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Abstract: The core promise of land use and zoning reforms is to metamorphose the car-dominated
urban spatial structure—which is the legacy of use-based, modernist land use and transportation
planning of the past century—into human-centered forms of urbanism characterized by walkable,
accessible, transit-friendly, ecologically sustainable, equitable and resilient urban fabrics. This em-
pirical study aims to measure the effectiveness of a reformed city planning framework, known as
the form-based code (FBC), in terms of optimizing journey-to-work trips. To this end, the study
integrates geographic information systems (GIS) and spatial analysis techniques with linear program-
ming, including a variant of the transportation problem, to evaluate aggregated and disaggregated
commuting efficiency metrics. Utilizing the zonal data (ZDATA) for the Orlando metropolitan region,
the proposed models account for the commuting terrains associated with three major workforce
cohorts, segmented along key industry sectors, within the context of three urban growth scenarios.
The findings suggest that the FBC system holds the potential to enhance commuting patterns through
various place-based strategies, including juxtaposing, densifying, and diversifying employment and
residential activities at the local level. At the regional level, however, the resultant urban form falls
short of an ideal jobs–housing arrangement across major industry sectors.

Keywords: land use modeling; urban analytics; spatial optimization; smart mobility; excess commute;
transportation problem; new urbanism; urban and regional planning; form-based code; GIS

1. Introduction

Recent national statistics indicate that, on the eve of the COVID-19 pandemic, the
average one-way commute duration in the U.S. had reached a new high level of 27.6 min,
marking an increase of approximately 10% over the course of 14 years. Moreover, a larger
proportion of Americans reported undertaking work trips lasting more than one hour [1].
In fact, since the third wave of (employment) suburbanization in the 1980s, the average
distance and duration of home-based journey-to-work trips have been on the rise [2–5].
Addressing prolonged commuting patterns and their associated urban problems, such as
traffic congestion, air pollution, safety concerns, overconsumption of energy, productivity
loss, and quality-of-life deterioration, among others, has consistently remained one of
the main challenges confronting urban geographers, as well as regional planning and
policy-making authorities [6–9]. With the rise of big data and GeoAI-enabled planning
tools, policies aimed at enhancing the efficient movement of people and goods—referred to
as smart mobility—have also become a high priority on the smart-city agenda [10].

The nexus between the spatial structure of the urban environment and the dura-
tion, sustainability, and efficiency of home-based work trips has been a focal point of
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theoretical and empirical research within academia for the past three decades [2,11–24].
Opinions on the effects of land use policy and transportation systems on commuting pat-
terns vary, reflecting diverse philosophical views among researchers on urban economic
theory, socio-spatial drivers of urban development processes, as well as the methodological
approaches and analytical tools employed in scientific endeavors. Numerous planning pro-
fessionals and academics maintain that the physical and spatial configuration of the built
environment—stemming from the interplay of land use policy, land development regula-
tions, and transportation infrastructure—exerts a substantial influence on mobility patterns,
as well as on individuals’ employment and housing location decisions [2,11,12,18,25]. An-
other group of researchers holds an opposite view, asserting that not only do transportation
and land use policies exhibit weak connections, but urban form also, at best, plays a trivial
role in shaping commuting patterns [13,26–28]. These differing perspectives underline the
need for further research on the role of city planning in affecting mobility patterns. This
paper aims to contribute to the ongoing debates on the relationship between urban mor-
phology and regional commuting by examining the effectiveness of a revisionist approach
to city planning in enhancing commuting efficiency metrics.

Informed by the planning ideals of sustainable urbanism, where spatial balance is
sought between the locations of housing and the distribution of employment opportunities
across self-contained urban regions, past research has predominantly scrutinized the rela-
tionship between urban spatial structure and commuting efficiency through interrelated
lenses including jobs–housing balance, excess commute, and employment accessibility [4].
Utilized as a metric to assess jobs–housing relationship in a geographical area, excess
commute signifies the discrepancy between average journey-to-work trips and the optimal
commuting pattern if workers were to travel to the nearest workplaces. Put differently,
excess commute is the deviation of the observed average commute in an urban region
from its estimated minimum average commute which is determined by the distribution of
housing and jobs [17].

Most excess-commuting studies have employed a standard linear programming pro-
cedure, referred to as the Transportation Problem (TP), to estimate the minimum average
journey-to-work patterns [14,16–19,22,23,29–32]. Few studies, however, account for the
heterogeneity of occupational characteristics and the workforce population, as well as the
commuting efficiency of various subgroups within the labor force [13,24,31,33]. Further-
more, existing approaches examine a fixed representation of the built environment and
neglect to consider potential future development trajectories [4]. Additionally, the impacts
of unorthodox land use policies and zoning reforms on commuting patterns have not
garnered sufficient attention in the excess commuting literature.

To fill these gaps, this empirical study integrates GIS and spatial analytics with linear
programming to measure the efficacy of a reformed city planning framework, known as
the form-based code (FBC). This is assessed in terms of commuting efficiency metrics, man-
ifested through the spatial dynamics between the locations of residences and workplaces at
different spatial scales. A disaggregated variant of the classic transportation problem (CTP)
is structured to model the optimal commuting flows of three major workforce groups across
three urban growth scenarios. Using the zonal data (ZDATA) for the Orlando metropolitan
region in Central Florida, this study measures aggregated and disaggregated commuting
efficiency metrics in Orange County—the region’s major employment and population
center—within the present and future development frameworks.

The remainder of the paper is organized as follows. The subsequent section reviews
the state of the art in excess commute scholarship, delving into the avenues of research
pertinent to the present study. Section 3 highlights the key aspects of the form-based code,
with a specific focus on the connection between spatial form and commuting patterns.
Section 4 describes the study area and explains the reasons for choosing Orange County,
Florida as a case study for the present empirical research. Section 5 enumerates the data
sources and the innovative methods employed to develop and implement a disaggregated
variant of the CTP model. Section 6 lays out model formulations and Section 7 presents the
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model results. Lastly, the concluding section discusses the findings and their implications,
along with addressing the study’s limitations, while also outlining several avenues for
future research.

2. Urban Spatial Structure and Commuting Efficiency: An Evolving Research Field

This section offers a brief overview of excess commute, primarily exploring it as
an analytical (descriptive) framework. It also positions excess commute vis-à-vis other
constructs on the urban commuting spectrum that collectively measure different aspects of
commuting efficiency in a region.

2.1. Excess Commute

Excess commute represents the proportion of the actual commute deemed unnecessary,
excessive, or sub-optimal, which, hypothetically, could be eliminated if commuters trade
residences or jobs [29]. Excess commute can be construed in various ways, such as an
indicator of commuters’ travel behavior [34], a benchmark for travel demand [31], a statistic
representing commuting efficiency [33], a measurement of land use–transport alignment [5],
the significance of urban form and journey-to work trips in households’ housing location
decision-making [19], and even a proxy for social exclusion [35]. Mathematically, excess
commute is estimated using Equation (1), wherein this statistic, denoted as EC, is defined as
the ratio of the difference between an urban area’s observed average commute, Ta, and its
theoretical minimum average commute, Tr, commonly referred to as the required commute,
to the observed average commute. Consequently, the excess commuting rate is articulated
as a percentage of the actual average commute [17].

EC =

(
Ta − Tr

Ta

)
∗ 100 (1)

Employing the monocentric model of urban economic theory, Hamilton [34] first
introduced the notion of excess commuting. The underlying assumption in Hamilton’s
normative model was that individuals as rational agents choose workplaces and housing
locations to maximize single-attribute utility functions (or, conversely, to minimize costs,
i.e., resources or time) by striking a balance between housing and commuting expenses.
Hamilton’s analysis demonstrated that the monocentric representation of urban spatial
structure and the associated continuous exponential density functions fail to provide
accurate estimates for the actual average commute rates in post-modern urban regions.

In reaction to Hamilton’s thought-provoking work, researchers initiated a re-evaluation
of both the assumptions underlying the monocentric model and the concept of excess com-
muting. By representing space through a network of contiguous zonal units and employing
the same normative approach, White [29] redefined a classic linear programming problem,
known as the transportation problem (TP), first specified by Hitchcock [36], to estimate the
theoretical minimum average commute. The TP-based model has found extensive applica-
tion in excess commuting studies, owing to its ability to depict the decentralized spatial
structure of contemporary urban regions more effectively than the monocentric model.
Specifically, in the TP-based model, urban form is delineated by the spatial distribution of
housing and employment locations across the urban region, which are either individually
geo-coded or aggregated at the zonal unit level. In addition, spatial behavior is encoded in
the model by the flow pattern of commuters between residences and workplaces. Mean-
while, accessibility is represented by commuting cost, which could be approximated either
by the travel distance (i.e., straight, Euclidean length or network-based distance) or by
the travel time between residential and job sites. Alternatively, the generalized cost of
traveling, i.e., some combination of time, distance, and direct monetary expenses could
also be employed [37]. Of significant note is that the CTP model does not relocate the labor
force or workplaces. Rather, it reassigns workers to the closest employment sites such that
the overall commuting distance or duration within the urban system is minimized. This
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aspect of the model has been misconstrued, with some researchers interpreting it as the
exchange of jobs and/or housing [15–17,20–22,24,38].

Regarding the methodological issues, past research has focused primarily on the
variability, validity, and uncertainty associated with estimating excess commute. Various
studies demonstrate that the value of the minimum average commute, as estimated using
the CTP model, is sensitive to multiple factors. These factors include the problem formula-
tion, the representation of commuting costs, the (dis)aggregation of journey-to-work data,
the scale and configuration of the zonal system used in the analysis, and the delineation
of the geographical boundary of the study area. In general, the inclusion of additional
constraints in the CTP model leads to an increase in the value of the theoretical minimum
commute and a reduction in the estimated excess commute rate, assuming all other con-
ditions remain constant. While some researchers [14,21,30] have claimed that different
metrics of commuting cost do not yield major variations in excess commuting estimates, Ma
and Banister [39] report significant discrepancies between distance-based and time-based
estimations of excess commute in the context of the Seoul metropolitan area.

Several studies have challenged the universal worker/job interchangeability assump-
tion initially employed in both Hamilton [34] and White [29]. These efforts analyze the
effects of workforce and employment segmentation, based on different characteristics—
such as occupational category [13,19,24,30,31,33,40], household structure [14,41,42], and
housing tenure [22]—on the estimation of excess commuting. For instance, Giuliano and
Small [13] found an overall increase in the average required commute when separately
estimating the minimized average commute rates for seven occupational categories in the
context of the Los Angeles metropolitan area.

Horner and Murray [17] discuss the spatial uncertainties surrounding the estimation
of excess commute and demonstrate that the TP-based model is indeed subject to the modi-
fiable areal unit problem (MAUP) (see [43]). Generally, ceteris paribus, utilizing aggregated
zonal units leads to lower excess commuting rates, and conversely, employing smaller units
results in higher rates, but at a decreasing level [29]. Researchers have also reported the vari-
ability of excess commute when employing a spatially disaggregated approach [13,20]. To
countervail ecological fallacy effects, some studies have utilized micro-level individual data
to estimate excess commuting [14,19,21,22,43]. For example, to mitigate spatial inaccuracies
associated with location and commuting data reported in journey-to-work surveys, Hu and
Wang [21] utilized a Monte Carlo approach to simulate the individual locations of workers
and jobs. Findings elucidate considerable disparities in the estimated excess commuting
rates when utilizing reported zonal-level data compared to simulated individual-level data.
It should be noted that employing disaggregated individual-level data introduces specific
constraints, including challenges related to computational complexity, random sampling,
and the generalizability of results [22].

2.2. Urban Commuting Spectrum

The significance of excess commute as a geographic analytical framework lies in the
fact that it encompasses both individuals’ actual spatial behavior—i.e., commuters’ housing
and job location choices and their preferences towards employment accessibility—and
the minimum average (required) commute which represents the normative commuting
pattern. The required commute measures the proximity between the average location of a
resident worker and the closest job, portraying the degree of accessibility to employment
opportunities at the local level. Employing this framework, Rodríguez [19] posits that
excess commute comprises both involuntary and voluntary components. The former
denotes the excessive travel that the workforce would alleviate by switching jobs. The
voluntary component, on the other hand, is the extra travel that commuters willingly
undertake in exchange for added benefits, such as favorable housing cost-to-housing size
ratio (price per square foot), better residential quality, improved neighborhood amenities,
and proximity to non-work destinations—among other advantages. In general, elevated
levels of excess commute could be indicative of a loosened alignment between land use and
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transportation systems [5] and a weak tie between work trips and commuter’s self-selection
process [13,25]. By contrast, a relatively low excess commuting rate could imply that work
trips are households’ major locational concern, representing tighter connections between
land use and transport.

Researchers have augmented the notion of excess commute by contextualizing it within
a broader spectrum of journey-to-work possibilities. For instance, Horner [33] introduced
the concept of commuting capacity utilized (CCU), or the normalized excess commute,
by incorporating the theoretical maximum average commute, Tm, which is the inverse of
the required commute. Horner argues that the maximum average commute marks the
upper limits of both the commuting capacity and the jobs–housing imbalance in a region.
This concept gauges the proximity between the average location of a resident worker and
the farthest job, representing the maximum degree of employment decentralization at the
regional level. The commuting capacity utilized is estimated using Equation (2). This
metric is expressed as a percentage of the absolute commuting capacity, i.e., the difference
between the maximum and minimum average commutes.

CCU =

(
Ta − Tr

Tm − Tr

)
∗ 100 (2)

Yang and Ferreira [44] modified the maximum average commute and proposed a new
commuting efficiency construct: proportionally matched commuting (PMC). Constituting
the refined upper bound of both spatial decentralization and commuting capacity within a
region, the PMC measures the proximity between the average location of a resident worker
and the average location of a job. Replacing the maximum average commute with the
quantity of the PMC, Equation (2) could be reformulated to estimate a new commuting
efficiency statistic named the potential commute consumed (PCC).

Therefore, conceptually, the commuting spectrum in a region ranges between the
required commute (lower bound A) and the PMC (rectified upper bound C), as well as
the theoretical maximum average commute (absolute upper bound D), with the actual
(observed or estimated) commute (B) falling somewhere between A and D (See Figure 1).
The difference between the actual commute and either of the two bounds (that is, segment
lines AB and BC, or segment lines AB and BD), i.e., the absolute excess commute and the
absolute remaining commute potential or the absolute remaining commuting capacity,
respectively, and the total range (segment line AC or AD), i.e., the absolute commute poten-
tial and the commuting capacity, respectively, could be regarded as indicators of a region’s
commuting efficiency. To complement the urban commuting landscape, Niedzielski [20]
coined the notion of “deficit commuting,” which accounts for the unused portion of the
commuting capacity, represented by the BC or BD segment in the conceptual spectrum
shown in Figure 1. This statistic could prove valuable from an end-of-trip perspective, as it
delineates the trade-off between commuting efficiency and an employer’s attractiveness to
the workforce, as well as the level of agglomeration economy within a region.
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3. Form-Based Code

Since the 1980s, revisionist approaches to city planning, exemplified by movements
like New Urbanism and Smart Growth, have spawned zoning reforms with the goal of
mitigating urban sprawl and realigning development patterns and planning systems with
sustainability principles [45]. The fundamental objective of these land use and land devel-
opment regulation reforms is to transform the auto-dependent urban spatial structure—a
legacy of use-based, modernist planning of the past century—into human-centered forms
of urbanism characterized by compact, walkable, accessible, transit-friendly, ecologically
sustainable, socially equitable, and resilient urban fabrics. Among these zoning reforms,
form-based codes (FBCs) have been widely implemented on different scales in various
jurisdictions across the United States and beyond [46]. In contrast to conventional Euclidian
zoning regulations, which are primarily prospective and focused on the separation of uses
and compatibility of activities, FBCs are place-based, context-sensitive, and prescriptive
rules. They concentrate on regulating urban form, as well as on the design and character
of buildings and the public realm (for more on FBCs see [45,47,48], also see Form-Based
Codes Institute, n.d.).

The rural-to-urban transects constitute the building blocks of FBCs, allowing for the
orderly arrangement of the elements of urban form and a seamless transition of the human
environment from the most rural to the most urban [49]. Proponents of FBCs posit that this
planning framework produces predictable built forms, presumably resulting in sustainable,
aesthetically pleasing, and pedestrian-friendly places and communities with distinctive
identities [48]. In fact, recent studies conducted in two major metropolitan regions in the
U.S. indicate that FBCs incorporate sustainable design principles to a greater extent when
compared to conventional zoning codes [50,51].

In addition to curbing urban sprawl, these zoning reforms could (directly or indi-
rectly) enhance commuting patterns through several New Urbanist principles including
intermixing of land uses, designing small urban blocks and connected street networks,
rectifying regulatory barriers such as parking requirements or minimum lot size standards,
promoting transit-oriented development, creating diverse residential stock interspersed
with “missing middle” and live-work housing types—among others. From a commuting
efficiency perspective, this means closer proximity and broader modes of transportation be-
tween residences and jobs. Nevertheless, the literature on the effects of FBCs on commuting
patterns is scant. More importantly, the efficacy of zoning reforms in terms of decreas-
ing journey-to-work lengths has not received enough attention in the excess commute
literature [52]. These gaps will be addressed in this empirical research.

4. Study Area

Orange County, one of the three counties comprising the Orlando Metropolitan Region,
has been chosen as the study area for this research (see Figure 2). With a population of
roughly 1.2 million and a job-worker ratio of 1.4 in the year 2020, Orange County is Central
Florida’s most populous county, as well as its major employment hub. Regionally, Orange
County has reported the highest levels of auto congestion, with over 85% of all daily trips
made by automobile.

On average, an employee in Orange County experiences a longer commute time of
28.8 min compared to the typical U.S. worker’s commute of 26.9 min. Regional models
project rapid economic growth in Central Florida over the next 25 years. Orange County is
expected to witness population and employment growth rates of 63% and 68%, respectively,
by 2045. Accordingly, the County’s travel demand metrics, such as person trips, VMT, and
VHT, are expected to increase by 73%, 62%, and 81%, respectively [53]. Urban challenges
related to congestion and commuting are likely to worsen in the future as the region
experiences rapid population growth, particularly with the expansion of the tourism and
hospitality industry. Moreover, Orange County is in the process of employing a form-based
code as part of the reorganization of the County’s Comprehensive Plan (Vision 2050), as
well as the associated land development code (Orange Code). All these factors make
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Orange County an appropriate case study for analyzing the potential effects of the FBC on
commuting patterns.
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5. Data and Method

An optimization-based model was structured to evaluate the effectiveness of the FBC
in enhancing commuting patterns in the study area. The model represents a disaggregated
variant of the classic transportation problem (CTP) that accounts for the commuting pat-
terns of the workforce populations employed across three major occupational categories:
commercial, industrial, and service sectors. The proposed model was implemented within
the framework of three urban growth scenarios, i.e., the baseline scenario, the status quo
growth scenario, and the form-based code (FBC) growth scenario. The baseline scenario
represents the extent of commuting efficiency resulting from the spatial configuration of
housing and jobs in the year 2020. The status quo growth scenario illustrates the commuting
patterns representative of the urban form layout in the planning horizon year 2045, assum-
ing that the present-day land use and conventional zoning systems will remain effective in
the future. Finally, the FBC growth scenario depicts the commuting dynamics resulting
from Orange County’s spatial structure in the horizon year 2045, if the proposed Vision
2050 and the associated form-based code (Orange Code) guide development patterns in
the future. Model formulations will be discussed in detail in Section 6.

Using our proposed models, we estimated aggregated and disaggregated commuting
efficiency metrics including the minimum and maximum average commuting times, as
well as the PMC, EC, CCU, and PCC rates for the workforce populations in three major
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occupational categories. These commuting efficiency metrics were estimated within each
development scenario for three cohorts of journey-to-work trips: (1) all work trips originat-
ing from or terminating in the study area (comprising internal–internal, internal–external,
and external–internal trips, or in short, the I-I, I-E, and E-I work trips), representing resident
workers commuting within or outside the study area, as well as non-resident workers
traveling to the study area from external zones; (2) all work trips originating from the
study area (that is, the I-I and I-E trips), representing resident workers traveling to external
zones or within the study area boundaries; and (3) work trips exclusively internal to the
study area (that is, the I-I trips), representing resident workers commuting solely within
the study area boundaries. Our approach thus extends the method employed in previous
excess commuting studies, in which resident workers commuting to external zones or
non-resident workers traveling into the study area were excluded from the analysis.

The estimated population and employment data for the years 2020 and 2045 were
derived from the zonal socio-economic data (ZDATA) used in the Central Florida Regional
Planning Model, Version 7 (The CFRPM 7 Data Dashboard is publicly available through the
following link: http://tinyurl.com/vbkxp2ch (accessed on 6 January 2024)). CFRPM 7 is an
integrated planning support system including a four-step urban transportation modeling
system (UTMS) with temporal segmentation, developed by the Florida Department of
Transportation (FDOT) to assist local governments and regional planning agencies in Cen-
tral Florida in estimating both travel demand and the required transportation infrastructure
for future planning horizon years. The estimated population and employment data for
the third scenario (FBC growth scenario) were provided by the Orange County Planning
Department (OCPD) (The Vision 2050 data and the associated documents are publicly
available through the following link: http://bit.ly/v2050web (accessed on 6 January 2024)).
The population and employment projections in the ZDATA are based on the region’s
historical demographic and growth trends, adhering to a traditional planning framework
that emphasizes the separation of uses and conventional growth management strategies.
In contrast, the data provided by OCPD is derived from population projections from the
Bureau of Economic and Business Research (BEBR), the region’s parcel-level development
capacity analysis, and specific long-range planning goals for the county’s six growth sectors
as envisioned by the form-based code framework.

Like other authoritative data sources used in the past excess commute studies, both
the ZDATA and the OCDP data are aggregated at the zonal level. The present study
utilizes Traffic Analysis Zones (TAZs), also known as Transportation Analysis Zones, as
the areal unit of analysis. Delineated by the FDOT, TAZs are specific geographical units
containing homogenous land use types with respect to travel demand and trip generation
characteristics [54]. The Orange County TAZ system consists of 1699 units, with an average
unit size of roughly 0.6 square miles. Therefore, owing to the ample disaggregation of the
TAZs, the MAUP effects on the estimation of excess commute will be insignificant [17].

Due to the lack of information on the workforce population in the ZDATA, a GIS
method along with the following formula was used to estimate the worker population at
the TAZ level.

Wtaz =

(
POPtaz

HHtaz

)
WHtaz (3)

where:

Wtaz = Estimated worker population in a TAZ f or the scenario year
POPtaz = Estimated population in a TAZ f or the scenario year
HHtaz = Estimated household size in a TAZ
WHtaz = Estimated worker per household ratio in a TAZ f or the scenario year

The ZDATA provides estimates of population, POPtaz, and the worker-per-household
ratio, WHtaz, at the TAZ level for the years 2020 and 2045. The American Community
Survey (ACS) data were utilized to estimate the household size at the census tract level,
calculated as the ratio of the population to the total number of households. That is,

http://tinyurl.com/vbkxp2ch
http://bit.ly/v2050web


Land 2024, 13, 1190 9 of 31

HHtract =
(

POPtract
TOT_HHtract

)
, where: HHtract = household size in a census tract,

TOT_HHtract = total number of households in a census tract, and POPtract = estimated
population in a census tract. Using the spatial join function in ArcGIS Pro, the estimated
household size for each census tract was assigned to all the TAZs within the corresponding
census tract; that is, HHtaz = {HH tract | ∀ taz ϵ tract}. Similarly, the ACS data were used
to organize the workforce in each census tract into three major employment categories and
to calculate the proportion of the workers in each group. Table 1 illustrates the organization
of various occupational categories into three major sectors, i.e., commercial, industrial, and
service. By employing the spatial join function in ArcGIS Pro and the proportion of the
workforce group in each census tract, the share of workers in each sector was estimated at
the TAZ level. It is crucial to emphasize that this method introduces potential ecological
fallacy errors, given that it presupposes a homogenous household structure and workforce
distribution within each census tract.

Table 1. Organization of various occupational categories into three major sectors.

Commercial Workforce Industrial Workforce Service Workforce

• Wholesale trade
• Retail trade
• Transportation and warehousing,

and utilities
• Finance and insurance, and real

estate and rental and leasing

• Agriculture, forestry, fishing and
hunting, and mining

• Construction
• Manufacturing

• Information
• Professional, scientific, and

management, and administrative
and waste management services

• Educational services, and health
care and social assistance

• Arts, entertainment, and recreation,
and accommodation and food
services

• Public administration

Network-based travel time between each pair of TAZ centroids was used to represent
the inter-zonal commuting cost. White [29] suggests that travel time could be regarded as
a better measure of commuting cost than travel distance. This is because commuters in
general tend to view the former, rather than the latter, as a real cost. The inter-zonal travel
time was estimated using the origin-destination cost matrix solver in ArcGIS Pro under
free-flow conditions, which finds the least-cost path between each pair of TAZ centroids.
In other words, traffic conditions in peak and non-peak times were not considered in the
estimation of travel time. Moreover, as in the study by Small and Song [30], we used the
over-the-road automobile travel time metric, rather than the door-to-door commuting time.
Thus, we excluded from our estimation the “fixed time” costs of commuting (see Merriman
et al. [15]). With a view to enhancing spatial accuracy in the estimation of travel time, the
centroid of developed areas in each TAZ, instead of the conventional geometric centroid,
was utilized to calculate the inter-zonal commuting time. To estimate the intra-zonal travel
time, we employed the technique used by Horner and Murray [17], which presumes that
each zone is circular in shape. We also assumed that the average driving speed within each

zone is 0.5 miles per minute. That is, Cii =

√(
Area i

Π

)
× 2, where: Areai = area of the ith

TAZ, in square miles, and Cii = intra-zonal commuting time, in minutes.
The observed average commuting time, Ta, corresponding to the resident workforce

travelling within or outside the study area (i.e., I-E and I-I work trips) at the county-level
was obtained from the ACS for the year 2020. The average commuting time, Te, for the
workforce travelling exclusively within the study area boundaries (i.e., I-I work trips) was
estimated using the interzonal home-based journey-to-work trip matrices derived from the

CFRPM 7 model for the three urban growth scenarios. That is, Te =
∑n

i=1 ∑m
j=1 F

ij
Cij

∑n
i=1 ∑m

j=1 F
ij

, where

Fij = estimated number of home-based work trips from the origin zone, i, to the destination zone, j,
and Cij = inter-zonal commuting time.
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In this research, the TP-based optimization model was developed and implemented in
the Jupyter Notebook environment using GurobiPy, a Python API (Application Program-
ming Interface) for the Gurobi Optimization solver, version 10.0.3. Gurobi is a commercial
optimization solver used for mathematical programming, linear programming, and other
optimization problems. ArcGIS Pro, version 3.1.3, was used for spatial analysis, estimation
of travel time, and visualization of the journey-to-work flows. The entire analysis was
carried out on a personal Dell XPS laptop with a 12th Gen Intel(R) Core (TM) i7-1260P
2.10 GHz processor running Microsoft Windows 11 Home with 16 GB of RAM.

6. Model Formulation

Prior research on disaggregated excess commute has consistently involved averaging
the total minimized commuting time across the entire workforce population to estimate
the quantity of the required commute [24,31]. This approach arguably underestimates
the average minimum commute since it does not distinguish between various workforce
groups [40]. In this study, we introduce a novel approach for estimating the disaggregated
minimum commute. This procedure enables us to assess both the overall performance
and the proportionate contribution of the workforce in each industry sector to the total
commuting time. A disaggregated version of the classic transportation problem, DTP, could
be formulated as follows. Consider the following notation:

T̂r = disaggregated minimum average commute time f or all work trips
i = index o f residential zones, where i = 1, 2, 3, . . . , n
j = index o f employment zones, where j = 1, 2, 3, . . . , m
k = index o f employment sectors, where k = 1, 2, . . . , p
Xijk = home-based journey-to-work trip in employment sector k from residential zone i to employ-
ment zone j
λik = workforce population (resident workers) in economic sector k in residential zone i
λi = total workforce population in zone i
∆jk = number of jobs in employment sector, k, in employment zone j
∆j = total number of jobs in zone j
Cij = travel time between residential zone, i, and employment zone j
Γk = total journey-to-work trips in sector k

Minimize T̂r =
n+1

∑
i=1

m+1

∑
j=1

p

∑
k=1

1
Γk

CijXijk (4)

Subject to:
m+1

∑
j=1

Xijk = λik , ∀i, k (5)

n+1

∑
i=1

Xijk = ∆jk , ∀j, k (6)

Xijk ≥ 0 , ∀i, j, k (7)

Objective function (4) reassigns workers within each employment sector, k, from their
respective origin zones, i, to designated destination zones, j, such that the total weighted
commuting time is minimized. The weights in the objective function, 1

Γk
, correspond to the

proportion of the workforce population within each employment sector. Constraints (5)
ensure that the total number of trips originating from each residential zone, i, within each
industry sector, k, equates the total number of resident workers within the corresponding
sector in the origin zone. Similarly, constraints (6) require that the total number of trips
routed to each employment zone, j, within each industry sector, k, is equal to the total
number of jobs within the corresponding sector in the destination zone. Constraints (7)
impose non-negativity restrictions on decision variables.
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Typically, the CTP model with equality constraints requires that the total number of
origin and destination zones be identical (that is, n = m) and that the workforce population
be equal to the total number of jobs in a region (that is, ∑n

i=1 λi = ∑m
j=1 ∆j). However, the

condition of employment-workforce equilibrium may not be applicable at a specific spatial
scale. To address the regional imbalance between jobs and workforce for each occupational
category we introduced a dummy TAZ. Theoretically, the dummy TAZ represents the
portion of the metropolitan region located beyond the confines of the study area. Therefore,
the commuting times associated with the trips originating from or terminating in the
dummy TAZ will be set to be equivalent to the average travel time from the centroid of
Orange County to the centroids of the two neighboring counties within the Orlando metro
area. The proposed methodology can easily be extended to metropolitan regions with
varying spatial structures. Note that (n + 1 = m + 1), representing the total number of
TAZs plus the dummy TAZ. In other words, mathematically, the following equality holds:
∑m+1

j=1 ∑
p
k=1 ∆jk = ∑n+1

i=1 ∑
p
k=1 λik.

The DTP model could be reformulated to estimate the disaggregated maximum av-
erage commuting time for the three categories of work trips. Formally, the maximum
average commute is estimated by maximizing the objective function in (4), while main-
taining the constraints (5) through (7). We also extended the model proposed by Yang and
Ferreira [44] to compute the disaggregated proportionally matched commute, PMC, for
the three categories of work trips.

PMC =
n+1

∑
i=1

m+1

∑
j=1

p

∑
k=1

1
Γk

CijUijk (8)

Uijk = ∆jkλik(
m+1

∑
j=1

∆jk)
−1 , ∀i, j, k (9)

Equation (8) computes the disaggregated average PMC for all work trips, where Uijk
represents the most probable assignment of a worker from the origin zone, i, in industry
sector, k, to a job in the corresponding sector in the destination zone, j, regardless of
its location. The PMC flow between each pair of origin and destination zones in each
industry sector could be estimated using Equation (9) in which this metric is proportional
to the workforce population in the origin zone and the destination zone’s share of the
employment market in the respective industry sector. It is worth noting that aggregated
commuting efficiency metrics could be estimated using our proposed models by replacing
the industry-specific workforce population with the total workforce population in each
category of work trips.

7. Model Results

Tables 2 and 3 illustrate the results of implementing the proposed models across three
urban development scenarios, delineating commuting efficiency metrics for three cohorts of
work trips as outlined in Section 5. Note that urban forms with lower commuting efficiency
metrics foster more efficient daily commutes. Discernible patterns emerge across the three
urban growth scenarios, both in aggregated and disaggregated statistics. Not surprisingly,
the first cohort of work trips (inclusive of the I-I, I-E, and E-I sub-groups) exhibits the most
pronounced levels of minimum and maximum average commutes and the PMC rates,
while the I-I work trips (the third cohort) consistently demonstrate the lowest amounts of
the three basic commuting efficiency indicators.
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Table 2. Aggregated commuting efficiency metrics for three cohorts of work trips, segmented along industry sectors, under three urban development scenarios
(basic commuting efficiency metrics are measured in minutes).

Development
Scenario

Min. Average
Commute

(Tr ) *

Min. Average
Commute

(Tr ) **

Min. Average
Commute

(Tr ) ***

Proportionally
Matched

Commute
(PMC) *

Proportionally
Matched

Commute
(PMC) **

Proportionally
Matched

Commute
(PMC) ***

Max. Average
Commute

(Tm ) *

Max. Average
Commute

(Tm ) **

Max. Average
Commute
(Tm) ***

Actual
Average

Commute
(Ta ) **

Estimated
Average

Commute
(Te) ***

Excess
Commute

(EC) **

Excess
Commute
(EC) ***

(CCU) **/
(PCC) **

(CCU) ***/
(PCC) ***

B
aseline

Scenario
(2020)

18.77 6.50 4.40 31.72 25.52 24.45 38.31 35.18 34.64

28.8 20.63 77% 78% 76%/
117%

53%/
81%Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind

2.2 15.5 1.0 3.3 2.4 0.8 1.0 2.55 0.85 5.4 23.76 2.56 7.92 14.5 3.1 6.0 15.2 3.26 6.8 28.2 3.3 10.0 21 4.13 8.0 22.2 4.36

Status
quo

G
row

th
(2045)

17.41 8.26 4.72 31.86 27.5 25.8 39.22 37.31 36.57

--- 24.21 --- 80% --- 61%/
92%Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind

3.3 13.3 0.8 4.46 2.76 1.0 0.8 3.0 0.9 6.6 22.76 2.5 8.77 15.38 3.35 5.49 16.86 3.46 8.19 27.74 3.3 10.9 22 4.38 7.83 24.14 4.6

FB
C

G
row

th
Scenario

(2045)

14.74 5.52 4.15 30.3 25.83 25.17 37.78 35.57 35.25

--- 17.45 --- 76% --- 43%/
63%Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind

1.86 11.5 1.38 2.43 2.42 0.65 1.0 2.5 0.68 5.88 21.17 3.26 7.67 15.05 3.1 6.38 15.6 3.2 7.57 26 4.17 9.88 21.4 4.29 8.66 22.14 4.43

* First Work Trip Cohort: Comprising I-I, I-E, and E-I work trips representing all journey-to-work travels originating from or terminating in the study area. ** Second Work Trip
Cohort: Comprising I-I and I-E work trips representing journey-to-work travels originating from the study area. *** Third Work Trip Cohort: Comprising I-I work trips representing
journey-to-work travels originating from and remaining within the study area boundaries.

Table 3. Disaggregated commuting efficiency metrics delineated across three categories of journey-to-work trips, segmented along industry sectors, across three
development scenarios (metrics are measured in minutes).

Development
Scenario

Total County-
Wide Jobs

Total Resident
Workforce Population

Min. Average Commute

(
^
Tr ) *

Min. Average Commute

(
^
Tr) **

Min. Average Commute

(
^
Tr ) ***

Proportionally Matched
Commute
(PMC) *

Proportionally Matched
Commute
(PMC) **

Proportionally Matched
Commute
(PMC) ***

Max. Average Commute

(
^
Tm) *

Max. Average Commute

(
^
Tm ) **

Max. Average Commute

(
^
Tm) ***

B
aseline

Scenario
(2020) 940,389

664,057 44.25 22.44 14.8 89.2 78.16 74.4 110.47 105 103

Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind

183,153 399,743 81,161 11.96 21.61 10.68 11.96 4 6.48 4.32 4 6.48 28.72 33 27.48 28.72 24.1 25.34 24.96 24.1 25.34 36.19 39.28 35 36.19 35 33.84 34.15 35 33.84

Status
quo

G
row

th
(2045)

1,377,763

1,107,640 43.7 29.23 15.4 91.7 83.7 78 115 112 109.3

Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind

306,374 666,741 134,525 16.13 18.9 8.5 16.13 4.6 8.5 3.61 4.6 7.2 31.7 32.4 27.6 31.7 25 27 26 25 27 39.43 39.57 36 39.43 36.58 36 37 36.58 35.75

FB
C

G
row

th
Scenario

(2045)

1,377,772

1,083,512 38.37 18.44 13.43 88.64 79 76.65 112.17 107.5 106.2

Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind Com Svc Ind

296,534 658,622 128,356 8.9 16.9 12.57 8.9 4 5.54 3.89 4 5.54 28 31.14 29.5 28 24.77 26.2 25.67 24.77 26.2 36.1 38.29 37.78 36.1 35.21 36.21 34.87 35.21 36.21

* First Work Trip Cohort: Comprising I-I, I-E, and E-I work trips representing all journey-to-work travels originating from or terminating in the study area. ** Second Work Trip
Cohort: Comprising I-I and I-E work trips representing journey-to-work travels originating from the study area. *** Third Work Trip Cohort: Comprising I-I work trips representing
journey-to-work travels originating from and remaining within the study area boundaries.
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Nevertheless, the decomposition of journeys to work along key occupational categories
presents a more intricate portrayal of commuting patterns across the three work trip cohorts.
For instance, as Figure 3 illustrates, within the first work trip cohort, the labor force engaged
in the service sector demonstrates the highest rates of aggregated and disaggregated
commuting efficiency metrics, trailed by workers in the commercial and industrial sectors,
respectively. This pattern is attributable to the sheer size of the workforce population in the
service sector relative to the two other sectors. Another factor contributing to this pattern
is the substantial spatial separation between workers and job locations within the service
sector, primarily due to the high prevalence of non-resident service sector employees.
For the second cohort, inclusive of the I-I and I-E work trips, one would expect longer
work trips for the commercial sector workforce in comparison to other industry sectors,
owing to their significant portion of trips to external zones. The results, however, indicate
that only the disaggregated metrics can capture these nuanced commuting patterns, as
the aggregated outcomes are notably skewed by the predominant weight of the service
sector workforce.
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Similarly, the aggregated and disaggregated indicators paint contrasting pictures of
commuting patterns for the third work trip cohort, which represents urban spatial structure
within the study area. As shown in Figure 4, the aggregated commuting statistics for
the I-I work trips depict travel behavior akin to that observed in the first cohort of work
trips—where the service sector workforce, followed by employees in the commercial and
industrial sectors, demonstrates the most inefficient commuting patterns. Nevertheless,
the disaggregated statistics unveil an inverse order, with industrial workers traveling
within the study area exhibiting the highest commuting efficiency metrics. Figures 5 and 6,
respectively, illustrate the estimated interzonal peak-hour home-based journey-to-work
flows ( Fij

)
and the minimized (optimal) commuting patterns ( Xij

)
for the I-I work trips in

the baseline scenario. Additionally, Figure 6 depicts the TAZs that generate or receive work
trips to and from external zones.
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The results also shed light on the current state of travel behavior in terms of composite
commuting efficiency benchmarks. As shown in Table 2, in the baseline scenario, the
EC rates for all work trips originating from the study area (i.e., the second work trip
cohort) and for those that are internal to the study area (i.e., the third work trip cohort)
were estimated at 77% and 78%, respectively. These measures are above the average
ranges observed in major U.S. metropolitan areas that fluctuate between 40–60% [32].
Furthermore, the PCC rate for the former cohort was estimated at 117%, implying that the
actual commute rate has surpassed the PMC indicator (see Figure 1). In other words, while
the absolute excess commute rate is 24% below the region’s maximum commuting capacity,
the actual commuting pattern has gone above the absolute commute potential threshold
by 17 percentage points. These findings, in conjunction with the elevated rate of the PCC
for the I-I work trips (which is estimated at 81%), suggest that the existing urban spatial
structure in the study area exhibits a pronounced degree of spatial dispersion, underlining
the urgency for implementing effective land use and transport policies.

The results also offer insights into the potential future urban morphology of the
study area and the resultant commuting patterns under alternative planning regimes.
The findings indicate that if the existing land use and zoning regulations persist, the
future urban landscape in the year 2045 is poised to demonstrate a heightened spatial
disjoint between residences and job centers and a weaker connection between land use and
transport systems, both locally and regionally, in comparison to the baseline year. This
outcome is evident in several ways: an increase in absolute commute potential and the
EC rate, an approximate 10 percent rise in the CCU and PCC indicators between 2020 and
2045, and deteriorations in both aggregated and disaggregated basic commuting efficiency
metrics over the same period (see Table 2 and Figure 4). Examination of commuting
efficiency indicators at the industry sector level uncovers yet another incongruity between
aggregated and disaggregated statistics. Figure 4 reveals that, under the status quo growth
scenario, within the third work trip cohort, the service and industrial sectors are likely to
experience localized increases in spatial separation of workers and jobs, while commuting
efficiency indicators are expected to improve for the commercial sector at the local level.
At the regional scale, the aggregated metrics show the same trends that were observed
locally. In contrast, when considering the disaggregated measures, a uniform increase
in spatial dispersion between the locations of workers and jobs is anticipated across all
three industry sectors. Figure 7 illustrates the variation in basic commuting efficiency
metrics by industry sector, consolidating the three work trip cohorts. The box plots indicate
that, under the status quo growth scenario, the median values of both aggregated and
disaggregated commuting efficiency metrics for each industry sector increase compared to
the baseline scenario.

Figure 8 depicts the distribution of commuting efficiency statistics across the three
work trip cohorts, when merging the three industry sectors. The box plots reveal that,
under the status quo growth scenario, the median values of the aggregated commuting
efficiency metrics for the third work trip cohort improve, while those of the disaggregated
metrics deteriorate compared to the baseline scenario. Figure 9 extends this analysis to all
work trip cohorts, using both the industry sector level and the total workforce commuting
efficiency measures. The graphs demonstrate that, under the status quo growth scenario,
the median values of both aggregated and disaggregated commuting efficiency metrics
deteriorate compared to the baseline scenario. Figure 10 depicts the minimized commuting
flows for the third work trip cohort under the status quo growth scenario.
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Contrasted with the status quo growth scenarios, the FBC system demonstrates en-
hancements across major basic and composite commuting efficiency indicators. These
improvements are evident not only in the visualization of the optimal travel behavior
but also in the decreases in aggregated and disaggregated statistics for total workforce
commute times, the EC rate, as well as the CCU and PCC indicators. Figure 11 illustrates
the optimal commuting patterns for the I-I work trips (i.e., the third work trip cohort) by
industry sector in the planning horizon year 2045 within the FBC growth scenario. It also
depicts the TAZs that are expected to generate or receive work trips to and from outside the
study areas. Again, at the industry-specific level, results reveal a complex tapestry of com-
muting patterns across the study area. Notably, as Figure 4 displays, the aggregated metrics
indicate that, under the FBC regime, the resultant urban form within the study area exhibits
a greater level of spatial dispersion in the commercial sector at both local and regional
levels, while the basic metrics show improvement for the service and industrial sectors in
comparison to the status quo growth scenario. However, the disaggregated metrics portray
a similar pattern solely at the local level. Figure 7 also demonstrates that, under the FBC
system, when combining all work trip cohorts, the median values of both aggregated and
disaggregated commuting efficiency indicators for each industry sector improve relative
to the baseline and status quo growth scenarios. Furthermore, as shown in Figure 8, the
median values and variability of both aggregated and disaggregated commuting efficiency
metrics for the third work trip cohort decrease, in comparison to the baseline and status
quo scenarios.
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The results also indicate that, within the third cohort of work trips, the FBC growth
scenario performs better on the EC, CCU, and PCC indicators by approximately 2, 10, and
20 percentage points, respectively, compared to the baseline scenario. Does this imply that
the FBC system could likely foster more efficient commuting patterns? An examination of
the possible variations in the EC metric might provide some insights. Considering Equation
(1), it can be demonstrated that reduced levels of excess commuting over time may indicate
efficiency only if a region exhibits low levels of both the actual average commute and the
required commute. This condition is indeed observable between the baseline and FBC
growth scenarios.

The findings also show that the FBC system that is being adopted in the study area
has its own shortcomings. In fact, across all three workforce cohorts, basic commuting
efficiency metrics suggest higher levels of localized spatial equilibrium in the distribution of
housing and jobs if the FBC were to steer the region’s urban development between 2020 and
2045. However, the FBC framework falls short in enhancing the spatial dynamics between
labor and job opportunities across the three occupational categories at the regional scale.
This is particularly pronounced in the second and third cohorts of work trips. Analysis
of the aggregated metrics at the industry-specific level reveals that, in the case of the I-I
work trips, apart from the industrial sector, discernible enhancements in localized spatial
jobs–housing balance are unlikely to manifest in the service and commercial sectors. As
Figures 4 and 8 illustrate, from a regional perspective, all aggregated indicators unani-
mously signal deteriorations in commuting efficiency statistics across the three industry
sectors. Employing the disaggregated metrics, the findings suggest an increased spatial
dispersion across the three sectors at the regional level. While the spatial jobs–housing
balance remains unchanged at the local level in the service sector, it improves in both the
commercial and industrial sectors.

8. Discussion and Conclusions

This research was primarily aimed at contributing to the ongoing discourse surround-
ing the role of city planning in optimizing urban commuting patterns. Specifically, its
main objective was to assess the efficacy of the form-based code system in fostering spatial
equilibrium between the locations of residential areas and job centers. The study struc-
tured various models, including the disaggregated transportation problem (DTP), coupling
them with GIS techniques to quantify both aggregated and disaggregated commuting
efficiency metrics in Orange County, Central Florida. These models were designed to
estimate basic and composite commuting efficiency statistics for three workforce cohorts,
spanning commercial, service, and industrial sectors, within the context of three urban
growth scenarios.

This study extended the methodological and conceptual boundaries of excess commute
scholarship. In the realm of methodology, it introduced a dummy TAZ to depict the spatial
structure of the metropolitan region and ensure employment–workforce equilibrium within
each occupational category in the models. Furthermore, the proposed models gauged
disaggregated commuting efficiency metrics which encapsulate the industry-specific per-
formance as well as the weighted contribution of each labor force segment to regional
commuting duration, accounting for both present-day urban fabric and potential future
urban development scenarios.

From the conceptual perspective, the findings from implementing the proposed mod-
els underscore the crucial importance of delineating the workforce population in estimating
commuting efficiency metrics. Generally, resident workers commuting solely within the
study area tend to reside closer to the nearest, average, and farthest job centers compared
to both resident workers traveling within or outside the study area, as well as all resident
and non-resident workers commuting to, from, or within the study area. Furthermore,
the findings suggest that aggregated and disaggregated commuting efficiency metrics
could serve as complementary measures for analyzing the impacts of urban form on urban
commuting landscapes. For example, in this study, both metrics highlighted the imperative
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for formulating effective land use policies within the study area to address existing spatial
imbalances between the locations of workers and jobs at both local and regional levels.

However, when scrutinized at the industry-specific level, the two sets of metrics
may present conflicting depictions of commuting patterns. For instance, when utilizing
the aggregated statistics across the three urban growth scenarios, among the workforce
populations commuting solely within the study area, workers engaged in the service
sector show the longest required commute, whereas employees in the industrial sector
demonstrate the shortest rates. Conversely, employing the disaggregated metrics reveals
that workers in either the service or commercial sectors exhibit the shortest minimum
average commute rates, while those in the industrial sector display the longest required
commute rates. These latter findings align with previous research [13,31,33]. Arguably,
disaggregated metrics demonstrated their capability to capture not only specific nuances in
commuting patterns but also the contribution of the workforce within each industry sector
to the total regional commuting time.

Certain basic and composite commuting efficiency measurements demonstrate sig-
nificant improvements under the FBC growth scenario compared to both the baseline
and status quo growth scenarios. For instance, under the FBC system, for the work trips
internal to the study area (i.e., the third cohort), both the aggregated required commute
and excess commute rates would decrease compared to the other two scenarios. Over-
all, the findings show that the FBC holds the potential to enhance commuting patterns
through various context-sensitive strategies and place-based measures envisioned at the
local level. These include incentivizing mixed-use development within already urbanized
areas, designating new intensified urban infills, adaptive reuse, and redevelopments in
areas where high-capacity infrastructure and urban services exist, increasing residential
density near current job centers or in proximity to existing or planned transit corridors, and
juxtaposing residential and non-residential activities in regional centers near major transit
hubs. Nevertheless, the resultant urban morphology does not yield an ideal jobs–housing
arrangement across major industry sectors at the regional level. After all, as Table 2 in-
dicates, around 76% of the work trips within the study area will be excessive under the
FBC regime. It can be inferred that the land use policies and zoning codes outlined within
Orange County’s FBC system could be enhanced through various measures. These may
include balanced and concentrated regional growth strategies, improved integration of
land use and transportation systems, and an expanded array of workforce housing options
near areas abundant with employment opportunities, among others. Furthermore, the
selection of strategic locations for future workforce housing and industrial activities should
target workforce groups that endure the longest commuting times within the region.

One significant limitation of the present study is the failure to incorporate household
structure into the estimation of commuting efficiency metrics. This shortcoming is mainly
due to the scarcity of disaggregated commuting data at the household level. There are
also uncertainties associated with the estimation of different model parameters, such as
commuting cost, and observed and estimated average commute rates, among others, that
impact the estimation of commuting efficiency metrics. In both the status quo and FBC
growth scenarios, there is also a negligible loss of spatial accuracy in the representation of
zonal centroids, as the average locus of the developed land within a TAZ is likely to shift
between 2020 and 2045.

A potential future research direction involves the development of a prescriptive
optimization model capable of simulating the impacts of alterations in urban form on both
aggregated and disaggregated work trip durations at local and regional levels, thereby
aiding in land use and transportation planning and decision-making processes. Exploring
the estimation of both aggregated and disaggregated commuting efficiency metrics using
micro-level individual data and further subdividing workers within each occupational
category into smaller industries, could also offer additional avenues for investigation.
Even though the TAZs used in this study support a disaggregated analysis approach,
it is important to analyze the impacts of MAUP on the estimation of excess commute
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and other constructs. Therefore, future research could undertake sensitivity analysis to
examine the effects of variations in zonal size and zonal configuration on both aggregated
and disaggregated commuting efficiency metrics. Additionally, another line of inquiry
could involve the development of an optimization model aimed at identifying TAZs where
densification of housing and intensification of employment opportunities within each
industry sector could yield the most significant impacts on aggregated and disaggregated
commuting efficiency landscapes.
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