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Abstract: Urban–rural integration (URI) is essential to achieving sustainable development.
However, the rural areas surrounding large cities typically have a large scale and significant
differences in development conditions. It is necessary to formulate rural development
policies by category to better promote the integrated development between urban and
rural areas, stimulate rural vitality, and create more significant opportunities for rural
development. This study constructs an evaluation system for rural areas under URI, using
the Xi’an metropolitan area as a case study. A clustering algorithm enhanced by the
random forest (RF)–principal component analysis (PCA)–partitioning around medoids
(PAM) method is applied to evaluate rural integration comprehensively. Key findings
in this study include the following: (i) URI should be decoupled from administrative
divisions, considering the complex impacts of multi-town functional spillover; (ii) ecological
environment, economic development, public service allocation, and construction land
supply are key factors influencing URI; (iii) the overall URI index in the Xi’an metropolitan
area presents a “high in the center, low in the east and west” pattern. The rural areas
with high URI index are around Xi’an and Xianyang, while other cities show insufficient
communication with neighboring villages; (iv) rural areas can be categorized into four types
of integration: ecological, ecological–economic, ecological–social–spatial, and ecological–
economic–social–spatial, which exhibit an outward expansion of layers and extension along
the east–west axis in the spatial structure of integration. Finally, differential development
policies and suggestions for promoting urban–rural integration are put forward because of
the different types of rural villages. This paper provides a framework for formulating rural
development policies, significantly deepening urban–rural integration.

Keywords: urban–rural integration; rural classification; evaluation index system; differential
development

1. Introduction
Urban–rural integration (URI) development aims to enhance the close connections

between urban and rural areas, facilitating the healthy bidirectional flow of resources
and providing direction for the collaborative development relationship between cities
and villages [1,2]. From the 19th National Congress of the Communist Party of China in
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2017, which proposed to “establish and improve the system and policy framework for
urban-rural integration”, to the Third Plenary Session of the 20th Central Committee in
2023, which pointed out that “urban-rural integration is an inevitable requirement for
Chinese-style modernization”, and further to the Central Committee of the Communist
Party of China and the State Council issuing the “Comprehensive Rural Revitalization
Plan (2024–2027)” in early 2025, emphasizing the need to “promote urban-rural integration
development” and “advance comprehensive rural revitalization in a classified manner”, the
development of URI in China has gained increasing attention. It has become an essential
sustainable and collaborative development strategy in urban and rural areas.

URI results from the evolution of urban–rural relations through theory and practice. Its
theoretical basis has experienced three main paradigm evolutions: first, Marxist dialectics
emphasizes the existence and resolution of urban–rural contradictions [3]; second, the new
economic geography model reveals the interactive relationship between urban and rural
areas by quantifying factor flows [4]; and third, cross-border governance and transaction
cost analysis under the perspective of institutional economics provide a new framework
for understanding urban–rural integration [5]. Notably, performance theory in European
urban–rural relations research offers a new perspective on deconstructing the quality of
urban–rural interaction through a multi-dimensional performance evaluation system [6]. It
breaks through the traditional urban–rural dualism and emphasizes viewing urban and
rural areas as dynamic functional network systems. Urban–rural relations gradually shift
towards resource allocation, factor flow, mutual influence between urban and rural areas,
and integrated development.

Many previous studies have focused on the theme of URI, covering various aspects such
as conceptual analysis and theoretical framework construction [7,8], current status evolution
and impact analysis [9,10], and holistic evaluation [11]. In recent years, an increasing number
of scholars have also researched the classification of rural types [12–14] to provide a basis for
differentiated development path selection for different villages. For example, Europe has a
rich rural classification experience [15], showing concern for the causes and effects of social
changes and attaching importance to the heterogeneity between rural areas [16]. However,
there is currently a lack of research analyzing rural type classification in the frontier areas
of URI—peri-urban areas.

The areas at the interface of metropolitan and rural areas are the regions where the flow
of urban and rural elements and spatial transformations are the most intense and crucial
zones for URI development [17]. In the “Rural Revitalization Strategic Plan (2018–2022)”,
villages are categorized into four types: aggregation enhancement, urban–rural integration,
characteristic protection, and relocation and dismantling, without further subdivision,
making it difficult to provide precise guidance for formulating development strategies
tailored to peri-urban villages. Due to their conditions and varying degrees of influence
from nearby urban developments, different villages often exhibit differences in economic,
social, spatial, and ecological integration during the URI process. As Ji and Tian (2024)
point out, villages’ spatial characteristics, land use patterns, and development potential
vary significantly across regions [18]. Rural areas near big cities, as transitional zones,
are transforming from passively accepting spillovers to actively restructuring functions.
Different rural regions need differentiated development policies, but current policy-making
lacks scientific classification criteria, making it hard to meet diverse rural development
needs precisely. Therefore, formulating rural development plans for peri-urban areas and
scientifically conducting rural classification from the perspective of URI is fundamental
and essential.

The classification of rural types often requires a comprehensive and objective eval-
uation index system. Some scholars have already conducted rural classification studies



Land 2025, 14, 602 3 of 23

based on the characteristics of specific research areas, selecting evaluation indicators that
cover various dimensions such as natural resources [19,20], economic and industrial de-
velopment [21,22], social demographics [11,23], and public services [24]. However, most
of these indicators are static and lack an understanding of the dynamics and trends of
village development. Additionally, most existing research on rural classification is based
on administrative jurisdiction units [25–27], with little consideration of the impacts of
urban–rural and rural–rural interactions across administrative boundaries on village devel-
opment; this situation is more pronounced in peri-urban areas. This cross-administrative
interaction is crucial for accurately assessing urban–rural integration and policy effective-
ness, and ignoring it may weaken URI policy implementation. Therefore, it is evident
that the construction of evaluation indicators for rural classification that consider both
static and dynamic characteristics from the perspective of URI and empirical analysis is
urgently needed.

To this end, this paper constructs an evaluation index system for rural classification
under the perspective of URI, encompassing four dimensions: ecological, economic, social,
and spatial, based on the existing literature. Using the Xi’an Metropolitan Region as
the geographical foundation for this study, we selected 3804 peri-urban villages (i.e.,
villages exhibiting URI characteristics) as analysis samples. Subsequently, we calculated
the villages’ dimensional and comprehensive URI indices, identified rural clusters based
on the evaluation indicators, and clarified the clustering implications in conjunction with
the dimensional characteristics. Finally, we propose differentiated development strategies
for villages in this region to promote the realization of URI and rural revitalization.

2. Study Area, Data, and Measurements
2.1. Study Area

Rural areas within metropolitan regions or urban agglomerations are often simulta-
neously influenced by functional spillovers from multiple cities. As the core city of the
Guanzhong Urban Agglomeration, Xi’an exerts its influence on rural areas beyond its
municipal administrative boundaries, necessitating an analysis of urban–rural integration
within a broader regional context. Therefore, this study established a research area based
on the Xi’an Metropolitan Region, from which suitable villages were selected for analysis.
This region encompasses parts of Tongchuan to the north, Weinan to the northeast, and
Xianyang to the northwest, spanning four prefecture-level cities (Figure 1).
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Within this defined scope, selecting villages potentially exhibiting urban–rural integra-
tion characteristics surrounding Xi’an was conducted based on established methodologies.
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The urban–rural gradient division method proposed by Li Ruipeng et al. [28] and the pop-
ulation density threshold approach developed by Zhou Xiaochi et al. [29] were employed
as primary references. Villages with impervious surface coverage ranging from 8% to
60% were categorized as peri-urban villages (Figure 2a). These areas were subsequently
overlaid with regions exhibiting population densities between 1000 and 5000 persons/km2

(Figure 2b). The preliminary selection was further refined through spatial optimization,
incorporating considerations of population distribution patterns (Figure 2c) and arable
land configurations (Figure 2d), while maintaining the principle of spatial continuity. This
methodological process identified 3804 villages within the Xi’an Metropolitan Region as
the final study samples (Figure 2e).

Land 2025, 14, x FOR PEER REVIEW 4 of 24 
 

methodologies. The urban–rural gradient division method proposed by Li Ruipeng et al. 
[28] and the population density threshold approach developed by Zhou Xiaochi et al. [29] 
were employed as primary references. Villages with impervious surface coverage ranging 
from 8% to 60% were categorized as peri-urban villages (Figure 2a). These areas were 
subsequently overlaid with regions exhibiting population densities between 1000 and 
5000 persons/km2 (Figure 2b). The preliminary selection was further refined through spa-
tial optimization, incorporating considerations of population distribution patterns (Figure 
2c) and arable land configurations (Figure 2d), while maintaining the principle of spatial 
continuity. This methodological process identified 3804 villages within the Xi’an Metro-
politan Region as the final study samples (Figure 2e). 

 

Figure 2. The village selection process and the samples analyzed in this study. 

2.2. Data Collection and Pre-Processing 

The data employed in this study were primarily categorized into three domains: so-
cio-economic indicators, land use and built environment, and topographic features. For 
socio-economic analysis, Point of Interest (POI) data from 2012 to 2022 were acquired from 
Baidu Maps (https://map.baidu.com/) and Amap (https://ditu.amap.com), with particular 
emphasis on the scale and growth patterns of enterprises, healthcare facilities, and public 
infrastructure. Night-time light data were obtained from Chen et al.’s continuous time-
series dataset of Chinese regions from 1992 to 2023, derived through DMSP-OLS and 
SNPP-VIIRS algorithms [30], which effectively captured the temporal variations in night-
time illumination. GDP data were sourced from Zhao et al.’s predictive model that inte-
grated night-time light time series and population imagery to estimate China’s GDP [31]. 
Electricity consumption data were derived from Chen’s high-resolution 1 km × 1 km grid 
data generated through spatial downscaling, providing insights into energy utilization 
patterns [32]. Age-specific population data were extracted from the 2020 Constrained In-
dividual Countries dataset, developed by Bondarenko M et al., which offered global pop-
ulation estimates at the grid square level based on the Built-Settlement Growth Model, 
with detailed demographic breakdowns by gender and age groups. Additionally, mobile 
base station data were collected from OpenCelliD. 

The foundational data were derived from multiple authoritative sources regarding 
land use and the built environment. The primary dataset included China’s first 1 m reso-
lution national-scale land cover map, which was developed by Li et al. [33] through the 
integration of open-access remote sensing data. Additionally, the urban built-up area da-
taset for Chinese cities in 2020 established by Zhongchang Sun et al. [34] and the building 
vector data generated by Shi et al. [35] through a comprehensive large-scale mapping 
framework were incorporated. Furthermore, the road network data were obtained from 
the Open Street Map (OSM). 

For topographic characterization, slope gradient and surface relief data were ob-
tained from the European Space Agency. Ecological-related foundational data included 

Figure 2. The village selection process and the samples analyzed in this study.

2.2. Data Collection and Pre-Processing

The data employed in this study were primarily categorized into three domains:
socio-economic indicators, land use and built environment, and topographic features. For
socio-economic analysis, Point of Interest (POI) data from 2012 to 2022 were acquired
from Baidu Maps (https://map.baidu.com/) and Amap (https://ditu.amap.com), with
particular emphasis on the scale and growth patterns of enterprises, healthcare facilities, and
public infrastructure. Night-time light data were obtained from Chen et al.’s continuous
time-series dataset of Chinese regions from 1992 to 2023, derived through DMSP-OLS
and SNPP-VIIRS algorithms [30], which effectively captured the temporal variations in
night-time illumination. GDP data were sourced from Zhao et al.’s predictive model that
integrated night-time light time series and population imagery to estimate China’s GDP [31].
Electricity consumption data were derived from Chen’s high-resolution 1 km × 1 km grid
data generated through spatial downscaling, providing insights into energy utilization
patterns [32]. Age-specific population data were extracted from the 2020 Constrained
Individual Countries dataset, developed by Bondarenko M et al., which offered global
population estimates at the grid square level based on the Built-Settlement Growth Model,
with detailed demographic breakdowns by gender and age groups. Additionally, mobile
base station data were collected from OpenCelliD.

The foundational data were derived from multiple authoritative sources regarding
land use and the built environment. The primary dataset included China’s first 1 m
resolution national-scale land cover map, which was developed by Li et al. [33] through
the integration of open-access remote sensing data. Additionally, the urban built-up area
dataset for Chinese cities in 2020 established by Zhongchang Sun et al. [34] and the building
vector data generated by Shi et al. [35] through a comprehensive large-scale mapping
framework were incorporated. Furthermore, the road network data were obtained from
the Open Street Map (OSM).

For topographic characterization, slope gradient and surface relief data were obtained
from the European Space Agency. Ecological-related foundational data included the Nor-
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malized Difference Vegetation Index (NDVI) sourced from NASA Earth Data, along with
the high-resolution, high-quality PM2.5 dataset for China (2000–2023) developed by Wei
Jing et al. [36].

All fundamental data were aggregated and statistically analyzed at the village-level
analytical unit. The data pre-processing was conducted using the min–max normalization
method in ArcGIS Pro 3.0.1.

2.3. Measurements

Element flow is the foundation of URI. The flow space theory suggests that “flow
space” refers to the location where various flow elements (such as people, capital, goods,
information, and technology) exist and move, which, when mapped onto geographi-
cal space, forms a flow network composed of nodes such as cities, regions, and even
countries [37,38]. From this perspective, URI is reflected as the spatiotemporal flow of
elements that transforms the heterogeneous dual structure of urban and rural areas into
a homogeneous unified structure, ultimately harmonizing economic, social, spatial, and
ecological dimensions.

Guided by this theoretical foundation, this paper constructs an indicator system cover-
ing four dimensions: (i) economic integration is represented by night-time light index and
electricity consumption to reflect economic vitality, GDP and the number of enterprises to
measure economic strength, and the growth rate of the number of enterprises to indicate
industrial development potential; (ii) social integration is analyzed through population
size, aging rate, and the proportion of the labor force to understand population structure,
and public service facilities’ equalization is reflected by the number of primary and sec-
ondary schools per thousand people, medical facilities and their growth, and infrastructure
construction is shown through mobile base stations and public facilities; (iii) spatial in-
tegration emphasizes the territorial continuity between urban and rural areas, measured
by the amount and growth rate of construction land, building density to assess spatial
integration, and road network density to reflect the spatiotemporal “compression” effect;
and (iv) ecological integration is assessed through slope and surface roughness to evaluate
ecological foundations, with vegetation coverage and PM index reflecting environmental
quality. The selection of indicators balances data availability with a combination of static
and dynamic principles, aligning with the core aspects of flow space theory. The main
considerations for our indicator selection are as follows:

(i) Economic integration. Due to its high data accuracy, the night-time light index, a
key indicator for economic activity intensity and spatial differences in urban–rural
development, can capture informal economic activities and infrastructure distribution.
The night-time light data are crucial for evaluating economic integration in data-scarce
rural areas [39]. GDP reflects regional economic size, and the number of enterprises
indicates industrial spatial agglomeration. Both are core indicators for assessing
urban–rural economic integration [40].

(ii) Social integration. Population indicators and labor force size are directly linked
to social service needs, a significant factor in urban–rural social integration [41].
Indicators related to educational and healthcare facilities measure public service
equalization, a prerequisite for narrowing the urban–rural welfare gap [42].

(iii) Spatial integration. We chose the proportion and growth rate of construction land.
Land use changes reflect spatial integration intensity and a high construction land
growth rate signifies urban and rural land expansion demands [43].

(iv) Ecological integration. The vegetation coverage index, acting as a proxy for ecosys-
tem service provision, assesses the environmental condition of urban and rural sys-
tems [44].
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Furthermore, the dynamic index selection spans from 2012 to 2022 for two main
reasons. The first is data availability; socio-economic and geographic data have had reliable
official sources since 2012. The second is policy continuity. The urban–rural integration
strategy proposed at the 18th National Congress of the Communist Party of China in
2012, along with the 2014 National New-Type Urbanization Plan and the 2017 Rural
Revitalization Strategy, forms a cohesive policy framework. These policies have driven
long-term, in-depth urban–rural integration. The details of specific indicators of each
dimension are in Table 1.

Table 1. Urban–rural integration measurement indicator system.

Dimensions Factors Indicators Calculation Methods Remarks References

Economic

Economic vitality
Night-time light index GIS Zonal Statistics as a table

tool to obtain ALL values Static [45,46]

Electricity consumption GIS Zonal Statistics as a table
tool to obtain ALL values Static [47,48]

Economic strength

GDP GIS Zonal Statistics as a table
tool to obtain ALL values Static [49,50]

Number of enterprises Total number of enterprise
POI points Static

[51,52]
Enterprise growth POI points (2022)–POI points

(2012) Dynamic

Social

Social structure

Population size GIS Zonal Statistics as a table
tool to obtain ALL values Static [53,54]

Aging rate Population aged ≥60/Total
population Static [55,56]

Proportion of the labor force Population aged 15–64/Total
population Static [57,58]

Social security

Distribution of healthcare
facilities

Statistical total number of
healthcare POI points after

hierarchical accessibility
analysis

Static
[59,60]

Growth in healthcare facilities POI points (2022)–POI points
(2012) Dynamic

Number of primary and
secondary schools per

thousand people

Number of primary and
secondary

schools/School-age
population (6–18 years)/1000

Static [41,61]

Social infrastructure

Number of mobile base
stations

Total number of mobile base
station POI points Static [62,63]

Number of public facilities Total number of public
service facility POI points Static

[24,64]
Growth in public facilities POI points (2022)–POI points

(2012) Dynamic

Spatial

Urban spatial
expansion

Growth rate of construction
land

Rural construction land
(2022)–Rural construction

land (2012)/Rural
construction land (2012)

Dynamic
[41,65]

Proportion of construction
land area

Construction land area/Total
land area Static

Intensity of spatial
development

Road network density Total length of road
centerlines/Land area Static [66,67]

Building density Area of building
outline/Total land area Static [68,69]

Ecological

Terrain flatness
Terrain slope Area with slope > 15◦/Total

area Static
[70,71]

Surface roughness GIS Zonal Statistics as a table
tool to obtain mean values Static

Ecological
environmental

quality

Vegetation coverage GIS Zonal Statistics as a table
tool to obtain mean values Static [72,73]

PM2.5 GIS Zonal Statistics as a table
tool to obtain mean values Static

[74,75]
PM10 GIS Zonal Statistics as a table

tool to obtain mean values Static
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3. Methodology
3.1. Study Framework

Figure 3 illustrates the research framework of this study, which primarily consists
of four steps. First, we collected and pre-processed multi-source data as the basis for
sample selection and indicator extraction. Next, we identified the villages included in
this study through multi-layer overlay analysis. Then, based on relevant theories of
URI (such as the theory of factor flow), we developed a URI development evaluation
indicator system encompassing four dimensions: economy, society, space, and ecology.
A combined weight method was employed to derive the comprehensive index of URI.
Simultaneously, an enhanced algorithm combining random forest–principal component
analysis–partitioning around medoids (RF-PCA-PAM) was used for village clustering
calculations. Finally, based on the radar chart of the fractal URI index, we synthesized the
clustering characteristics, identified rural types, and proposed differentiated development
strategies and recommendations in conjunction with the spatial distribution characteristics
of the clusters. All these analyses were conducted in R 4.2.3.
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3.2. Study Method
3.2.1. Weighting Methods

(1) Analytic Hierarchy Process (AHP)

AHP is a multi-criteria decision-making approach that involves creating a hierarchical
model consisting of three levels: the goal, criterion, and solution [76]. The calculation
process is outlined as follows:
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i. Establish a weighted evaluation model based on evaluation indicators of urban–
rural integration.

ii. Construct a judgment matrix using the Saaty 1–9 scale method, represented as
A = {A1, A2, · . . . , ·An}.

iii. Perform a consistency check on the judgment matrix.
iv. Compute the subjective weight W1j for the j-th evaluation indicator.

IC =
λmx − n

n − 1
(1)

ICR =
IC
IR

(2)

where n is the order of the matrix, λmax is the most significant or principal eigenvalue of
the matrix. IC denotes the consistency index, an ICR is the randomized consistency test.

W1j =
1
n

n

∑
j=1

αjk
n
∑

k=1
αjk

(3)

where j = 1, 2, 3, . . ., n, and ajk represents the relative scale of indicator j to indicator k.

(2) Entropy Weight Method (EWM)

The essence of entropy is the degree of internal chaos in a system [77]. The entropy
method quantifies the uncertainty and variability of indicators by measuring the amount of
information through information entropy [78]. The method removes the impact of human
factors on subjective weight assignment and helps prevent information overlap among
multiple indicators. The calculation process is outlined as follows:

i. Calculate of the share of village i under indicator j in the calculation of the indicator:
in which i = 1, 2, · · · , m, j = 1, 2, · · · , n.

Yij =
Xij

m
∑

i=1
Xij

(4)

ii. Normalize the indicators.

Pij =
x′ij

m
∑

i=1
x′ij

(5)

iii. Calculate the entropy ej of the j-th indicator based on the normalization matrix
Y = (yij)m: in which k = 1

ln(m)
.

ej = −k
m

∑
i=1

PijlnPij (6)

iv. Calculate the j-th indicator’s entropy weight.

Wj =
1 − ej

n
∑

j=1
(1 − ej)

(7)

(3) Composite Weighting Based on Game Theory

In order to obtain an optimal solution, this study applied game theory principles [79],
treating subjective and objective weights as the two opposing parties in the game. The
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combination coefficients were derived by minimizing the total deviation between the final
weights and the subjective and objective weights, resulting in comprehensive weights that
balance the strengths of both subjective and objective aspects. The calculation process is
outlined as follows:

i. Formulate a fundamental set of weight vectors.

By applying both subjective and objective weighting methods to m indicators, we
obtain the weight set W ′ = {ω1, ω2}. Subsequently, any linear combination of these
two vectors can be represented as W:

W = a1ωT
1 + a2ωT

2 (8)

where a1 and a2 denote the combination coefficients for the subjective and objective weights,
respectively.

ii Optimize a1 and a2.

Optimize a1 and a2 to minimize the total deviation between the weight vector W and
ω1, ω2.

min(
2

∑
i=1

∥
2

∑
j=1

ajω
T
j − ωT

i ∥2) (9)

Based on the properties of matrix differentiation, in order to satisfy the above equation,
its first-order derivative must satisfy the following linear equation:[

ω1(ω1)
T ω1(ω2)

T

ω2(ω1)
T ω2(ω2)

T

][
a1

a2

]
=

[
ω1(ω1)

T

ω2(ω2)
T

]
(10)

iii Obtain the ultimate optimal combined weight vector, W.

W =
2

∑
i=1

(
αiω

T
i /

2

∑
j=1

αj

)
(11)

(4) Comprehensive index of URI

After obtaining the final weights from the game theory, normalized data were used to
calculate the corresponding indices for URI development evaluation. These included the
economic integration index E, social integration index So, spatial integration index Sp, and
ecological integration index Ec for each dimension. The calculation formulas are as follows:

Ei =
n

∑
j=1

WjXij (12)

where Ei is the economic integration index of the i-th village; Wj and Xij represent the
weight and normalized value of the j-th indicator and i-th village, and n is the number of
villages. The calculation formulas for the social integration index So, spatial integration
index Sp, and ecological integration index Ec are the same. After obtaining the dimension
indices, the comprehensive index U is calculated based on the corresponding weights:

Ui = EiWE + SoiWSo + SpiWSp + EciWEc (13)

3.2.2. Enhanced Clustering Method

We employed an unsupervised random forest (RF) algorithm to obtain the proximity
matrix between the computation samples, subsequently incorporating principal component



Land 2025, 14, 602 10 of 23

analysis (PCA) to capture the intrinsic structure of the data. Finally, clustering analysis was
conducted based on the dimensionality-reduced indices.

(1) Random Forest and Adjacency Matrix

The random forest model, introduced by Breiman [80], is a machine learning algorithm
that combines multiple classification trees to overcome the instability and overfitting
issues typically associated with a single decision tree. The model is robust and has strong
generalization capabilities, enabling it to handle many input features and data samples
without easily overfitting [81]. It does not require assumptions about the data following a
specific probability distribution or being generated from a particular model. Additionally,
it demonstrates high interpretability and tolerance for data outliers and noise, effectively
avoids multicollinearity issues, and can assess the importance of each feature, providing
reliable predictive performance. The equation for the model is shown as follows:

imi =
1
nt ∑

v∈Sxi

Gain(Xi, v) (14)

The adjacency matrix is used in graph theory to represent a graph. The adjacency
matrix represents the edges between nodes. The adjacency matrix is a square matrix whose
elements indicate the connectivity between nodes in the graph. The adjacency matrix is
as follows:

A =

0 1 0
1 0 1
0 1 0

 (15)

(2) Principal Component Analysis (PCA)

Principal component analysis (PCA) was initially introduced by Porter [82] and later
independently developed by Hotelling [83]. A linear transformation technique creates
a new dataset from the original one. The central concept behind PCA is to reduce the
dimensionality of a dataset while preserving as much of the variability in the data as
possible. The mathematical foundation of PCA is primarily based on the following steps:

i. Data Centering

X =
1
n

n

∑
i=1

xij, j = 1, 2, . . . , d (16)

Xcentered = X − X (17)

where X is a mean vector, and where each column represents the mean of the
corresponding feature.

ii. Calculate the covariance matrix.

C =
1

n − 1
XT

centeredXcentered (18)

where C ∈ Rd×d is a symmetric matrix, and Cij represents the covariance between
feature i and feature j.

iii. Calculate the eigenvalues and eigenvectors of the covariance matrix.

Cv = λv (19)

where v is the eigenvector of the covariance matrix, and λ is the corresponding eigenvalue.
iv. Select the eigenvectors corresponding to the largest eigenvalues as the principal

components.
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(3) Partitioning Around Medoid (PAM)

Partitioning around medoid clustering is a commonly used clustering algorithm in
data analysis [84], developed by Kaufman and Rousseuw in 1987. The algorithm is based
on the classical partitioning process of clustering. It initially selects k-medoids and then
iteratively swaps the medoid with non-medoid objects, thereby improving the overall
quality of the clusters [85]. The PAM algorithm is generally more robust than K-Means,
particularly in the presence of noise or outliers. The PAM algorithm aims to partition
the dataset into a pre-specified number of clusters, selecting each cluster’s most centrally
located object as the cluster center. PAM clustering is primarily based on the following
steps by Tagaram Soni Madhulatha [86]:

i. Select the initial cluster centers: randomly select some objects from the dataset as
the initial representative objects for the clusters.

ii. Assign data points to the nearest medoid: assign each remaining object to the cluster
represented by the nearest centroid.

iii. Update the cluster centers: check if other points can serve as the new medoid for
each cluster.

iv. Repeat steps until there is no change in the medoid.

4. Study Results
4.1. Comparison of Models’ Performance

Table 2 describes the models’ overall performance before and after RF and PCA’s
introduction. It can be observed that after incorporating the proximity matrix generated
by the unsupervised RF and adding PCA, Model 3 achieved a significant increase in
the Silhouette Coefficient, reaching 0.305, indicating a relatively good clustering effect (a
Silhouette Coefficient between 0.3 and 0.5 suggests acceptable clustering performance) [87].
Model 2 exhibited a negative Silhouette Coefficient, indicating poor clustering performance,
with samples likely being assigned to incorrect clusters. Compared to Model 1, Model 3
has a larger Calinski–Harabasz Index, suggesting better separation between clusters, while
the Davies–Bouldin Index is more minor, indicating a higher degree of compactness within
clusters. Therefore, the overall results of Model 3 are more reliable.

Table 2. Comparison of PAM, PCA-PAM, and RF-PCA-PAM Models.

Models Silhouette Coefficient Calinski–Harabasz Index Davies–Bouldin Index

Model 1: PAM 0.023 247.871 2.445
Model 2: PCA-PAM −0.041 18,999.91 0.577

Model 3: RF-PCA-PAM 0.305 1820.026 1.261

Note: The Silhouette Coefficient measures the compactness of data points within clusters and the separation
between clusters, with higher values indicating better performance [88]; the Calinski–Harabasz Index is based
on the ratio of between-cluster to within-cluster variance, with larger values indicating better clustering perfor-
mance [89]; the Davies–Bouldin Index measures the separation and compactness of clusters, with smaller values
indicating better clustering performance [90].

4.2. Descriptive Statistics by RF-PAC-PAM Approach

From Table 3, it can be observed that the top 10 indicators, in order, are GDP, vege-
tation coverage rate, distribution of healthcare facilities, number of enterprises, number
of public facilities, proportion of construction land area, number of enterprises, electricity
consumption, number of primary and secondary schools per thousand people, and the
number of mobile phone base stations, which reflect their significant impact on the degree
of URI. According to the standard deviation data for each indicator, electricity consump-
tion, population size, distribution of healthcare facilities, and GDP have more significant
standard deviations, indicating a higher degree of dispersion, with significant differences
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between villages. Overall, the weights for the social, economic, ecological, and spatial
integration indices decrease sequentially, at 0.3611, 0.2868, 0.2072, and 0.1449, respectively,
indicating that their roles in the comprehensive URI degree decrease progressively.

Table 3. Descriptive statistics of all indicators in this study.

First Level Second Level
Third Level

Descriptive Parameters Weight Calculation

Dimensions AHP-
EWM Factors AHP-

EWM Indicators Min Max Mean SD AHP EWM AHP-
EWM

Social 0.3611

Social
security 0.1561

Distribution
of healthcare

facilities
4.0000 43,990.0000 254.8159 993.2089 0.0870 0.0412 0.0782

Growth in
healthcare
facilities

−5.0000 140.0000 1.6672 5.9902 0.0204 0.0481 0.0257

Number of
primary and

secondary
schools per
thousand

people

0.0000 76.9231 0.7676 3.0161 0.0558 0.0367 0.0522

Social
infrastruc-

ture
0.1348

Number of
public

facilities
0.0000 39.0000 0.5696 1.7943 0.0664 0.0381 0.0610

Growth in
public

facilities
−2.0000 35.0000 0.4441 1.5407 0.0158 0.0485 0.0220

Number of
mobile base

stations
0.0000 243.0000 1.3543 7.3710 0.0560 0.0342 0.0518

Social
structure 0.0702

Population
size 6.0000 58,766.0000 2790.3829 4229.1381 0.0139 0.0457 0.0200

Aging rate 0.1169 0.1923 0.1756 0.0134 0.0082 0.0474 0.0158

Proportion
of the labor

force
0.6446 0.7846 0.7001 0.0221 0.0311 0.0486 0.0344

Economic 0.2868

Economic
strength 0.2035

GDP 0.0011 4690.2358 102.1404 262.7823 0.0955 0.0425 0.0854

Enterprise
growth −12.0000 642.0000 5.0814 20.0701 0.0676 0.0479 0.0638

Number of
enterprises 0.0000 642.0000 5.7538 20.9113 0.0576 0.0405 0.0543

Economic
vitality 0.0833

Electricity
consump-

tion
39,409.2285 22,134,927.0000 3,748,178.3831 5,544,468.6597 0.0546 0.0438 0.0525

Night-time
light index 0.2609 63.0000 23.7732 17.5534 0.0268 0.0476 0.0308

Ecological 0.2072

Ecological
environ-
mental
quality

0.1512

Vegetation
coverage 0.1512 0.6506 0.4689 0.0573 0.0893 0.0490 0.0816

PM2.5 30.0750 53.9000 46.9016 3.2843 0.0431 0.0485 0.0441

PM10 66.4667 106.2667 93.7368 5.5566 0.0200 0.0486 0.0255

Terrain
flatness 0.056

Surface
roughness 0.9193 52.6171 3.9151 4.4094 0.0237 0.0491 0.0286

Terrain
slope 0.0000 0.0152 0.0014 0.0024 0.0223 0.0490 0.0274

Spatial 0.1449

Urban
spatial

expansion
0.0952

Proportion
of

construction
land area

0.0001 0.9846 0.2140 0.1707 0.0564 0.0477 0.0547

Growth rate
of

construction
land

−0.9127 5.0400 0.1013 0.3100 0.0385 0.0489 0.0405

Intensity
of spatial
develop-

ment

0.0497

Road
network
density

0.0013 25.6163 3.1164 2.7693 0.0212 0.0472 0.0262

Building
density 0.0000 429.8823 0.1180 6.9754 0.0288 0.0012 0.0235
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4.3. Comprehensive and Dimensional URI Indices

Based on the combined weights analyzed in Section 4.2, further calculations and
analysis of the URI degree of the sample villages were conducted. Figure 4 shows the
spatial distribution of URI at each dimension and comprehensive level.
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From a general perspective (Figure 4e), the spatial distribution of the comprehensive
URI index shows a “high in the center, low in the east and west” pattern. Villages with
the highest comprehensive indices are primarily located in the main urban area of Xi’an,
the Gaoling District, and the built-up areas of Xianyang, as well as the central and north-
ern parts of the Xi’an region. This reflects the close connections between these villages
and Xi’an and Xianyang. In contrast, the integration levels of villages in the central ar-
eas of Weinan, Yangling, Fuping, Xingping, and Yanliang with surrounding villages are
generally lower.

At the dimensional level, spatial integration (Figure 4c) and social integration
(Figure 4b) generally show a pattern where the degree of integration increases the closer
the area is to the core built-up areas of Xi’an and Xianyang. The spatial pattern of economic
integration (Figure 4a) is similar to that of the comprehensive integration index, with the
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central region relatively higher than other areas, particularly Xi’an’s northern and central
regions. Villages with higher ecological integration indices are mainly distributed in the
west and northeast edges of the study area.

4.4. Clustering Distribution and Definition
4.4.1. Spatial Distribution of Clusters

We applied the RF-PCA-PAM method to obtain four clusters, with the orange
(cluster 1), green (cluster 2), blue (cluster 3), and red (cluster 4) clusters containing 2093, 846,
603, and 262 villages. The spatial distribution of the clustering results is shown in Figure 5.
The results reveal a typified layer structure that expands outward from the core urban areas
of Xi’an and Xianyang. Additionally, urban and rural areas exhibit a continuous integration
pattern in the east–west direction, demonstrating a particular integration axis. Specifically:
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i. In terms of the layer structure, the villages located in the central area belong to the
comprehensive integration type (red cluster), mainly distributed between the main
urban area of Xi’an City, the Gaoling District, and the built-up areas of Xianyang
City, influenced by the radiative impact of urban functions. Surrounding the red
cluster are villages with relatively good ecological–social–spatial integration (blue
cluster); these villages are located near the main urban areas of Xi’an City, Xianyang
City, and the Gaoling District, with favorable location conditions and frequent
cultural, population, and material exchanges with cities. The third layer consists of
villages with better ecological–economic integration (orange cluster), located on the
outskirts of the main urban area, near county-level urban areas, and concentrated
in regions surrounding the main urban area of Xi’an, such as the areas between
Xingpin City, the Yanliang District, and Weinan City. The outermost layer comprises
villages relatively far from the urban built-up areas, concentrated in the east and
west, belonging to the green cluster.

ii. Along the east–west axis, the cluster of villages in the eastern yellow region has
a larger contiguous area and a higher level of integration, closely linking Weinan
City, Fuping County, the Yanliang District, and the central urban areas of Xi’an and
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Xianyang Cities. In contrast, the villages around the western areas of the Yangling
District and Xingping City have lower degrees of contiguous clustering.

iii. Except for the main urban areas of Xi’an, Gaoling, and the built-up areas of Xianyang
City, the degree of social and spatial integration between other urban core areas and
surrounding villages is relatively low.

iv. Villages of the red and blue types show a few cases that are not adjacent to the main
urban areas of Xi’an, the Gaoling District, and Xianyang City, indicating that these
villages, while somewhat distant from the core urban areas, still maintain strong
economic, social, or spatial connections.

4.4.2. Characteristics and Definition of Clusters

We further plotted radar charts based on the integration indices of each cluster in
different dimensions, using the mean values to represent the overall characteristics and to
define the clusters. From Figure 6, we can observe the following: (i) all clusters performed
well in ecological integration, indicating that most villages have likely established good
collaborative relationships with cities in terms of ecological protection and utilization;
(ii) compared to clusters 2 and 3, cluster 1 shows better performance in the economic
dimension, with an average integration index 0.0117 and 0.0008 higher than those of
clusters 2 and 3; (iii) cluster 3 has higher social and spatial integration indices than both
clusters 1 and 2; and (iv) all integration indices for cluster 4 are at a high level, with the
spatial integration and social integration indices ranking first, and the economic integration
index ranking second.
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Based on the characteristics observed in the above radar chart, we define the four
clusters as follows: ecological–economic integration type (cluster 1, orange), ecological
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integration type (cluster 2, green), ecological–social–spatial integration type (cluster 3, blue),
and comprehensive integration type (cluster 4, red).

5. Discussion and Conclusions
Our research considers the inherent characteristics of rural areas and incorporates rep-

resentative indicators of interaction and communication between urban and rural areas,
establishing a comprehensive integration index evaluation system of peri-urban villages.
Based on this framework, we employed an improved machine learning-enhanced classifi-
cation algorithm for village categorization and utilized radar charts of dimensional features
to determine clustering implications. This approach reveals the spatial pattern characteris-
tics of URI and guides the formulation of differentiated development strategies for villages.
This study identified significant heterogeneity in the degree of URI and its spatial distribu-
tion among 3804 villages surrounding the Xi’an metropolitan area. It also determined key
influencing factors that promote rural development under urban–rural integration.

The functional radiation brought by large cities often impacts neighboring villages
in an overlapping and complex multi-dimensional manner, a phenomenon commonly
observed in urban agglomeration areas or urban corridors. The Growth Pole Theory
posits that cities (growth poles) exert polarization and diffusion effects on surrounding
villages [91], indicating that the relationship between urban and rural areas results from a
composite network of mutual influences. From a performance theory perspective, these
interactions dynamically shape rural socio-economic outputs. When policies align with
local conditions, urban spillovers can boost rural industrial efficiency and labor alloca-
tion [92]. Consequently, the varying impacts of different cities in proximity may transcend
administrative boundaries. Considering this characteristic, this study focuses on the Xi’an
Metropolitan Region and incorporates the “urban-rural gradient” method to identify the
villages included in the analysis. Unlike previous studies that classified villages based
solely on singular administrative divisions [13,27,67], our empirical analysis conducted in
Xi’an aligns more closely with objective realities, making the analytical results potentially
more reliable.

Ecological conservation, industrial development, and infrastructure enhancement
are crucial in promoting rural–urban integration by facilitating the flow of capital and
population during rural revitalization. Firstly, ecological foundations constitute the fun-
damental basis for rural sustainability [93], while economic industries drive continuous
rural development [94]. As emphasized by China’s “Two Mountains Theory”, “lucid
waters and lush mountains are invaluable assets”. Peri-urban rural areas can actively
develop ecological industries, such as eco-technological agriculture, green farming, and
leisure tourism, with dynamic monitoring through indicators including the number of rural
green enterprises and their growth rates and rural green vegetation coverage. Secondly,
improving rural physical spatial environments is essential for enhancing living quality and
supporting industrial development. Providing more industrial land and relevant prefer-
ential policies facilitates the attraction of urban enterprises, thereby promoting township
industrial development [95–97]. Simultaneously, more pleasant rural living environments
and comprehensive service facilities provide fundamental guarantees for people returning
to rural areas for employment and residence [98]. These improvements also have the
potential to attract potential urban populations, injecting new vitality into rural spatial
revitalization [99–101].

This study found that villages in the central area of the Xi’an Metropolitan Region
exhibit significantly higher levels of URI compared to those in the eastern and western
parts of the region. The spatial structural characteristics are closely related to the urban
system pattern of the metropolitan region. Xi’an and Xianyang, two major cities, have much
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larger scales and capacities than other towns; they are located centrally and considerably
drive the development of surrounding rural areas. For example, villages between the two
cities have formed a “near-airport and cultural-tourism” composite economic corridor,
contributing to an annual output value growth of over 15% in 21 surrounding villages [102].
Villages with higher levels of social and spatial integration also tend to be closer to the
city center, reflecting the frequent flow and interaction of urban and rural populations and
the higher demand for better living standards among villagers. The increasing demand
of urban residents for proximity to nature has made suburban tourism a vital means
of relaxation and recreation [103]. Tourism-centered industry chain development has
become essential for transforming peri-urban villages [104,105]. In contrast, economic
integration does not require proximity to large metropolitan areas as much as the social
and spatial dimensions. This may be related to Xi’an’s highly developed transportation
infrastructure [106], the large-scale land demand for major economic industries, such as
high-end manufacturing [107], and the attributes of external markets [108].

We found that rural clusters exhibit a general spatial pattern characterized by a cen-
tral core centered around Xi’an and Xianyang, with a gradient diffusion effect. Similar
rural spatial structure patterns have been found in Paris [109] and around central cities
in Sweden [6]. The rural areas between the main urban area of Xi’an, Xianyang, and
the Gaoling District of Xi’an displayed a multi-dimensional integrated state of economic,
social, spatial, and ecological fusion. Critical infrastructure, such as Xianyang International
Airport, and strategic policies, such as the national-level development zone, Xixian New
Area, provide opportunities for the deep integration of urban and rural development in
this region. The interaction and integration of capital, people, materials, and technology
between urban and rural areas have fostered the vigorous development of rural areas [110],
making this region a supporting rural hinterland for Xi’an’s “northward expansion” devel-
opment [111]. An ecological–social–spatial integration type primarily characterized other
villages adjacent to the main urban built-up areas. These areas were often more significantly
impacted by urban disturbances [112], with intense changes in population mobility, rural
space, and social network relationships [113,114]. Further outwards, there are rural areas
with an ecological–economic integration type. These areas exhibited distinct contiguous
patterns in the east–west direction, with the contiguous area in the eastern region being
larger than that in the western region. The economic integration in these areas is also
quite prominent, which may be related to the more developed township economies, the
differentiated functional division between towns, and the spillover effects of coordinated
development [115,116]. Some scholars have also observed varying degrees of integration
and differentiation in the rural areas surrounding Wuhan [2,67,112]. However, the spatial
distribution pattern they found differs from the results of this study, as it does not exhibit a
concentric structure [67]. An interesting finding is that a few integrated rural areas show
a “satellite” distribution, where they are spatially located at a certain distance from the
built-up areas of large cities. The digital development of rural areas [117] and the growth in
the number and quality of specialized enterprises [118] may have diminished the absolute
importance of geographical location. For example, Huangliang Village has become a well-
known “internet celebrity village” and art village based on its unique cultural development.
It actively fosters and develops new rural industries, establishing a close market and leisure
cultural experience with Xi’an.

Furthermore, we provide a practical evaluation framework and methodology to sup-
port the formulation of differentiated rural development policies. By systematically review-
ing and summarizing the relevant literature on URI, we identified integration evaluation
indicators from the perspective of rural development, attempting to construct an indicator
system more suitable for classifying villages around metropolitan areas, which provides
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the foundation for the assessment. Then, we applied the RF-PCA-PAM combination for
clustering analysis, which improves dimensionality reduction accuracy [119] and reduces
data noise [120]. Our study found that the combined model outperforms the PAM and
PCA-PAM models, contributing to more reliable evaluation results.

Based on the findings, we propose rural development policy suggestions to promote
URI: (i) emphasize the current heterogeneity of URI, adopt differentiated development
strategies by classification and region, and increase focus on rural areas with insufficient
integration; (ii) focus on ecological environment protection, economic industries, local
public service infrastructure, and construction land supply as key factors in promoting
URI; and (iii) leverage non-traditional factors, such as rural e-commerce, to reduce the
dominance of geographical location and enhance URI.

However, this study still has some limitations. First, the evaluation framework and
methodology developed in this study were applied to the Xi’an Metropolitan Region, but
further empirical analysis is needed to verify and obtain more universal research conclu-
sions. Second, our study used a restricted set of dynamic indicators due to data availability
limitations. Future research could reasonably incorporate more dynamic indicators to better
reflect the changes urban–rural integration brought to rural areas. Third, due to the limita-
tion of the applicability of PAM in extensive sample analysis [121], the research method in
this study needs to be further developed. Additionally, some machine learning algorithms,
such as extreme gradient boosting (XGBoost), have advantages in avoiding overfitting and
improving analytical precision [122] and may be more suitable for classification based on
semi-supervised learning.

Overall, previous research has rarely focused on the differences in types between peri-
urban and hinterland villages. Our classification of village types from the perspective of URI
is an innovative research exploration. The rural evaluation indicators and methods based on
URI established in this study and the empirical results from the Xi’an Metropolitan Region
provide valuable experience for the differentiated development of villages in surrounding
urban areas, offering a positive reference for achieving rural revitalization.
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