38,40] provided a detailed
vector representation of building rooftops in Tianjin, which served as a valuable spatial ref-
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erence for processing the ICESat-2 photon data. The overall accuracy of this dataset reached
97.95%. This dataset ensured that the analysis was focused on the targeted buildings within
the city, facilitating accurate interpretation and integration of the ICESat-2 measurements.

Table 1. Other datasets used to estimate building height.

Data Type Dataset Name Temporal Range and
Spatial Resolution Involved Indicators

Building outline
vector

Vectorized Rooftop
Area Data for

90 Cities in China
2020

Synthetic Aperture
Radar Sentinel-1 GRD 2019–2022

10 m
VVH = VV ∗ γVH (1)

Multispectral Sentinel-2
2019–2022

10 m

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(2)

EVI =
2.5 ∗ (ρNIR − ρRed)

ρNIR + 6 ∗ ρRed − 7.5 ∗ ρBlue + 1
(3)

LWSI =
ρNIR − ρswir1
ρNIR + ρswir1

(4)

MNDWI =
ρGreen − ρswir1
ρGreen + ρswir1

(5)

NDBI =
ρswir1 − ρNIR
ρswir1 + ρNIR

(6)

SEI =

(
ρAerosols + ρVapor

)
− (ρGreen + ρNIR)(

ρAerosols + ρVapor
)
+ (ρGreen + ρNIR)

(7)

CSI =
{

SEI − ρNIR, i f ρNIR > NDWI
SEI − NDWI, else (8)

Infrared NOAA/VIIRS 2019–2022
500 m

Reference terrain SRTM 2000
90 m slope =

∆H
∆D

∗ 100% (9)

Validation UAV
Photogrammetry

2021.5
0.15 m

NOAA, National Oceanic and Atmospheric Administration; VIIRS, Visible Infrared Imaging Radiometer Suite;
GRD, ground range detected; SRTM, Shuttle Radar Topography Mission; UAV, unmanned aerial vehicles.

2.3. Methods
2.3.1. Study Design

The research methodology was divided into three main parts. The first part involved
constructing high-precision building height sample data for Tianjin City over different time
periods based on ICESat-2 and building rooftop contour vector datasets. In the second
part, urban building heights were retrieved by integrating the constructed sample data
with multi-source passive remote sensing data. In the third part, we analyzed the dynamic
changes in urban building heights based on the retrieved building height results. Figure 2
illustrates the main technical framework and workflow of this study.
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Figure 2. Technical framework of the study. VV, vertical–vertical polarization; VH, vertical–horizontal
polarization; VVH, --; SRTM, Shuttle Radar Topography Mission; DEM, digital elevation model;
SWIR, short-wave infrared; NDVI, normalized difference vegetation index; EVI, Landsat enhanced
vegetation index; LSWI, land surface water index; mNDWI, modified normalized difference water
index; NDBI, normalized difference built-up index; CSI, combination shadow index; NOAA, National
Oceanic and Atmospheric Administration; VIIRS, Visible Infrared Imaging Radiometer Suite.
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2.3.2. Building Height Reference Data Construction

The ICESat-2 ATL03 product alone does not directly yield building heights and con-
tains substantial background noise photons. Thus, the relative heights of buildings must
be estimated, which requires concurrent knowledge of both the building and surrounding
terrain elevations, and the photon data denoised. As illustrated in Figure 3a, the orbital
length passing through the administrative districts of Tianjin City was extensive, resulting
in large data volumes and complex situations that hampered direct processing. In contrast,
the spatial extent of the photon data at the individual building level is much smaller, which
simplifies the analysis. To obtain photon data for each building and its surroundings, we
relied on a vector dataset of building rooftop contours to create 10 m buffers, with the
photon data falling within each buffer being selected and labeled with building contour
numbers for subsequent retrieval and processing. The filtered photon data are shown in
Figure 3b. Taking building No. 1180964 as an example, as shown in Figure 3c, the photons
within the building’s range exhibit a distinct bimodal distribution, characteristic of separa-
tion between the ground and roof. Typically, building tops are smooth and continuous, as
shown in Figure 3d, allowing for the identification of the absolute heights of building tops
in local areas, which, combined with the surrounding ground photon heights, enables the
calculation of building relative heights. Given the positional error of photons, we computed
the average building height within the building area using photons from both the buffer
area and ground, which served as the overall building height and mitigated the issue of
positional error to some extent.
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Figure 3. ICESat-2 photon data. (a) Orbital data of building photons passing through Tianjin on
9 November 2018. (b) Remaining building photons intersecting the building contours along the
orbit. (c) Distribution of building photons within the buffer of Building No. 1180964. (d) The red line
represents the plane of the top of the building.

We applied a two-step approach for denoising. First, DBSCAN was used to remove
the majority of the background noise, as DBSCAN has been reported to eliminate ≥90% of
noise photons. Second, the denoising was enhanced on the basis that buildings and ground
surfaces within small local areas are relatively flat and often approximated as straight
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lines. Accordingly, the RANSAC line-fitting algorithm was applied to each point cluster to
remove photons that deviated significantly from the fitted line.

Specifically, the relative building height reference data were established as follows. In
most scenarios, the height of the buildings should exceed 1.5 m. Within the 10 m buffer
range formed by the vector scope of a given building, the two ends should encompass the
surrounding ground. Therefore, the two end clusters should represent ground photons.
Based on this premise, photon clusters that were 1.5 m higher than these ground photon
clusters were considered building photon clusters.

We then directly computed the relative height of buildings by subtracting the average
height of the ground clusters from that of the building clusters. However, during actual
calculations, both remote sensing imagery and ICESat-2 data may exhibit some horizontal
errors and may be influenced by thin clouds, leading to situations in which a building
vector zone lacks distinct clusters with a 1.5 m height difference. The building height
calculations for these vectors were omitted. Upon obtaining the building heights, the
centroid of the vector polygons was computed, and the inverted building height results
were assigned to these points, serving as sample points for sampling.

The detailed steps of the denoising method are illustrated in Figure 4. In the first
step, the DBSCAN algorithm with a tolerance of 2.1 m is used for noise identification.
This distance is approximately the horizontal spacing of three ICESat-2 spots, allowing
for the elimination of approximately 90% of stray noise, as illustrated in Figure 4b. In
the second step, the DBSCAN algorithm with a tolerance of 1.4 m, which is equivalent
to the horizontal spacing of two spots, is used for further denoising. This step removes
small clusters that deviate from the main objects, as illustrated in Figure 4c, thereby further
reducing interference. Finally, RANSAC linear fitting is applied to remove points whose
perpendicular distance from the fitted line exceeds three times the standard deviation of the
outliers. This ensures that all points are essentially aligned along a single line, consistent
with the characteristics of building rooftops and the nearby ground, as illustrated in
Figure 4d.

To verify the reliability of the results, we employed the Pearson correlation coefficient
(R), root mean square error (RMSE), and mean absolute error (MAE) as metrics (defined
below) to assess the precision of the results.

R =
∑n

i=1 cov
(

Hi, Ĥi
)

∑n
i=1

√
D(Hi) ∗

√
D
(

Ĥi
) , (10)

RMSE =

√
1
n

n

∑
i=1

(
Hi − Ĥi

)2, (11)

MAE =
1
n

n

∑
i=1

∣∣Hi − Ĥi
∣∣, (12)

where Hi, Ĥi represent the true and predicted values of building height, respectively.
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than 4 remaining are removed in this step. (d) Finally, RANSAC line fitting is performed to eliminate 
other noise points. The red line is the fitting line of the RANSAC linear algorithm, and the blue dots 
represent the signals within a certain range of the line. 
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fluctuations in the data features. Moreover, additional indices were generated from partial 
data to serve as input variables. The VIIRS and SRTM datasets were also resampled at 10
m resolution to achieve consistency across the datasets. 
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building height inversion. In this model, the two critical parameters are the number of 
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herent regression mechanism effectively prevents overfitting, allowing this value to be set 
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consideration of features. When Mtry is small, some highly influential key variables may 
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Figure 4. Denoising steps. (a) Original signals from ICESat-2 ATL03. (b) The denoising process
generally involves first performing DBSCAN denoising with a tolerance of 2.1m. The red points
represent noise identified by the algorithm, while the blue dots represent the signals retained by the
algorithm. (c) The following involves DBSCAN denoising with a tolerance of 1.4m. Points with fewer
than 4 remaining are removed in this step. (d) Finally, RANSAC line fitting is performed to eliminate
other noise points. The red line is the fitting line of the RANSAC linear algorithm, and the blue dots
represent the signals within a certain range of the line.

2.3.3. Building Height Estimation

To estimate building height, we first conducted cloud masking on Sentinel-2 optical
imagery by employing the Google Earth Engine (GEE) platform to eliminate pixels with
cloud coverage surpassing 60%. The GEE platform further computed the annual means
for Sentinel-1, Sentinel-2, and VIIRS data to fill any gaps, thereby mitigating interannual
fluctuations in the data features. Moreover, additional indices were generated from partial
data to serve as input variables. The VIIRS and SRTM datasets were also resampled at 10 m
resolution to achieve consistency across the datasets.

We adopted a random forest regression model as the fundamental framework for
building height inversion. In this model, the two critical parameters are the number
of trees (NTrees) and number of features per binary tree node (Mtry). NTrees directly
influences the performance of the random forest regression model; however, the model’s
inherent regression mechanism effectively prevents overfitting, allowing this value to be set
relatively high. In this study, NTree was set to 500 because the model error stabilized prior
to reaching this parameter value. In addition, the magnitude of Mtry affects the model’s
consideration of features. When Mtry is small, some highly influential key variables may
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be neglected, whereas when it is large, the model’s responsiveness to individual feature
variables diminishes. Drawing on established training practices, this value was customarily
set as the square root of the number of features. The random forest model employed in this
study was constructed using the GEE platform.

3. Results and Discussion
3.1. Building Height Estimation Based on Satellite Altimetry Data

Using building contour data from 2021 as the basis, we estimated building height data
for the Tianjin area for 2019, 2020, 2021, and 2022, successfully determining the heights of
11,968, 20,032, 17,409, and 21,203 structures, respectively. These derived datasets served
as reference inputs for subsequent random forest-based inversion analyses. To assess the
accuracy of the derived building height reference data, they were compared with the data
of digital surface models generated through UAV oblique photogrammetry for a set of
seven distinct buildings (Table 2). The geographical distributions of the seven selected
buildings are shown in Figure 5.
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Table 2. ICESat-2-retrieved heights vs. UAV photogrammetry-modeled heights.

Point Index Height from ICESat-2 (m) Height from UAV (m) Bias (m)

1 20.77 20.83 −0.06
2 5.79 6.54 −0.75
3 10.40 10.29 0.11
4 19.41 19.18 0.23
5 10.83 11.32 −0.49
6 21.19 21.29 −0.10
7 15.78 16.80 −1.02

The results indicate that building heights inferred from ICESat-2 data exhibit a high
level of accuracy, with a maximum error of −1.02 m. This specific error is largely due to
the substantial size and irregular topography of the relevant building, with the ICESat-2
laser footprint only covering one side of the edifice, resulting in a substantial deviation in
the height estimation. In contrast, the majority of building samples display errors confined
within the range of ±0.5 m. Notably, the heights obtained from ICESat-2 demonstrate
enhanced precision and reliability relative to the reference data derived from indirectly
inferred building heights using Baidu floor-level data [41].

3.2. Building Height Results Derived from Multi-Source Remote Sensing Data Regression

Using building height reference data from different years, we constructed a sample
dataset employing annual Sentinel-1, Sentinel-2, and VIIRS remote sensing data along with
SRTM digital elevation model raster data to train a random forest regression model to
estimate building heights in the Tianjin region. The inversion results are shown in Figure 6.
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Because of the difficulty in displaying results on a large scale at 10 m resolution,
we created a vector grid with a resolution of 0.0125◦ to perform partition statistics on
the original results. The sum of the building pixel heights within each grid is shown in
Figure 6a–d. Between 2019 and 2022, the overall layout of buildings in Tianjin City did
not undergo marked changes. However, fluctuations in building heights occurred in the
core urban areas of Tianjin City over the four-year period. As depicted in Figure 6e–g,
a decrease in overall building height was apparent from 2019 to 2020, followed by a
substantial increase from 2020 to 2021, contrary to actual trends. Several factors might
have contributed to these results. First, the characteristics of the random forest regression
model itself and variations in sample distribution each year may cause fluctuations in
building height regression results. Second, because of the limited number of samples for
tall buildings, which constituted only a small portion of the total samples, the model’s
performance in predicting high-rise buildings exceeding 30 m in the core urban area was
not as effective as that for general buildings below 30 m, further affecting the results in the
core area.

Despite these influences, the results of this study clearly reflected the dynamic changes
in building heights in rapidly developing areas. Noticeable increases in the building heights
could be observed at the edges of the area, as depicted in Figure 6e–g. Moreover, in selected
areas with more pronounced changes, a clear increasing trend was apparent (Figure 7).
Specifically, the area covered by buildings in 2020 expanded compared to that in 2019, and
building height markedly increased from 2020 to 2022. This finding highlights the ability
of the developed methodology to provide crucial support for monitoring dynamic changes
in urban buildings.
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3.3. Analysis of Building Height Dynamics

Because of the inherent variability of the random forest regression algorithm, the
results of the building height regression for each year may not be entirely stable, resulting
in different height assessments for the same building. However, this does not imply that
the results are unsuitable for dynamic analysis, as the changes in building heights between
the two years followed a normal distribution. We employed the three-sigma principle to
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extract areas with significant changes in building height and conducted further analyses
therein. Based on the different administrative divisions within Tianjin City, the changes in
building height in different areas were then quantitated (Figure 8).
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Figure 8a presents numerous points indicative of substantial increases in building
heights between 2020 and 2021. Figure 8b shows the total volume of building growth
in each district of Tianjin City. The old urban areas of Tianjin, such as Heping District,
have relatively small administrative areas, with only a 10.01 km2 increase in building area.
Moreover, owing to constraints on large-scale construction activities in old urban areas, the
total volume of building growth from 2019 to 2022 was 1,898,205.784 m3 for Heping District,
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356,749.394 and 1,317,668.213 m3, respectively. Compared to the substantial growth in
the volume of construction in the emerging Binhai New Area over the same four-year
period (22,856,517.3, 86,413,702.04, and 60,347,107.6 m3, respectively), the total construction
volume in Heping District was relatively small. However, as shown in Figure 8c, the
percentage increase in building area was higher in old urban than in new areas. For
example, in Heping District and Binhai New Area, the percentage increases in building
area from 2019 to 2022 were 3.0, 4.4, and 2.0%, and 0.13, 0.40, and 0.35%, respectively. In
terms of the proportion of newly added building areas, the growth area in the Heping
District accounted for 9.4% of the total area over the study period, whereas that in the
Binhai New Area accounted for only 0.88%. Together, these results highlight the ability of
the developed method to provide valuable insights regarding changes in building height
over time.

3.4. Accuracy Assessment

In this study, we utilized the building height prediction output by the random forest
regression model at a 10 m resolution, assigning the predicted heights to the corresponding
positions within a raster grid. To validate the raster results, we sampled a 10% subset of the
validation points that were separated from the reference data samples during the model
construction, thereby obtaining pairs of predicted and true values. We conducted accuracy
assessments for each year; the validation outcomes are presented in Figure 9.
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The validation results reveal that the building height inversion outcomes for the years
2019 to 2022 consistently maintain MAEs below 3.61 m and RMSEs under 6.5 m, with
average R, RMSE, and MAE values of 0.557, 5.59 m, and 3.03 m, respectively, substantiating
the effectiveness of the developed method in achieving accurate building height estimation
at the city scale. Nonetheless, the performance of this method is subject to variations
in the quality of remote sensing imagery and the characteristics of ICESat-2 photons,
including their quality and distribution, across different time periods. As a result, the
annual inversion performance was not entirely consistent, with an average correlation
coefficient of 0.557 over the four-year period, which was comparatively lower than that of
the alternative methods.

3.5. Implications and Uncertainties

In comparison to previous studies, such as Wu et al. [38], who constructed
22,909 building height samples nationwide based on Baidu data, rendering updates chal-
lenging, the present study established a total of 70,612 evenly distributed samples in Tianjin
over four years. The developed approach therefore not only overcomes the issue of con-
structing building height samples across multiple years, but also furnishes a vastly larger
and higher precision sample base, highlighting the substantial potential of this method for
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the dynamic monitoring of building heights in large cities. This study compares the results
with the CNBH-10m building height dataset, as illustrated in Figure 10.

Land 2024, 13, x FOR PEER REVIEW 15 of 18 
 

3.5. Implications and Uncertainties 
In comparison to previous studies, such as Wu et al. [38], who constructed 22,909 

building height samples nationwide based on Baidu data, rendering updates challenging, 
the present study established a total of 70,612 evenly distributed samples in Tianjin over 
four years. The developed approach therefore not only overcomes the issue of construct-
ing building height samples across multiple years, but also furnishes a vastly larger and 
higher precision sample base, highlighting the substantial potential of this method for the 
dynamic monitoring of building heights in large cities. This study compares the results 
with the CNBH-10m building height dataset, as illustrated in Figure 10. 

 
Figure 10. Comparison with CNBH-10m building height dataset. The comparison results indicate 
that the building heights calculated in this study exhibit a consistency of 0.72 with the CNBH-10m 
dataset, with an RMSE of 5.39 m. Considering that the ICESat-2 photon data designed for this study 
are challenging to frequently obtain elevation data within the range of high-rise buildings, the over-
all building height is likely to be underestimated compared to the CNBH-10m dataset. Conse-
quently, the RMSE is relatively large, but the correlation remains strong. This demonstrates that the 
calculation results of this study have a high level of reliability. 

Moreover, the sample construction methodology in this study relies on ICESat-2 sat-
ellite and building rooftop vector data. Since its launch in 2018, ICESat-2 has amassed a 
wealth of photon elevation point data worldwide, with the ATL03 product being updated 
every three months. Building rooftop vector data are also extensively produced and 

Figure 10. Comparison with CNBH-10m building height dataset. The comparison results indicate
that the building heights calculated in this study exhibit a consistency of 0.72 with the CNBH-10m
dataset, with an RMSE of 5.39 m. Considering that the ICESat-2 photon data designed for this study
are challenging to frequently obtain elevation data within the range of high-rise buildings, the overall
building height is likely to be underestimated compared to the CNBH-10m dataset. Consequently, the
RMSE is relatively large, but the correlation remains strong. This demonstrates that the calculation
results of this study have a high level of reliability.

Moreover, the sample construction methodology in this study relies on ICESat-2
satellite and building rooftop vector data. Since its launch in 2018, ICESat-2 has amassed a
wealth of photon elevation point data worldwide, with the ATL03 product being updated
every three months. Building rooftop vector data are also extensively produced and
updated globally, encompassing datasets such as the Vectorized Rooftop Area Data for
the 90 Cities in China [38] used in this study and Google’s MSBuildings, covering various
regions worldwide. This implies that the proposed method can dynamically construct
building height samples on a global scale. Crucially, neither type of dataset relies on
ground-based manual surveys, affording a marked advantage when dealing with typically
inaccessible regions, such as war zones or disaster-stricken areas. This facility aids in filling
data gaps in global building height datasets and provides robust data support for assessing
dynamic changes in urban 3D structures under the influence of wars, disasters, and other
factors. Furthermore, it paves the way for establishing a long-term series of building height
inversions on a global scale with promising applications.

This study has certain limitations. First, the construction of samples in this method
relies on the assumption of continuous smoothness of building tops and the surrounding
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ground, which introduces uncertainties when dealing with complex terrain or architecture.
Second, the random forest regression method based on multi-source remote sensing data
exhibited some instability. The height assessments of the same object may not be consistent
across different periods, thereby increasing measurement errors and representing an issue
necessitating further improvement. Finally, constrained by the temporal scale of the data,
the current method can only achieve building height retrieval over four to five years. This
is insufficient to support the long-term analysis of building height changes. Subsequent
analyses will require the accumulation of data from ICESat-2, or the acquisition of new
data from similar sensors.

4. Conclusions

This study proposed a method for dynamically retrieving building heights at a 10 m
resolution in Tianjin City from 2019 to 2022 using satellite altimetry radar data and building
rooftop contour data in conjunction with multisource optical remote sensing data, em-
ploying a random forest regression model. The accuracy of building height retrieval over
multiple years was relatively high, with average R, RMSE, and MAE values of 0.557, 5.59 m,
and 3.03 m, respectively. Significant changes in building height could be identified using
the three-sigma principle.

The total volume of newly constructed buildings in the old urban areas of Tianjin City,
such as the Heping District, was 3,572,623.3918 m3, markedly less than the additional vol-
ume in emerging urban areas, such as the Binhai New Area, which was 169,617,326.94 m3.
However, in terms of the proportion of newly added building areas, the growth area in the
Heping District accounted for 9.4% of the total area over the study period, whereas that in
the Binhai New Area accounted for only 0.88%.

In summary, this study proposed a method for dynamically retrieving building heights
at a 10 m resolution using ICESat-2 photon data and multisource optical remote sensing
data, providing a reliable approach for analyzing the 3D structural dynamics of urban
areas. Given the broad distribution and high update frequency of ICESat-2 photon data and
building rooftop vector boundary data required for constructing building height samples
on a global scale, this method holds enormous potential for the global dynamic retrieval of
building heights, and offers a feasible means of observing building dynamics in remote
and conflict regions where direct sampling is challenging.
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