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Abstract: Understanding the relationship between the demand for public transportation and land
use is critical to promoting public-transportation-oriented urban development. Taking Beijing as
an example, we took the Public Transportation Index (PTI) during the working day’s early peak
hours as the dependent variable. And 15 land use and built environment variables were selected
as the independent variables according to the “7D” built environment dimensions. According to
the Modifiable Areal Unit Problem (MAUP), the size and shape of the spatial units will affect the
aggregation results of the dependent variable and the independent variables. To find the ideal spatial
unit division method, we assess how well the nonlinear model fits several spatial units. Extreme
Gradient Boosting (XGBoost) was utilized to investigate the nonlinear effects of the built environment
on PTI and threshold effects based on the ideal spatial unit. The results show that (1) the best spatial
unit division method is based on traffic analysis zones (TAZs); (2) the top four explanatory variables
affecting PTI are, in order: mean travel distance, residential density, subway station density, and
public services density; (3) there are nonlinear relationships and significant threshold effects between
the land use variables and PTI. The priority regeneration TAZs were identified according to the
intersection analysis of the low PTI TAZs set and the PTI-sensitive TAZs set based on different land
use variables. Prioritized urban regeneration TAZs require targeted strategies, and the results of the
study may provide a scientific basis for proposing strategies to renew land use to increase PTI.

Keywords: land use; built environment; Public Transportation Index; Extreme Gradient Boosting
(XGBoost); Modifiable Areal Unit Problem (MAUP); explainable machine learning

1. Introduction

The unlimited growth of cities has led to a rapid increase in the number of private
cars, which in turn has led to increased traffic congestion and air pollution [1]. To alleviate
traffic congestion and deteriorating air quality, the government encourages residents to use
buses and subways as their preferred mode of transport [2]. Public transportation, as an
intensive, green, and sustainable mode of transport development, is an effective way to
relieve urban traffic congestion and implement China’s goal of “carbon peaking by 2030
and carbon neutrality by 2060”.

In just 30 years, Beijing has developed rapidly. But at the same time, transport
problems and conflicts have become more and more obvious. The results of Beijing’s fifth
comprehensive traffic survey show that for the first time, the proportion of car trips has
dropped, and the proportion of public transport trips has risen. It has been demonstrated
that policymakers’ forecast of the demand for public transportation is crucial to the long-
term viability of public transportation [3]. Therefore, analyzing the factors affecting the
demand for public transportation is conducive to the healthy development of Beijing’s
public transportation system.
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In terms of data sources, most existing studies use questionnaires or censuses to
obtain travel data. The data are still manually obtained, not updated in time, and not
open-source data, which has significant limitations [4–7]. Multi-source data are now
characterized by full samples. Calculating the proportion of transit mode trips requires
the use of other transport mode trip record data. However, it is difficult to obtain a full
sample of data on private cars, walking, and cycling. Data on bus Intelligent Card (IC)
payments and other modes of payment provide real and comprehensive data to study
the demand for travel by public transportation modes. The ratio of IC card payments for
public transportation to the population can be used to reflect the actual demand of the
population in the region. This ratio, known as the Public Transportation Index (PTI) [8],
is used to reflect the proportion of residents choosing public transportation. We used the
number of IC card payments for public transportation in Beijing to calculate the number
of public transportation trips and cell phone data to analyze the number of residents in
the units, which has stronger timeliness and accuracy than traditional data acquisition
methods [9].

The public transportation system is an important part of the city’s operating system,
and the factors affecting the demand for public transportation are complex [8,10]. At first,
scholars focused on the effects of green coverage rates [11], land use diversity [12,13],
and the age of the population [14] on the demand for public transportation. With the
continuous development and renewal of cities, academics are starting to focus on how
certain aspects of the built environment affect the demand for public transportation,
such as traffic, urban design, and the density of various types of facilities [15], but a more
comprehensive analysis of built environment variables is lacking. On the basis of the
“3D” dimensions proposed by Handy [16], namely, density, diversity, and design, Ewing
et al. added two factors, namely distance to transit and destination accessibility, and
proposed the “5D” dimensions [17]. Then, Ewing et al. added demand management and
demographics based on “5D” to form “7D” dimensions [18], making the dimensions of
the built environment richer. At present, most scholars mainly use the “5D” dimensions
to explore the impact of the built environment variables on the demand for public
transportation [8,9,19].

Differences in the aggregation of public transportation demand and built environment
can affect the analysis results [20]. Dividing the aggregation unit is the first stage in many
geographical problem study projects [21]. Openshaw describes this phenomenon as the
Modifiable Area Unit Problem (MAUP), which refers to the problem that the analysis
results vary with the definition of units [20]. There are two components in the MAUP. One
is the scale effect, that is, different area unit sizes [22]; the other is the zoning effect, that is,
different shapes of unit elements, such as square grids [23], traffic analysis zones [24–26],
Voronoi diagrams [24,27–30], zip codes [31,32], etc. Existing studies have mostly empirically
determined the scale and shape of the spatial units [33,34], and few studies have relied on
comparing the results of quantitative analyses of different spatial units.

In terms of modeling methods, ordinary least squares (OLS), structural equation mod-
eling (SEM), geographically weighted regression (GWR), geographically and temporally
weighted regression (GTWR), and other models are often used in research on the impact
of the built environment on public transportation demand [9,35,36]. Compared to tra-
ditional linear regression models, machine learning has no pre-assumptions. Machine
learning provides more accurate predictions and is a superior model choice for exploring
complex nonlinear relationships [37]. XGBoost is one of the machine learning models that
has many advantages over other machine learning models such as random forest [38–40]
and deep learning [41]: it prevents overfitting, suits small datasets, reflects threshold ef-
fects, unifies global and single-sample explanations, is immune to multicollinearity, can
explore factor interactions, etc. [42,43]. XGBoost is now widely used in the fields of disaster
prediction [44,45], infectious disease prediction [46], smart cities [47,48], commuting by
walking [49], remote sensing image processing [50], etc. However, it has been less ap-
plied in the study of factors influencing the proportion of public transportation trips. The
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dynamics and spatial heterogeneity of public transportation lead to a spatial imbalance
of factors affecting PTI [51], and we chose XGBoost to better explore the complex non-
linear relationship between land use and PTI. Its nonlinear threshold effect can identify
the right range or threshold, which can be cost-effective and help urban planners create
more accurate land use renewal plans to achieve higher public transportation shares in
different areas [49,52]. To our knowledge, few studies have analyzed the threshold effects
of influencing factors on traffic travel behavior, although Tao and Cao [53] analyzed the
thresholds of built environment variables associated with driving distance, transit distance,
and active travel distance.

To fill the gaps, this study investigated how land use and the built environment affected
PTI. The optimal spatial unit was found using XGBoost, and the nonlinear and threshold
effects of land use on PTI were investigated. This research has three main objectives:

(1) Compare the goodness of model fitting for different scale grids, TAZs, and neighbor-
hoods as spatial units and identify the optimal spatial unit.

(2) Explore the extent to which the land use and built environment variables affect the
PTI based on the optimal spatial unit.

(3) XGBoost was used to explore the nonlinear relationship and threshold effect of land
use variables on PTI. The spatial units with priority renewal will be identified based
on research findings.

2. Data Sources and Methods
2.1. Overview of the Study Area and Data Sources

The study region was chosen to be within Beijing’s 6th Ring Road (Figure 1). The
study area covers an area of about 2267 KM2 and has a resident population of 14 million.
The dependent variable in this study was derived from public transportation card payment
data for five weekdays from 12 October 2020 to 16 October 2020. The processed trip record
data contain the field information shown in Table 1. Public transportation includes bus and
subway modes. We omit the possible transfer behavior of travelers during a trip, such as
first taking a bus line to the subway station and then transferring to another subway line to
the destination. We believe that the omitted information does not affect the analysis of the
Public Transportation Index (PTI).
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Table 1. Public transportation trip record data.

Traveler
Number

Starting
Station

Longitude
of Origin
Station

Latitude
of Origin
Station

Boarding
Time

Destination
Station

Longitude of
Destination

Station

Latitude of
Destination

Station

Alighting
Time

Travel
Distance

(m)

1 Heping
Men 116.3842 39.9001 13 October

2020 9:00
Huilong

Guan 116.3361 40.0708 13 October
2020 10:05 22,946.03

2 Jianguo
Men 116.4358 39.9085 13 October

2020 9:01 Jishuitan 116.3731 39.94865 13 October
2020 9:40 9818.436

3 Weigong
Village 116.3238 39.9529 13 October

2020 9:05
Baishiqiao

Nan 116.3255 39.93626 13 October
2020 9:25 1986.12

4 Zhongguan
Village 116.3165 39.98399 13 October

2020 9:08
Tiantong

Yuan 116.4128 40.07522 13 October
2020 10:20 18,355.52

2.2. Methods
2.2.1. The Public Transportation Index

In order to better reflect and predict the demand for public transportation in different
units, we use the Public Transportation Index (PTI) proposed by Liu et al. as an indicator to
measure regional public transportation demand [8], which is calculated using Equation (1).

PTIi =
Vi
Ri

(1)

where Vi is the number of public transportation boardings within the spatial unit i during
the working day’s early peak hours, and Ri is the population within the spatial unit i. An
increased PTI number signifies a greater proportion of the populace that utilizes public
transportation. Therefore, a higher PTI value represents a higher demand or attraction for
the public transportation mode.

2.2.2. XGBoost

XGBoost has good modeling ability for nonlinear features of various types of data.
XGBoost is used to study the nonlinear relationship between land use and PTI, which is
calculated using Equation (2):

ŷ(d)l = ŷ(d−1)
l + fd(xq) (2)

where ŷ(d)l is the lth spatial unit’s PTI predicted by the model after the dth round of

iterations; ŷ(d−1)
l is the predicted value of the known set of d − 1 decision trees; fd(xq) is the

dth decision tree; and xq is the qth land use explanatory variable. The core of the XGBoost
model solution is to fit the residuals of the d − 1th decision tree to the dth decision tree and
calculate the results of all decision trees after reaching the number of iterations.

2.2.3. Explanation of Machine Learning Models: SHAP (Shapley Additive Explanations)

Lundberg and Lee proposed Shapley Additive Explanations (SHAP) in 2018 [54],
which identifies global and local effects. It can bridge the gap between the accuracy and
interpretability of machine learning models’ predictions.

A Shapley value is calculated using Equation (3):

θp = ∑
s⊆{x1,...xp}\{xp}

|s|!(|p| − |s| − 1)!
|p|! ( f (s ∪

{
xp

}
)− f (s)) (3)

where θp is the Shapley value of variable P, S is a subset of the features incorporated into
the model, xp is the value vector of variable P, and P is the number of the ith variables. f (s)
is the prediction for variable values in set S.
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2.3. Land Use Explanatory Variables

Combined with the relevant foreign theoretical studies, 15 land use and built envi-
ronment explanatory variables (Table 2) were selected based on the “7D” dimensions.
Among them, diversity represents the distribution of different types of land within
a certain range and the diversity of business forms. Therefore, Shannon’s diversity
index was selected to calculate the land use mixing degree [55]. Four indicators were
chosen to measure the distance to transit: public transportation network density, bus
station density, subway station density, and vertical distance from the bus stop to the
nearest primary road or trunk road. In previous studies, destination accessibility was
measured by the distance to the central business district (CBD). But, for the mega-city
Beijing, there are multiple CBDs. This research measures destination accessibility by
the mean travel distance of public transportation trips whose origin stations are within
the spatial unit.

Table 2. Land use and built environment variables.

“7D”
Dimensions Variables Main

Category Description Unit Mean Std. Dev. Data Sources

Density

Building
density

Land use
and built

environment

Total building base area
divided by the spatial

unit’s area
km/km2 0.17 0.09

Open street map
(https:

//lbs.amap.com/,
accessed on 10

July 2022)

Commercial
density Land use

The number of
commercial facilities

divided by the spatial
unit’s area

quantity/km2 99.85 106.87

Public
services
density

Land use

The number of public
service facilities

divided by the spatial
unit’s area

quantity/km2 57.37 64.89

Office
density Land use

The number of office
facilities divided by the

spatial unit’s area
quantity/km2 120.76 159.96

Residential
density

Land use
and built

environment

The number of
residents divided by
the spatial unit’s area

person/km2 19,357.11 18,332.60 Cell phone data [56]

Diversity

Diversity
index of

mixed land
use

Land use
and built

environment

Diversity index
H = −∑ (Pi)(ln Pi), Pi

is the ratio of the
number of the ith class
POIs to the number of

all POIs.

0.96 0.13

Amap API
(https:

//lbs.amap.com/,
accessed on 10

July 2022)

Design

Road
network
density

Land use
and built

environment

Length of road divided
by the spatial

unit’s area
km/km2 4.95 3.08 Open street map

(https://www.
openstreetmap.org/,

accessed on 10
July 2022)

Floor area
ratio

Land use
and built

environment

The total construction
area divided by the
spatial unit’s area

1.00 0.72

Destination
accessibility

Mean travel
distance

Built
environment

The average Manhattan
distance of all public
transportation trips

whose origin locations
are within a TAZ

m 10,364.38 4329.88

Processed transit trip
record data based on
IC card payments for
public transportation
(courtesy of Beijing

Traffic Management)

https://lbs.amap.com/
https://lbs.amap.com/
https://lbs.amap.com/
https://lbs.amap.com/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
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Table 2. Cont.

“7D”
Dimensions Variables Main

Category Description Unit Mean Std. Dev. Data Sources

Distance to
transit

Public trans-
portation
network
density

Land use
and built

environment

Length of public
transport lines divided

by the spatial unit’s
area

km/km2 28.84 25.74

Open street map
(https://www.

openstreetmap.org/,
accessed on 10

July 2022)

Bus station
density

Built
environment

The number of bus
stations divided by the

spatial unit’s area
quantity/km2 34.08 31.13

Subway
station
density

Built
environment

The number of subway
stations divided by the

spatial unit’s area
quantity/km2 0.98 0.72

Vertical
distance

from the bus
stop to the

nearest
primary road
or trunk road

Built
environment

The mean value of
vertical distance from

the bus stop to the
nearest primary road or

trunk road

km 2.20 3.09

Demand
management

Parking
density

Land use
and built

environment

The number of parking
lots divided by the
spatial unit’s area

quantity/km2 32.57 36.27

Amap API (https:
//lbs.amap.com/,

accessed on 10
July 2022)

Demographics Population
density

Built
environment

The population count
divided by the spatial

unit’s area
persons/km2 8856.57 5080.17

Data from WorldPop
(https:

//hub.worldpop.
org/geodata/

summary?id=24926,
accessed on 10

July 2022)

3. Results and Discussion
3.1. Optimal Scale and Shape of the Spatial Unit

Figure 2 shows the different methods of dividing spatial units. We selected square grids
from 200 m to 2000 m (interval 100 m), TAZ, and neighborhood as the spatial units. In the
process of XGBoost model training and testing, grid search and 5-fold cross-validation were
used to optimize the parameters of the XGBoost regression model to prevent overfitting and
improve the model’s prediction accuracy. The mean absolute error (MAE), mean square
error (MSE), mean absolute percentage error (MAPE), root mean square error (RMSE),
and R2 comparison results of the testing dataset of XGBoost for different spatial units are
shown in Table 3. The comparison found that using TAZ as the spatial unit had the highest
R2. The higher the R2, the better the model fit. So, TAZ is the optimal spatial unit of this
study. For the XGBoost model under the TAZ spatial unit, the optimal parameters are as
follows: max_depth is 9, learning_rate is 0.02, subsample is 0.34, colsample_bytree is 0.79,
n_estimators is 5626, and gamma is 5.25. The PTIs of TAZs were spatially classified into
three categories: low, middle, and high by using the ArcGIS natural breaks classification
(Jenks) toolbox, as shown in Figure 3.

Table 3. The MAE, MSE, MAPE, RMSE, and R2 comparison results of the testing dataset of XGBoost
for different spatial units.

Spatial Unit Averge Spatial
Unit Area (m2) R2 MAE MSE RMSE MAPE

200 m × 200 m 40,000 0.27 1.17 13.32 3.65 6.94
300 m × 300 m 90,000 0.32 0.15 0.23 0.48 5.02
400 m × 400 m 160,000 0.07 0.40 1.46 1.21 6.05

https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://lbs.amap.com/
https://lbs.amap.com/
https://hub.worldpop.org/geodata/summary?id=24926
https://hub.worldpop.org/geodata/summary?id=24926
https://hub.worldpop.org/geodata/summary?id=24926
https://hub.worldpop.org/geodata/summary?id=24926
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Table 3. Cont.

Spatial Unit Averge Spatial
Unit Area (m2) R2 MAE MSE RMSE MAPE

500 m × 500 m 250,000 0.01 0.32 0.74 0.86 6.99
600 m × 600 m 360,000 0.18 0.28 0.89 0.94 6.43
700 m × 700 m 490,000 0.33 0.21 0.35 0.59 4.03
800 m × 800 m 640,000 0.23 0.17 0.17 0.41 4.70
900 m × 900 m 810,000 0.01 0.18 0.13 0.36 6.26

1000 m × 1000 m 1,000,000 0.21 0.18 0.28 0.53 3.80
1100 m × 1100 m 1,210,000 0.32 0.13 0.08 0.29 3.62
1200 m × 1200 m 1,440,000 0.06 0.13 0.06 0.25 6.26
1300 m × 1300 m 1,690,000 0.23 0.12 0.06 0.25 5.25
1400 m × 1400 m 1,960,000 0.22 0.11 0.04 0.20 5.67
1500 m × 1500 m 2,250,000 0.12 0.11 0.04 0.20 5.41
1600 m × 1600 m 2,560,000 0.16 0.09 0.02 0.13 5.76
1700 m × 1700 m 2,890,000 0.23 0.11 0.04 0.21 4.30
1800 m × 1800 m 3,240,000 0.03 0.12 0.04 0.20 4.04
1900 m × 1900 m 3,610,000 0.30 0.10 0.04 0.20 6.04
2000 m × 2000 m 4,000,000 0.34 0.10 0.03 0.16 4.26

TAZs 1,721,735 0.62 0.09 0.02 0.13 3.48
neighborhood 11,994,517 0.00 0.23 0.21 0.46 6.19
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3.2. Global Impact of Explanatory Variables on PTI

The SHAP values can help reveal nonlinear relationships and determine the relative
importance of explanatory variables in the prediction [57,58]. Figure 4 displays the average
SHAP values of the explanatory variables for PTI, with global positive correlations shown
in warm colors and global negative correlations in cool colors. The explanatory variables
that contribute to PTI are, in descending order, mean travel distance, residential density,
subway station density, public services density, commercial density, diversity index of
mixed land use, roadway network density, public transportation network density, bus
station density, the vertical distance from the bus stop to the nearest primary road or trunk
road, parking density, population density, floor area ratio, office density, and building
density. Among them, mean travel distance contributes the most to PTI. The further the
mean travel distance, the more residents tend to choose public transportation. This may
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be due to the fact that walking and biking are time-consuming, while driving cars faces
severe road congestion and high parking charges. Public transportation survey results
have shown that 39.7% of the population living between the Fifth Ring Road and the Sixth
Ring Road have a commute time of more than 45 min. The urban layout, characterized by
the separation of jobs and residences, has led to high time consumption and long-distance
commuting [59], making public transportation the preferred mode of travel. The second
most influential explanatory variable is residential density. The reason may be that the
higher the residential density, the more crowded the car travel, and people are more willing
to choose public transportation. The third important explanatory variable is the density
of subway stations. The reason is that the greater the number of subway stations in these
TAZs, the more commuters prefer to choose the on-time and fast subway as a travel mode.
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Variables that are globally negatively correlated with PTI are road network density,
vertical distance from the bus stop to the nearest primary road or trunk road, office density,
and building density. The reason for the negative correlation between road density and
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PTI may be that the higher the road density in spatial units, the more convenient it is
for residents to travel by walking or biking, making them less likely to choose public
transportation. The vertical distance from the bus stop to the nearest primary road or
trunk road is negatively correlated with PTI for the obvious reason that the smaller the
vertical distance, the more convenient it is for residents to choose public transportation
mode, especially express bus lines along the primary road or trunk road. In TAZs with
high parking density, it is more convenient for residents to park, and the proportion
of the population choosing public transportation is relatively low. The reason for the
negative correlation between office density and PTI may be that commuters choosing public
transportation tend to live in outlying areas of the city, while employment is concentrated
in several core areas of the city. As a result, TAZs with high office density generate relatively
few public transportation trips during the morning peak hours.

Since Beijing has a multi-center urban structure with employment centers scattered
in multiple areas, we did not use the variable distance to the city center. The mean travel
distance is the average Manhattan distance of all public transportation trips originating
within a TAZ, which can indicate accessibility and convenience to destinations. Our results
show that the mean travel distance is the most important factor affecting PTI, which is
similar to the results of Tao and Cao [53]. They concluded that the three most important
variables affecting bus travel distance are, in order, job accessibility, distance to St. Paul,
and distance to Minneapolis. For Beijing, the longer the travel distance, the more likely
people are to choose public transportation. Therefore, for those TAZs with longer mean
travel distances, urban planners should pay attention to providing direct and convenient
public transportation routes planning services.

3.3. Analysis of Nonlinear Relationships in Land Use

Figure 5 illustrates the nonlinear relationships between land use and PTI. We chose
six land use variables for nonlinear analysis, and these six variables are relatively easy to
implement during the built environment updating process. The nonlinear relationships
between other variables and PTI are shown in Figure S1. Overall, all explanatory variables
had relatively complex nonlinear relationships and threshold effects with PTI. The threshold
effect indicates that the slope of SHAP value change of a variable is steeper in this interval
range, which means that the variable has a stronger influence on the dependent variable
PTI when it is in this interval range. Tao and Cao [53] also pointed out that threshold ranges
effectively alter travel distances. Figure 5a demonstrates the global positive correlation
between mean travel distance and PTI, and there is a clear threshold effect. When the mean
travel distance is between 7 and 15 km, PTI increases rapidly with the increase in mean
travel distance. This range of values (7–15 km) is called the threshold range that significantly
affects SHAP values. Figure 5b demonstrates the global positive correlation between
residential density and PTI, which is consistent with the results of existing studies [60],
with a significant threshold range between 20,000 and 25,000 person/km2. Figure 5d–f
illustrate the nonlinear relationships between subway station density, public services
density, parking density, floor area ratio, and PTI, respectively. The threshold range that
significantly affects SHAP values is also shown in Figure 5.

3.4. Spatial Heterogeneity of Land Use Effects on PTI

Figure 6(a1) demonstrates the distribution of SHAP values for mean travel distance.
We divided the SHAP values into five categories by using ArcGIS natural breaks classifica-
tion toolbox. We refer to a TAZ as a “PTI-sensitive TAZ based on mean travel distance” if
its mean travel distance falls within the threshold range that substantially influences SHAP
value. Figure 6(a2) shows the PTI-sensitive TAZs based on mean travel distance, which
are mainly concentrated in the peripheral region. We conducted an intersection analysis
of the low-PTI set (Figure 3) and PTI-sensitive TAZs set based on mean travel distance.
The TAZs with priority renewals were identified, and the results are shown in Figure 6(a3).
These TAZs have a lower PTI and a higher mean travel distance. Although it is shown
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that increasing the mean travel distance of TAZs within the threshold range can effectively
improve PTI in our analysis results, we cannot increase PTI by increasing the mean travel
distance. For these TAZs, urban planners and policymakers should, on the one hand, focus
on improving public transportation service levels and increasing station accessibility and,
on the other hand, analyze other land use factors that significantly affect PTI.

Land 2024, 13, 1302 10 of 17 
 

 

Since Beijing has a multi-center urban structure with employment centers scattered 
in multiple areas, we did not use the variable distance to the city center. The mean travel 
distance is the average Manhattan distance of all public transportation trips originating 
within a TAZ, which can indicate accessibility and convenience to destinations. Our re-
sults show that the mean travel distance is the most important factor affecting PTI, which 
is similar to the results of Tao and Cao [53]. They concluded that the three most important 
variables affecting bus travel distance are, in order, job accessibility, distance to St. Paul, 
and distance to Minneapolis. For Beijing, the longer the travel distance, the more likely 
people are to choose public transportation. Therefore, for those TAZs with longer mean 
travel distances, urban planners should pay attention to providing direct and convenient 
public transportation routes planning services. 

3.3. Analysis of Nonlinear Relationships in Land Use 
Figure 5 illustrates the nonlinear relationships between land use and PTI. We chose 

six land use variables for nonlinear analysis, and these six variables are relatively easy to 
implement during the built environment updating process. The nonlinear relationships 
between other variables and PTI are shown in Figure S1. Overall, all explanatory variables 
had relatively complex nonlinear relationships and threshold effects with PTI. The thresh-
old effect indicates that the slope of SHAP value change of a variable is steeper in this 
interval range, which means that the variable has a stronger influence on the dependent 
variable PTI when it is in this interval range. Tao and Cao [53] also pointed out that thresh-
old ranges effectively alter travel distances. Figure 5a demonstrates the global positive 
correlation between mean travel distance and PTI, and there is a clear threshold effect. 
When the mean travel distance is between 7 and 15 km, PTI increases rapidly with the 
increase in mean travel distance. This range of values (7–15 km) is called the threshold 
range that significantly affects SHAP values. Figure 5b demonstrates the global positive 
correlation between residential density and PTI, which is consistent with the results of 
existing studies [60], with a significant threshold range between 20,000 and 25,000 per-
son/km2. Figure 5d–f illustrate the nonlinear relationships between subway station den-
sity, public services density, parking density, floor area ratio, and PTI, respectively. The 
threshold range that significantly affects SHAP values is also shown in Figure 5. 

  
(a)  (b)  

  
(c)  (d)  

Land 2024, 13, 1302 11 of 17 
 

 

  
(e)  (f)  

Figure 5. Nonlinear relationships and threshold ranges of land use variables on PTI. (a) Mean 
travel distance; (b) residential density; (c) subway station density; (d) public services density; (e) 
parking density; (f) floor area ratio. 

3.4. Spatial Heterogeneity of Land Use Effects on PTI 
Figure 6a1 demonstrates the distribution of SHAP values for mean travel distance. 

We divided the SHAP values into five categories by using ArcGIS natural breaks classifi-
cation toolbox. We refer to a TAZ as a “PTI-sensitive TAZ based on mean travel distance” 
if its mean travel distance falls within the threshold range that substantially influences 
SHAP value. Figure 6a2 shows the PTI-sensitive TAZs based on mean travel distance, 
which are mainly concentrated in the peripheral region. We conducted an intersection 
analysis of the low-PTI set (Figure 3) and PTI-sensitive TAZs set based on mean travel 
distance. The TAZs with priority renewals were identified, and the results are shown in 
Figure 6a3. These TAZs have a lower PTI and a higher mean travel distance. Although it 
is shown that increasing the mean travel distance of TAZs within the threshold range can 
effectively improve PTI in our analysis results, we cannot increase PTI by increasing the 
mean travel distance. For these TAZs, urban planners and policymakers should, on the 
one hand, focus on improving public transportation service levels and increasing station 
accessibility and, on the other hand, analyze other land use factors that significantly affect 
PTI. 

Figure 6b1 illustrates the distribution of SHAP values for residential density. The 
TAZs with a high positive influence are distributed in the center and the TAZs with a high 
negative influence are on the periphery. SHAP values decrease from the center to the pe-
riphery. Figure 6b2 shows the PTI-sensitive TAZs set based on residential density, which 
are relatively decentralized. We conducted an intersection analysis of the low-PTI set and 
PTI-sensitive TAZs set based on residential density. The TAZs with priority renewal were 
identified, and the results are shown in Figure 6b3. For these TAZs, on the one hand, the 
residential density can be appropriately increased, and on the other hand, additional sta-
tion entrances should be established to improve public transportation capacity and in-
crease the density of the public transportation network. 

Figure 6c1 shows the distribution of SHAP values for subway station density. The 
TAZs with positive influence are mainly distributed in the range between the 2nd Ring 
Road and the 5th Ring Road, and the TAZs with negative influence are mainly concen-
trated in the range between the 5th Ring Road and the 6th Ring Road. The SHAP values 
show decreasing distribution characteristics from the center outward. Compared to the 
center region, the TAZs located in the northwest have a lower density of subway stations 
and road networks. However, a large number of long-distance commuters live in the re-
gion, and the subway is the main means of commuting during the morning peak hours. 
Figure 6c2 shows the PTI-sensitive TAZs based on subway station density, mainly concen-
trated in the peripheral region. We conducted an intersection analysis of the low-PTI set 
and PTI-sensitive TAZs set based on subway station density. The TAZs with priority re-
newal were identified and are mainly concentrated in the southeastern region between 
the 3rd Ring Road and the 6th Ring Road, as shown in Figure 6c3. Therefore, opening 
more subway lines and increasing the number of stations will have a positive effect on 
these TAZs and improve PTI. 

Figure 5. Nonlinear relationships and threshold ranges of land use variables on PTI. (a) Mean travel
distance; (b) residential density; (c) subway station density; (d) public services density; (e) parking
density; (f) floor area ratio.

Figure 6(b1) illustrates the distribution of SHAP values for residential density. The
TAZs with a high positive influence are distributed in the center and the TAZs with a
high negative influence are on the periphery. SHAP values decrease from the center to
the periphery. Figure 6(b2) shows the PTI-sensitive TAZs set based on residential density,
which are relatively decentralized. We conducted an intersection analysis of the low-PTI set
and PTI-sensitive TAZs set based on residential density. The TAZs with priority renewal
were identified, and the results are shown in Figure 6(b3). For these TAZs, on the one hand,
the residential density can be appropriately increased, and on the other hand, additional
station entrances should be established to improve public transportation capacity and
increase the density of the public transportation network.

Figure 6(c1) shows the distribution of SHAP values for subway station density. The
TAZs with positive influence are mainly distributed in the range between the 2nd Ring Road
and the 5th Ring Road, and the TAZs with negative influence are mainly concentrated in the
range between the 5th Ring Road and the 6th Ring Road. The SHAP values show decreasing
distribution characteristics from the center outward. Compared to the center region, the
TAZs located in the northwest have a lower density of subway stations and road networks.
However, a large number of long-distance commuters live in the region, and the subway
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is the main means of commuting during the morning peak hours. Figure 6(c2) shows the
PTI-sensitive TAZs based on subway station density, mainly concentrated in the peripheral
region. We conducted an intersection analysis of the low-PTI set and PTI-sensitive TAZs set
based on subway station density. The TAZs with priority renewal were identified and are
mainly concentrated in the southeastern region between the 3rd Ring Road and the 6th Ring
Road, as shown in Figure 6(c3). Therefore, opening more subway lines and increasing the
number of stations will have a positive effect on these TAZs and improve PTI.

Figure 6(d1) demonstrates the distribution of SHAP values for public services density.
The SHAP value as a whole shows decreasing distribution characteristics from the center
outward. Figure 6(d2) shows the PTI-sensitive TAZs based on public services density,
which are more dispersed. We conducted an intersection analysis of the low-PTI set and
PTI-sensitive TAZs set based on public services density. The TAZs with priority renewal
were identified, and the results are shown in Figure 6(d3). For these TAZs, it is necessary
to analyze the missing types of public service facilities and improve PTI by increasing the
density of service facilities.

Figure 6(e1) illustrates the distribution of SHAP values for parking density. The SHAP
values indicate that TAZs with high influence are in the periphery, while those with low
influence are in the central area. Figure 6(e2) shows the PTI-sensitive TAZs based on
parking density. We conducted an intersection analysis of the low-PTI set and PTI-sensitive
TAZs set based on parking density. The TAZs with priority renewal were identified, and
the results are shown in Figure 6(e3). Corresponding to the distribution of SHAP values,
the analysis reveals that the parking density for these TAZs has a negative effect on PTI.
This may be due to the fact that residents in TAZs with higher parking density have easy
access to parking, and a larger population chooses to use private vehicles to travel. During
urban renewal, the parking density in such TAZs should be reduced, and emphasis should
be placed on the development of public transportation infrastructure. For the PTI-sensitive
TAZs, parking density has a positive effect on SHAP value, possibly because these TAZs
have more parking lots for Park and Ride. So, increasing parking density may attract more
people to use Park and Ride, and as a result, the PTI of these TAZs will also increase.
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Figure 6. The spatial distribution of SHAP values for land use variables, nonlinear threshold effects,
and the intersection of nonlinear threshold and PTI. (a1) SHAP values for mean travel distance;
(a2) PTI-sensitive TAZs based on mean travel distance. (a3) Intersection of low PTI set and sensitive
TAZs based on mean travel distance and PTI; (b1) SHAP values for residential density; (b2) PTI-
sensitive TAZs based on residential density; (b3) intersection of the low-PTI set and sensitive TAZs
based on residential density; (c1) SHAP values for subway station density; (c2) PTI-sensitive TAZs
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based on subway station density; (c3) intersection of the low-PTI set and sensitive TAZs based on
subway station density; (d1) SHAP values for public services density; (d2) PTI sensitive TAZs based
on public services density; (d3) intersection of the low-PTI set and sensitive TAZs based on public
services density; (e1) SHAP of parking density; (e2) PTI-sensitive TAZs based on parking density;
(e3) intersection of the low PTI-set and sensitive TAZs based on parking density; (f1) SHAP values
for floor area ratio; (f2) PTI-sensitive TAZs based on floor area ratio; (f3) intersection of low-PTI set
and sensitive TAZs based on floor area ratio.

Figure 6(f1) demonstrates the distribution of SHAP values for the floor area ratio.
Most of the TAZs’ floor area ratios have a positive impact on SHAP. Figure 6(f2) shows
the PTI-sensitive TAZs based on floor area ratio. The distribution of these TAZs is more
concentrated, mainly within the 5th Ring Road. We conducted an intersection analysis of
the low-PTI set and PTI-sensitive TAZs set based on floor area ratio. The TAZs with priority
renewal were identified, and the results are shown in Figure 6(f3). They are mainly located
between the 3rd Ring Road and 5th Ring Road. For these TAZs, their floor area ratio is
between 0.6 and 1.9, and increasing the floor area ratio may increase the bus trip index PTI.

According to the threshold effect results, Wang et al. [61] proposed that for low-
vitality rail transit stations, specific built environment variables should be given priority
for renewal. However, it is worth noting that correlation is not the same as causation.
The results and suggestions in this part are given on the basis of the correlation between
explanatory variables and PTI. This correlation may have a certain causal relationship, but
the causal relationship still needs more verification. Because urban planning schemes are
not like randomized, double-blind trials used in medicine, in order to determine the impact
of a certain variable on the results of the experiment, a set of comparison experiments is
performed, the variable is changed, and the experimental results are observed.

4. Conclusions and Limitations

This study takes Beijing as an example and uses multi-source big data to compute the
land use variables. PTI during the working day’s early peak hours is taken as the dependent
variable, and 15 land use and built environment independent variables are selected based
on the “7D” dimensions of the built environment. Considering the MAUP, the optimal
spatial unit is determined by comparing the goodness of model fitting results of different
spatial units. The nonlinear relationship between land use and PTI and the threshold effect
was investigated by the XGBoost model. The main conclusions are as follows:

(1) The results of the study on the impact of land use on PTI are different for different
spatial units. A comparison of the goodness of XGBoost of different spatial units
shows that the optimal spatial unit to study the impact of land use on PTI in Beijing
is TAZ.

(2) The XGBoost fitting results show that the top four explanatory variables affecting PTI
are, in order: mean travel distance, residential density, subway station density, and
public services density.

(3) Some land use and built environment variable have nonlinear effect on PTI and
threshold effect results are conducive to propose effective built environment renewal
strategies aiming at increasing PTI or public transportation share.

(4) The TAZs with priority renewal were identified according to intersection analysis of
the low-PTI set and the PTI-sensitive TAZs based on different land use variables. This
has important reference significance for the targeted selection of TAZ for urban built
environment renewal.

Although this study fills a gap in research on the effects of partial land use on PTI,
there are some limitations: (1) The origin and destination of trips in this research are both
bus and subway stations, which is slightly different from the actual origin and destination.
(2) This study considers the influence of land use variables on PTI, and does not include
other characteristic variables, such as residents’ income and age, and these demographic
and economic characteristic variables also have some influence on transport mode choice.
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(3) Combining other data to identify the OD of other travel modes for accurate public
transportation share analysis will be a more meaningful research direction in the future.
(4) While machine learning methods can be used to analyze the effect of land use variables
on dependent variables, other methods can also be considered for correlation analysis to
compare different results. (5) Suggestions for land use and built environment renewal are
given on the basis of the correlation between explanatory variables and PTI, which may be
different from a real causal relationship, and more verification is needed for causal inference.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/land13081302/s1, Figure S1: Nonlinear relationship and threshold
range of other variables on PTI.
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