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Abstract: Photovoltaic (PV) technology, as a crucial source of clean energy, can effectively
mitigate the impact of climate change caused by fossil fuel-based power generation. How-
ever, improper use of PV installations may encroach upon agricultural land, grasslands,
and other land uses, thereby affecting local ecosystems. Exploring the spatial characteristics
of centralized or distributed PV installations is essential for quantifying the development
of clean energy and protecting agricultural land. Due to the distinct characteristics of cen-
tralized and distributed PV installations, large-scale mapping methods based on satellite
remote sensing are insufficient for creating detailed PV distribution maps. This study
proposes a model called Joint Semi-Supervised Weighted Adaptive PV Panel Recognition
Model (JSWPVI)to achieve reliable PV mapping using UAV datasets. The JSWPVI employs
a semi-supervised approach to construct and optimize a comprehensive segmentation
network, incorporating the Spatial and Channel Weight Adaptive Model (SCWA) module
to integrate different feature layers by reconstructing the spatial and channel weights of
feature maps. Finally, a guided filtering algorithm is used to minimize non-edge noise while
preserving edge integrity. Our results demonstrate that JSWPVI can accurately extract PV
panels in both centralized and distributed scenarios, with an average extraction accuracy
of 91.1% and a mean Intersection over Union of 77.7%. The findings of this study will
assist regional policymakers in better quantifying renewable energy potential and assessing
environmental impacts.

Keywords: photovoltaic panels; contrast learning; simulated annealing algorithm; image
segmentation; aerial remote sensing; adaptive weights

1. Introduction
As an environmentally friendly energy utilization method, the photovoltaic (PV)

industry provides a favorable solution to the conflict between the increasing demand
for electricity resources caused by population growth and the excessive exploitation of
traditional fossil fuels, which leads to greenhouse gas emissions [1,2]. According to data
published by the International Energy Agency, the annual growth rate of global solar
PV energy reached 85% in 2023, with China and developed economies accounting for
90% of the new capacity, thereby avoiding approximately 1.1 GT of CO2 emissions each
year [3]. The development of the PV industry not only reduces carbon emissions but
also supports PV agriculture and desert reclamation [4,5]. However, improper use of PV
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installations has led to the encroachment of agricultural land, indirectly affecting national
food security [6]. Exploring the balance between PV systems and agricultural production is
a crucial approach to achieving sustainable development, helping nations eliminate the
competition between energy and food for land use [7].

Currently, most studies rely on satellite remote sensing data, which is advantageous
for large-scale mapping of centralized PV distributions. However, due to insufficient data
resolution, distributed PV installations in urban scenarios are often overlooked, resulting
in discrepancies in statistical outcomes [8,9]. Accurate spatial distribution mapping of
PV energy deployments can provide essential geographic information for energy and
agricultural monitoring, reflecting local energy composition and trends, and revealing the
intrinsic connections between energy security and food security [10]. Therefore, automated,
quantitative, high-precision PV mapping is crucial. Nevertheless, due to limitations in
computational and storage capacities, research on PV station mapping based on high-
resolution data remains very limited [11–14].

Semantic image segmentation has become a widely used automated method for ex-
tracting image information in various remote sensing image processing fields [15–17].
Deep learning algorithms have demonstrated strong adaptability in semantic segmenta-
tion, surpassing other types of automatic extraction algorithms [18]. Fully convolutional
neural networks [15] have replaced traditional linear neural network models in the image
domain, significantly improving image semantic segmentation accuracy through their
shift-invariant, parameter sharing, and sliding window computation abilities [19–21]. UNet
and FPN have better semantic segmentation accuracy with fewer parameters through
jump linking and multilevel feature fusion [22,23]. Many researchers have applied these
techniques to PV panel identification and segmentation studies. For example, Yu et al.
successfully built the DeepSolar model to detect residential PV panels in the US and created
an open-source dataset [24]. Malof et al. used convolutional neural networks to detect
the location information of residential PV panels from high-resolution aerial images [25].
Hou et al. built EmaNet based on SolarNet to determine the location of solar power plants
in China [26]. Costa et al. employed various models, including UNet, Deeplabv3+, PSPNet,
and FPN, to achieve localization and extraction of Brazilian solar power plants. They
compared the differences among these models, revealing that models that perform well
in ordinary photographs do not necessarily perform better in remote sensing images [27].
Mayer et al. combined deep neural networks for image classification and segmentation,
along with three-dimensional spatial data processing techniques, to achieve large-scale
three-dimensional detection of rooftop-mounted photovoltaic systems [28].

However, due to temporal and geographical disparities in aerial photography opera-
tions, remote sensing images may exhibit distinct features and textures caused by variations
in lighting [29], aerosol concentration, and geological environment of the measurement
area. Furthermore, PV panels in different areas vary in color, specification, and orientation,
posing significant challenges to their identification and segmentation [30]. Additionally,
current research on photovoltaic (PV) panel identification typically focuses separately on
centralized and distributed solar panels. Datasets that include both types are relatively
scarce [31–33]. The scarcity of effective samples poses a great challenge to PV panel recogni-
tion, as convolutional neural network models typically require tens of thou-sands of image
inputs to achieve good generalization performance [27,30,34].

To refine PV panel recognition accuracy and solve the problem of difficult generaliza-
tion and accurate convergence of the model due to the complex geological environment
and the limited annotations, we propose the Joint Semi-Supervised Weighted Adaptive
PV Panel Recognition Model (JSWPVI). The framework consists of two main steps. First,
the backbone network of JSWPVI is pre-trained using an unsupervised approach with
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individual recognition as the agent task. Second, the weights of the pre-trained backbone
network are migrated. JSWPVI employs a method of re-training the feature fusion structure
of the model, which is based on fully supervised samples, and automatically optimizes
the learning rate using simulated annealing to minimize feature differences between un-
supervised pre-training and fully supervised re-training. As a result, it obtains a precise,
dependable, and broadly applicable PV panel extraction model, despite using a small
number of samples. In addition, the model includes a weight-adaptive mechanism and a
guided filtering algorithm to further improve the image segmentation quality of the model,
achieving high accuracy and time-efficient quantitative PV panel extraction in complex
environments such as deserts, tidal flats, mountains, grasslands and towns, and providing
a reference for PV system construction.

The main contributions of this study are summarized as follows: (1) This work con-
structs a diverse dataset of PV systems, covering both distributed and centralized in-
stallations, using high-resolution aerial remote sensing imagery collected from multiple
provinces and sensors. (2) We propose a novel model, the JSWPVI, which incorporates a
Spatial and Channel Weight Adaptive (SCWA) module. This module adaptively adjusts
the importance of feature maps to reduce the gap between the pretext task (individual
recognition) and the downstream task (semantic segmentation). Additionally, a simulated
annealing algorithm is introduced to automatically optimize the learning rate, enhanc-
ing the model’s adaptability in transferring from unsupervised to supervised learning.
(3) The proposed JSWPVI achieves excellent performance across complex environments
such as deserts, mountainous regions, and saline–alkali lands, with an average extrac-
tion accuracy of 91.1% and a mean Intersection over Union (mIoU) of 77.7%, significantly
outperforming the traditional fully supervised model DeepLabV3+ and advanced semi-
supervised methods such as UniMatch, demonstrating strong generalization ability and
practical potential.

2. Related Work
2.1. Traditional PV System Detection Research

Early photovoltaic panel segmentation primarily relied on traditional image process-
ing techniques, such as threshold-based segmentation and edge detection. Malof et al.
combined support vector machines and hand-crafted features for photovoltaic panel de-
tection, which, while validating the feasibility of automation, was unable to handle the
diversity of photovoltaic installations in complex scenes [35]. Subsequently, Yu et al. pro-
posed the DeepSolar framework, utilizing convolutional neural networks to detect rooftop
photovoltaic systems across the United States [24]. Li et al. and Tan et al. further conducted
photovoltaic mapping specifically for distributed photovoltaic systems [36,37], while Zhang
et al. utilized the random forest [38] algorithm on the Google Earth Engine platform to
apply Landsat data for photovoltaic mapping across China [12].

2.2. Deep Learning-Based PV System Detection Research

The development of deep learning has greatly promoted the high-precision extrac-
tion of photovoltaic panels. Classic semantic segmentation models such as U-Net [23],
DeepLabV3+ [39], and PSPNet [40] have been widely applied to this task [27]. Jiang et al.
used U-Net to segment photovoltaic panels in high-resolution aerial images, leveraging its
encoder–decoder structure to capture multi-scale features, achieving a high intersection
over union urban environments [9]. However, U-Net performance is limited when handling
class imbalance. To address this, Fei et al. proposed an improved U-Net model, incor-
porating an attention mechanism to enhance focus on photovoltaic panels, significantly
improving segmentation accuracy in complex backgrounds [41]. Due to the scarcity of
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labeled data in photovoltaic detection, semi-supervised and weakly supervised learning
methods have gradually become research hotspots. Semi-supervised learning combines
a small amount of labeled data with a large amount of unlabeled data, while weakly su-
pervised learning utilizes weaker labels for training, aiming to reduce reliance on fully
annotated data. Zhang et al. addressed the issue of photovoltaic panel segmentation
in weakly labeled aerial imagery by proposing a novel Self-Paced Residual Aggregated
Network (SP-RAN) for photovoltaic panel segmentation under weakly supervised condi-
tions [42]. Yang et al. attempted to optimize pseudo-labels using the Segment Anything
Model, combining classification and segmentation tasks to achieve a seamless transition
from image-level labels to pixel-level segmentation [43].

3. Constructing Dataset
Commonly utilized PV panel statistics rely on medium-resolution remote sensing

imagery, which is only able to identify the location of PV panels and is unable to fulfill
the requirements of quantitative statistics. To address this issue, this paper employs high-
resolution aerial imagery to accurately detect and extract PV panels and substations in
a complex environmental scene. The aerial imagery data utilized in the dataset were
collected from various provinces in China, such as Xinjiang, Gansu, Mongolia, Ningxia,
and Sichuan. Figure 1 displays high-resolution aerial images of PV panels captured by
large aerial cameras, with resolutions varying from 0.15 to 0.3 m due to different equipment
used in various regions and flight altitudes. The significant differences in solar incidence
angles between regions and sampling times result in structural differences in the images,
which poses a greater challenge for the effective extraction of PV panels.

 

Figure 1. Diagram of the distribution of PV panels in the study area.

To construct the model, this paper adopts a semi-supervised approach considering the
time, cost, and complexity of the application. Although the semi-supervised training sample
balance requirement is reduced, a combination of labeled and unlabeled dataset construction
is still necessary to optimize the key features that the model perceives during the unsupervised
training process. The collected images are divided into four copies for vectorization, where
the fully supervised training process only learns the features of the first sample and some of
the features of the other two samples. Unsupervised comparative learning can only obtain the
features of the last sample to check if the features extracted by unsupervised training can be
effectively generalized to a similar image segmentation process.
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In Figure 2, a detailed manual vector sample of a Hainan mudflat PV plant is presented
and accurately labeled with the precise location and attributes of each PV panel and
substation. A total of 15 annotated aerial remote sensing images and corresponding labels
of similar complexity are included, alongside over 40 unlabeled aerial images, forming a
large-scale, high-precision, semi-supervised training dataset optimized for machine/deep
learning applications. All images were collected from multiple geographic regions using
heterogeneous sensors and stored in three-channel (RGB) format. To preserve visual and
morphological details, each image was cropped into 512 × 512 patches while maintaining
their original resolution. The spatial distribution, sensor types, and sample proportions of
the dataset are systematically summarized in the accompanying Table 1.

 

Figure 2. Schematic diagram of 30 MW PV sample in Hainan.

Table 1. Distribution and statistics of photovoltaic datasets.

Area Quantity Background

Hainan 105 Sandy land
Hebei 625 Grass

Ningxia 765 Sandy land
Jilin 210 Saline–alkali lands

Sichuan 1260 Mountains, Towns
Qinghai 432 Sandy land, Saline–alkali lands, Mudflat

Inner Mongolia 512 Sandy land, Saline–alkali lands
Xinjiang 391 Sandy land, Saline–alkali lands
Jiangsu 235 Mudflat, Towns

Total 4535 /

4. Models and Methods
The model proposed in this paper has two stages: the first stage constructs an agent

task based on individual recognition (unsupervised), and the second stage constructs a
mapping task based on sample images and labels (fully supervised). This section focuses
on our approach to model pre-training, model optimization, and adaptive weighting of
the loss function. Since the task is based on multi-category semantic segmentation in
complex scenes, we use one-hot encoding to reconstruct the labels. This is an image
coding method that converts single-channel multi-valued samples into multi-channel
binary samples. Additionally, we normalize the dataset using a z-score data normalization
method, transforming it into an input with a mean of 0 and a variance of 1.

4.1. JSWPVI Backbone Network Pre-Training

Convolutional neural networks are widely believed to consist of a backbone network,
neck layer, and classification head. The backbone network plays a crucial role in feature
extraction from images and facilitates the migration of computer vision class models [34].
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To obtain image features covering multiple types of PV panels and substations, this
paper employs a backbone network trained on numerous unlabeled samples through
pre-training with individual recognition. Specifically, we refer to the MOCO algorithm,
an unsupervised pre-training process that leverages contrast learning to construct an
individual recognition agent task for pre-training [44,45].

Figure 3 demonstrates the model’s ability to randomly select samples x from an ex-
tensive collection of unsupervised image slices, and utilize sample augmentation (random
color distortion, random Gaussian blur) to generate xq and xk

0 respectively. Secondly,

n remaining samples are randomly selected to construct the queue xk =
{

xk
0, xk

1, . . . , xk
n

}
,

thus obtaining a queue containing a total of n + 1 samples; finally, the model backbone net-
work is used as the feature extraction layer, and MLP (multilayer perceptron) is used to fuse
multidimensional features to obtain the output of continuous feature values. Among them,
xk and xq use the same coding structure, xk and xq correspond to the encoders defined as
Ek and Eq, and the parameters of the encoders are defined as P(Ek) and P(Eq), respectively.
The sample queue approach can reduce the GPU memory requirement, but it also leads to
the fact that the convolution parameters of the computational queue cannot be optimized
by backpropagation. In order to properly train the model with smooth gradient changes
and thus reduce the pre-training bias of the backbone network, the gradient values of Ek are
experimentally removed and P(Ek) = 0.99× P(Eq) is used to update the parameter values.

                

                

   
           

          

  
    

  
    

  
  

  
  

Figure 3. Unsupervised pre-training of JSWPVI backbone network based on the unlabeled sample.

It should be noted that the model uses a particular loss function LIn f oNCE to implement
the comparison of successive eigenvalues of the model to prompt unsupervised pre-training
to efficiently optimize the JSWPVI backbone network, whose expression is shown in
Equation (1):

LIn f oNCE = − log
exp(q · k+/τ)

exp(q · ki/τ)
(1)

In Equation (1), q and k are the continuous eigenvalues computed by xq and xk,
respectively; k+ represents the continuous eigenvalues computed by xk

0, which is the only
positive sample in the individual recognition task and τ is a temperature parameter to
control the distribution shape of the continuous eigenvalues—the larger the value of τ,
the smoother the distribution of the eigenvalues, and for the opposite, the distribution is
more concentrated. With this loss function, the model can reduce the distance between
similar samples while increasing the distance between different samples, thus realizing
unsupervised pre-training of the JSWPVI backbone network.

4.2. JSWPVI Construction and Fully Supervised Retraining

In the previous section, we delved into the pre-training of the JSWPVI’s backbone
network to tackle the issue of insufficient labeled data for PV panels and substations. Now,
we turn our attention to the construction of JSWPVI as a whole and its fully supervised
retraining process.
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Despite the effectiveness of pre-training in feature extraction, a considerable amount
of redundancy still exists in low-dimensional information, which renders the features
less useful when the same weights are assigned. Moreover, because the model is based
on pre-training for individual recognition, the obtained features differ somewhat from
those in semantic segmentation. Transitioning from pre-training parameters to semantic
segmentation training presents challenges in finding the best learning rate for optimization
since the learning rate can vary significantly. Deep learning models have strong black-box
characteristics, making it challenging to compare the differences between features in the
above two training models. To address these challenges, we propose two improvements
to the up-sampling structure. First, we improve the initial learning rate by using variable
hyperparameters and optimizing them with a simulated annealing algorithm to automati-
cally find the optimal learning rate when the model features are fused. Second, we link the
up-sampling and down-sampling by long connections in the up-sampling process struc-
ture and construct the “Spatial and Channel Weight Adaptive Model” (SCWA) structure
to automatically assign feature map weights to reduce the difference between semantic
segmentation and individual recognition tasks (check Appendix A for more details).

Because pre-trained features obtained through contrast learning and fully supervised
features exhibit variability, the traditional learning rate hyperparameters introduce uncer-
tainty. In the MOCO algorithm, Kai-Ming He et al. [22] demonstrated that the optimal
learning rate (lr) for an agent task based on individual recognition, migrating to a down-
stream application, can even reach an incredible 30. To automatically search for the optimal
learning rate, we use a simulated annealing algorithm for adaptive estimation. The sim-
ulated annealing algorithm (SA) is a general probabilistic algorithm commonly used to
find the approximate optimal solution in a large search space in a certain time. SA avoids
the trap of locally optimal solutions by setting a high initial temperature (T), which allows
the model to accept poorly performing values initially. The overall flow of the simulated
annealing algorithm in this paper is shown in Figure 4.

Simplify 

JSWPVI

 and training 

dataset

lr=30, calculate the initial 

solution

Make a small disturbance 

to the current solution to 

generate a new solution

No

0<lr 40?

Yes

Is the new 

solution optimal?

Accept new solutions

Accept new solution 

according to 

Metropolis guidelines

Yes No

Whether to 

reach the number of 

iterations

No

T<0.03 T=0.8×T

Yes

No
Output the 

best result
Yes

Figure 4. Simulated annealing flowchart to find optimal learning rate.
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To reduce the discrepancy between semantic segmentation and individual recognition
tasks, a feature map weight extraction algorithm named “Spatial and Channel Weight Adap-
tive Model” (SCWA) is constructed by stacking up-sampled and down-sampled feature
maps. The SCWA receives the original feature map as input, separates the features based
on location and channel, performs global average pooling to reduce the high-dimensional
features to low-dimensional weights, and finally multiplies the weights back to the original
feature map according to the location of the feature extraction, creating a weighted feature
map. The detailed structure and computational flow of the SCWA are illustrated in Figure 5.
The feature separation simplifies the weight calculation, with the original feature map’s
size being H×W×C, the yellow and red spatial features’ size being H/4W/4C×(16 + 9),
and the channel features’ size being H×W×1×C. The SCWA uses global average pooling
to generate a neuron of size 1 × 1 for each feature to measure its importance to the feature
map, and two additional layers of MLP structure (using Softmax nonlinear activation) are
added to increase the nonlinear representation of the weights. The computed weights
are then multiplied with the original feature maps to obtain the weighted feature maps,
realizing the automatic assignment of spatial and channel weights and reducing variability
in pre-trained features’ migration from contrast learning to a fully supervised process.

        

          

                       

  

              

                     

              
         

           

         

           

Figure 5. The Spatial and Channel Weight Adaptive Model (SCWA).

The number of parameters and structure rationality of convolutional neural networks
often determine the model’s inference ability and output accuracy. However, a large
number of parameters can lead to problems such as overfitting and parameter redundancy,
greatly reducing the model’s inference speed. Therefore, a complex model structure
does not necessarily produce better prediction results. In order to accelerate the model’s
iteration and prediction, we used only a bottleneck layer structure similar to U-Net and
a classification head. The complete JSWPVI (shown in Figure 6) adopts an autoencoder
structure and achieves a fusion of low-dimensional and high-dimensional features by
stacking down-sampling and up-sampling features. This expands contextual information
and retains the most important multi-scale information for semantic segmentation tasks,
improving the semantic segmentation accuracy of PV panels and substations, while also
possessing fast inference speed.

4.3. Constructing a Fully Supervised Training Error Function

To better capture unlabeled features, the experiments did not filter for pure background
labels, resulting in a further exacerbation of the already imbalanced sample distribution
between the background, PV panel, and substation. Based on the available labeled samples,
the three categories account for 87.31%, 12.57%, and 0.12% of the samples, respectively.
However, the extremely uneven distribution of category pixels creates a significant classifi-
cation bias issue for the model, making it unsuitable for multi-category target extraction.
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To tackle this problem, two error functions were experimentally computed. The first is the
weighted cross-entropy error, which measures whether each pixel is correctly classified
relative to the others. The second is an improved version of the Tversky function, designed
to automatically balance multi-classified samples. These two loss functions can measure the
extraction accuracy of PV panels and substations in terms of pixel classification accuracy
and the percentage of true and false positives.

         

            

                

                   

           

    

              

  

  

  

  

  
  

  

  

  

Figure 6. Re-training JSWPVI self-attention models based on labeled samples.

The expression for the weighted cross-entropy error is as follows:

LCross−Entropy = −
k

∑
i=1

wi ŷi ln yi (2)

In Equation (2), k represents the class of the sample, wi is the weight of the sample in
each class, yi is the label, and ŷi is the model classification result. The Tversky loss function
is a simple and efficient loss function for the self-balancing of binary samples [46], and we
improve the construction of the Tversky function to address the problem of unbalanced
samples in multiple classes, and its expression is as follows:

TPk =
m0
∑

k=1

n
∑

i=1
Pk

xi
× Pk

x̂i

FPk =
n
∑

i=1
(

m1
∑

j=1
Pj

xi ×
m0
∑

k=1
Pk

x̂i
)

FNk =
n
∑

i=1
(

m0
∑

k=1
Pk

x̂i
×

m1
∑

j=1
Pj

xi )

(3)

LCross−Entropy = −
k

∑
i=1

wi ŷi ln yi


LTversky = 1−

m0
∑

k=1

TPk
(TPk + βFPk + (1− β)FNk + S)m0

n
∑

k=1
TPk > 0

LTversky =
m0
∑

k=1

FPk + FNk
(M× N)m0

n
∑

k=1
TPk = 0

(4)

In Equations (3) and (4), m0 is the image channel of interest after one-hot encoding;
m1 is the remaining channels included in the one-hot encoding; n is the number of pixels
of the image; [Px, Px̂] corresponds to the predicted classification and labeled classification,
respectively; k and j represent the kth channel and jth channel of the image, respectively;
β is the weight balance parameter; [TPk, FPk, FNk] denotes the true positive rate, false
positive rate, and false negative rate of the attention channel, respectively; [M, N] is the
training sample size of the image; LTversky is the loss value; S is the factor that prevents the
denominator from proceeding to zero.
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The LCross−Entropy error is widely used as a loss function in the field of deep learning,
and many mature optimization algorithms can be used to accelerate its training process.
However, it still cannot effectively handle extremely imbalanced datasets. On the other
hand, the LTversky error adopts a more suitable approach for imbalanced samples and can
achieve a better balance between accuracy and recall. However, the optimization goals
of the two loss functions are different, and both are non-convex functions that can easily
get stuck in locally optimal solutions. To more effectively combine the two loss functions,
we have drawn on the ideas of multi-task learning and multi-objective optimization and
applied automatic weighting of the loss functions in the same model to achieve Pareto
optimality [47,48], as detailed in Algorithm 1.

Algorithm 1 Automatic weighting of loss functions

Inputs: [loss1, loss2], Model, Learning Rate:
Output: Model

1: function (Grado pt)[loss1, loss2], Model, LearningRate
% CALCULATE THE GRADIENT OF ALL LOSS FUNCTIONS

2: grad1, grad2← ∇loss1,∇loss2
% FAN OF THE GRADIENT OF THE LOSS FUNCTION

3: norm1, norm2← grad1−grad1
σ , grad2−grad2

σ , σ =
√

1
n ∑1

i=1 (gradi,−gradi)
2

% AVERAGE OF THE NORM OF THE GRADIENT OF THE LOSS
FUNCTION

4: std1, std2← STD(norm1), STD(norm2)
% DEVIATION FROM THE NORM OF THE GRADIENT OF THE LOSS

FUNCTION
5: dev1, dev2← norm1−norm1

std1 , norm2−norm2
std2

% CALCULATE THE WEIGHTS ACCORDING TO THE DEGREE OF
DEVIATION

6: weight1, weight2← exp(−dev1), exp(−dev2)
% NORMALISATIONOF THE OBTAINED WEIGHTS

7: for i, j in ZIP(weight1, weight2) do
8: i, j←i/∑ weight1, j/∑ weight2
9: end for

% CALCULATE THE WEIGHTED GRADIENT
10: grad1, grad2← weightl? grad1, weight2? grad2

% UPDATE THE MODEL PARAMETERS ACCORDING TO THE GRADIENT
11: for param, grad in ZIP(Model.parameters(), grad1, grad2) do
12: param← LearningRate× grad
13: end for
14: end function

Through the aforementioned pseudocode, we have calculated various indicators
such as gradients, gradient norms, mean and standard deviation of gradient norms, and
deviation of gradient norms for each loss function. Using these indicators, we obtained
weights for each loss function and computed the weighted average gradient, which we
then used to update the model parameters. This approach is a multi-task learning method
based on multi-objective optimization. Compared to the weighted linear combination
of multiple loss functions, this method eliminates the process of weight optimization
and can maintain stability even when the loss functions are nonlinearly related or have
conflicting optimization goals (such as recall and precision), thereby achieving Pareto-
optimal solutions. Furthermore, it supports the JSWPVI to perform fully supervised
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semantic segmentation retraining under sample imbalance conditions, providing necessary
conditions for model convergence.

4.4. JSWPVI Results Post-Filtering

Due to various limitations such as technical ability, sample size, and image and label
quality, discrepancies may exist between model predictions and ground truth in semantic
segmentation tasks. Typically, these discrepancies are concentrated around the edges of
images. However, in the case of the JSWPVI, model predictions are relatively accurate at the
edges, but some unexplainable noises in the interior may affect the extraction of PV panel
points and area estimation. Therefore, it is necessary to adopt effective filtering methods
to eliminate these noises, improve model predictions, and make them more suitable for
statistical and practical applications.

Common denoising methods, such as Gaussian filtering, image closing operations,
and threshold filtering, only consider the value range or spatial domain of the image, which
may cause blurring of the information for complete edge prediction. In addition, improper
parameter settings may reduce the credibility of the results. To achieve non-edge image
filtering focused on model prediction, the guided filter algorithm is used to optimize the
segmentation results using aerial photographs as guidance [49]. The guided filter is a locally
linear model-based image filtering algorithm, which filters the input image and a guidance
image to retain the structural information of the guidance image while removing noise and
details. Specifically, the guided filter performs linear regression on the neighborhood of
each pixel to obtain the filtering coefficients of that pixel, and then uses these coefficients to
perform weighted averaging on the pixels within the neighborhood to obtain the output
value of that pixel. Compared with other filtering algorithms, guided filtering has a better
edge preservation effect and considers both the value range and spatial domain of the
image, which can preserve the details of the image while removing noise. Therefore, it
has been widely used in the field of computer vision and image processing. The detailed
description is as follows:

qi = ∑
j

Wij(I)ŷj (5)

In Equation (5), I is the guided image, which represents the high-resolution aerial
remote sensing image input of the JSWPVI, ŷi is the segmentation image representing the
output of the model, and qi represents the result after the guided filtering. Wij represents
the filter kernel coupled with the guided image I, and the filter is linear for ŷ. An important
assumption exists for the guided filtering, as shown in Equation (6):

qi = ak Ii + bk, i ∈ wk (6)

Equation (6) assumes that for a given deterministic window of radius r there is a
unique constant coefficient between ak and bk. This assumption ensures the same edge
retention between the guided image I and the output image ŷ in the local region. It is also
assumed that the non-edged and unsmooth region of the image is the noise n, so it can be
assumed that ŷ is the result of the superposition of qi and n, and therefore Equation (7) is
derived as follows:

qi = ŷi − n (7)

For each filter window, the algorithm can be optimized using a least squares algorithm
as shown in Equations (8) and (9):

argmin ∑
i∈wk

(ak Ii + bk − ŷi)
2 (8)
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E(ak, bk) = ∑
i∈wk

(
(ak Ii + bk − ŷi)

2 + ϵa2
k

)
(9)

Equation (9) is based on Equation (8) with the introduction of the regularization
parameter ϵ, which aims to avoid the overall deviation of the model caused by too large
ak, and is optimized by the ridge regression algorithm. Overall, guided filtering is an
optimized improvement of bilateral filtering, using the high-resolution aerial photography
image as the guided image and the PV panel segmentation result (probability value without
using the activation function) as the image to be filtered, which can effectively improve the
quality of the segmentation result.

5. Experiment and Analysis
This section primarily discusses the process and parameter setting of using the simu-

lated annealing algorithm to determine optimal learning rates. Additionally, we conducted
an ablation experiment on the SCWA structure and compared JSWPVI with DeepLabV3+.

5.1. Indicator Introduction

To evaluate the performance of the proposed model in PV panel segmentation tasks,
three widely adopted metrics were employed: the Kappa coefficient, F1-score, and In-
tersection over Union (IoU). These metrics, extensively utilized in remote sensing image
segmentation, assess model effectiveness from the perspectives of classification consistency,
precision-recall balance, and spatial overlap accuracy, respectively. The mathematical
formulations for Kappa Coefficient are as follows:

Kappa =
p0 − pe

1− pe
(10)

Among them, p0 is observation consistency and pe is expected consistency. In photo-
voltaic mapping, Kappa reflects the overall classification consistency of the model between
photovoltaic panels and background.

The F1-score is the harmonic mean of precision and recall, serving as a balanced metric
to evaluate the model’s classification performance on the positive class. The formula is
defined as follows:

F1 = 2 · Precision · Recall
Precision + Recall

(11)

The IoU is a standard metric for evaluating pixel-level segmentation accuracy by
quantifying the overlap between predicted segmentation regions and ground truth regions.
It is calculated as follows:

IoU =
TP

TP + FP + FN
(12)

5.2. Comparative Experiments

To authenticate the JSWPVI’s efficacy, we employed the high-resolution aerial remote
sensing dataset of PV panels and substations, explicated in Section 2, for training and valida-
tion. In addition, we performed ablation experiments to compare the model’s performance
with and without the SCWA module. Figure 7 and Table 2 present the results of JSWPVI’s
training and validation concerning the SCWA ablation experiments. Three parameters are
mainly visualized, namely accuracy, loss, and mean intersection. The green and yellow
curves denote the variations in the training and validation sets, respectively, while the blue
dashed lines indicate the optimal values acquired from the validation set. As depicted in
Figure 7, the JSWPVI backbone network is pre-trained and can achieve faster convergence
on the validation set, irrespective of the SCWA structure’s presence. However, due to the
superfluous deep learning parameters and intricate migration features, the JSWPVI without
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SCWA exhibits considerable oscillations, which are likely due to the large learning rate’s
difficulty in achieving convergence. This issue can be resolved by optimizing the decay
rate of the learning rate. On the other hand, the SCWA module requires fewer parameters
and less computational power. Furthermore, the ablation comparison experiment with
800 iterations takes almost the same time.

Figure 7. Variation in model parameters for ablation experiments.

Table 2. Ablation control experiments were conducted on SCWA structures, where the JSWPVI-SCWA
refers to the JSWPVI with the SCWA structure eliminated.

Methods Kappa F1-Score PA mIoU

JSWPVI-SCWA 0.928 0.875 0.911 0.777
JSWPVI 0.909 0.841 0.894 0.751

In summary, the JSWPVI, equipped with the SCWA mechanism, compresses redun-
dant information and enhances the confidence level of foreground targets (PV panels and
substations), thereby improving the accuracy of discrimination results. Consequently,
SCWA facilitates better adaptation of the model to pre-training weights obtained from indi-
vidual recognition. It effectively extracts PV panels and substations from high-resolution
aerial remote sensing images.

To further verify the accuracy of the results obtained for the JSWPVI PV panel and
substation extraction, we conducted a comparison using the DeepLabV3+ model (backbone
network: ResNet50) [19]. The prediction set images were utilized as the benchmark for
model inference. DeepLabV3+ is a well-known semantic segmentation model widely
employed in remote sensing target extraction tasks, with a Cityscapes dataset and an 82.1%
cross-merge ratio achievement. In this study, DeepLabV3+ weights were constructed using
fully supervised training and MOCO pre-training methods, respectively, and compared
with JSWPVI to demonstrate the model’s effectiveness.

Furthermore, to rigorously evaluate the effectiveness of the semi-supervised method
proposed in this study, we introduced UniMatch, an additional semi-supervised approach,
as a benchmark. UniMatch has demonstrated State-of-the-Art (SOTA) performance on the
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Pascal VOC 2012, Cityscapes, and COCO datasets and has been successfully applied to
tasks such as change detection in remote sensing imagery. In this study, UniMatch was
trained under identical dataset configurations to validate the proposed model’s efficacy.

JSWPVI was mainly compared with DeepLabV3+ in this study, as the latter has been
widely used in various classification scenarios, exhibiting excellent performance and high
confidence with its pre-trained weights, making it suitable for this comparative experiment.
In this research, there were two ways to train the DeepLabV3+ model: the first one was to
fine-tune the pre-trained weights of ImageNet (F-DeepLabV3+), and the second one was
to fine-tune the self-supervised pre-trained weights used in this paper (P-DeepLabV3+).
The fine-tuning process included the use of artificially produced aerial PV panels and
substation samples.

Figure 8 presents several prediction results labeled A–E, which were obtained un-
der varying geographic regions, sensors, altitudes, and weather conditions. Example A
illustrates a regular distribution of PV panels, while B and C contain interfering objects
that resemble PV panel features. In contrast to A–C, the scene in D exhibits significant
differences between PV panels and the background, and the PV panel types in this area
were not included in the training samples. Example E demonstrates the detection of PV
panels in a distributed scenario.

Figure 8. Comparison of PV panel extraction results. (A) Regular distribution of PV panels; (B) PV
panels with interfering objects; (C) Coexistence of PV panels and substations; (D) PV panels installed
on mudflat surfaces; (E) Distributed PV panels.

A comparison of four models across different scenes reveals that F-DeepLabV3+ fails to
separate adjacent PV panels effectively, resulting in classification errors, blurred boundaries,
and mixed information in the segmentation outputs. Compared to F-DeepLabV3+, which
uses ImageNet pre-trained weights, the JSWPVI and P-DeepLabV3+ models adopt a pre-
training strategy based on individual identification. This approach yields more reliable
extraction results for both PV panels and substations, as shown in the statistical summary
in Table 3. The performance of UniMatch falls between P-DeepLabV3+ and JSWPVI.
Notably, UniMatch produces very smooth outputs, especially in scenes A–C. However, its
performance degrades at the edges and in identifying substations. This may be attributed
to its consistency regularization strategy, which effectively reduces pseudo-label noise and
leads to more coherent and smooth predictions.



Land 2025, 14, 1245 15 of 20

Table 3. The comparison between JSWPVI and DeepLabV3+ models is as follows. F-DeepLabV3+
was trained using only labeled samples, while P-DeepLabV3+ utilized a large number of unlabeled
samples for backbone network pre-training and fine-tuning with labeled samples.

Methods Kappa F1-Score PA mIoU

JSWPVI 0.928 0.875 0.911 0.777
F-DeepLab V3+ 0.744 0.711 0.859 0.597
P-DeepLab V3+ 0.911 0.842 0.901 0.759

UniMatch 0.885 0.821 0.889 0.736

Overall, the baseline results are not surprising, as manual annotations in panoramic
remote sensing segmentation often contain substantial errors. This makes it challenging to
build effective pre-trained weights in a fully supervised manner. In addition, ImageNet
pre-trained weights are derived from conventional photographic RGB images, which
differ significantly from remote sensing imagery in terms of subject matter and spectral
characteristics. Although ImageNet pre-training can improve recognition accuracy to some
extent, its overall optimization effectiveness is often limited, making it difficult to achieve
good generalizability.

In summary, the comparison showed the following: (1) JSWPVI reduces voids in PV
panel extraction and improves the smoothness of edges. The SCWA module adaptively
assigns weights to guide the model’s attention to critical features, and the overall prediction
of the model does not change significantly due to minor error perturbations, thereby
demonstrating better adaptability in complex scenes. (2) The addition of backbone network
pre-training improves the model, significantly enhancing the edge accuracy of extracted PV
panels. It can significantly improve the independence between PV panels when the image
seams are not clear and maintain good generalization ability in some images with large
differences in morphological features. The extracted PV panels and substations will rarely
exhibit errors such as voids and interruptions, thus ensuring the accuracy of extraction,
which is crucial for area and quantity statistics.

5.3. Model Application and Result Filtering

However, even though the JSWPVI technique is adept at extracting PV panel data
from images, the inconsistent panel sizes and minuscule gaps between them could result
in certain disparities between the data annotation and the actual situation. These factors
undoubtedly befuddle the model and impede its ability to recognize the PV panels, leading
to inevitable non-edge noise in the model predictions and voids in the results. To tackle this
problem, we employed a guided filtering algorithm to optimize the prediction outcomes,
reduce numerical voids in the extraction results, and rectify the image distortion caused by
noise. Figure 9 displays a comparison between the outcomes before and after the guided
filtering operation. By exploiting the gradient information of the input image, the noise in
both the zero and value domains is effectively suppressed, and the independence of the PV
panels with small gaps is preserved. Following the filtering process, the noise level of the
PV panels is considerably decreased, and the extraction outcomes are smoother.

To further evaluate the generalization ability of the model in different scenarios,
we carefully examined the images of the test set and divided them into five landscapes
based on their environment, namely towns, mountains, deserts, beaches, and saline–alkali
lands. Considering that distributed photovoltaic panels mainly exist in urban areas and
do not have obvious characteristics of substations, we only evaluated the recognition
accuracy of photovoltaic panels in urban areas. The recognition results are shown in Table 4.
Although different regions come from different collection devices, the model still shows
high reliability in terms of PA and mIoU, especially in mountain and desert scenes. The
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model’s predictions are highly consistent with the true values. However, in urban and
saline–alkali areas, the prediction accuracy of the model significantly decreases. After
examining the images, we found that the number of samples in saline–alkali lands is sparse,
and the characteristics of the substation are relatively consistent with the background,
which increases the difficulty of model recognition. In urban scenarios, we found that the
loss of accuracy mainly comes from two aspects. Firstly, there is a large number of thermal
insulation panels and glass with similar spectral and shape characteristics on the roofs of
cities, and similar objects do not exist in other areas, resulting in incorrect recognition by the
model. Additionally, since distributed photovoltaics are usually managed by individuals,
some photovoltaic panels may experience tilting due to poor management, resulting in
changes in their morphological characteristics and missed detections by the model.

Figure 9. Guided filtering PV panel extraction result refinement.

Table 4. Comparison of accuracy between PV panels and substations in different scenarios.

Methods
PA mIoU

Panels Substations Panels Substations

Town 0.915 - 0.761 -
Mountain 0.924 0.946 0.786 0.771

Desert 0.978 0.968 0.805 0.782
Beache 0.964 0.910 0.793 0.765

Saline land 0.937 0.859 0.768 0.757

6. Conclusions
As the cost of PV systems decreases, the use of solar power generation will become

more common in the coming decades. To better understand the completion of PV power
plants, and support power generation forecasting and carbon emission statistics, collecting
statistical data on the quantity and location of PV panels is helpful. However, the con-
struction of PV power plants often occurs in harsh environments such as town, mountains,
beaches, deserts, and saline–alkali land, which makes it challenging to accurately determine
the construction area, quality, and quantity using manual methods. Therefore, aerial remote
sensing imagery, with its high resolution and large coverage area, has become one of the
main means of PV statistics and detection. Combined with deep learning algorithms, it
can effectively and with a high quality obtain the status of PV power plants. However,
the large number of aerial remote sensing images related to the construction of PV power
plants, the small number of effectively annotated images, and the difficulty of supporting
complex model training make it challenging.

This article proposes an efficient and high-quality sample construction process based
on aerial photos to address the challenges mentioned above. After multiple attempts and
iterative updates, a comprehensive dataset with supervised and unsupervised data was
generated, and a standardized and normalized sample database was constructed. Then, we
pre-trained the unsupervised backbone network with a large number of unlabeled samples
and optimized the supervised model with a small number of labeled samples based on
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it. To address the problem of a non-fixed learning rate when transferring unsupervised
pre-training weights, we used the simulated annealing algorithm to iteratively optimize the
learning rate and proposed SCWA to construct adaptive feature selection and weighting
structures to alleviate the differences between pre-training tasks and fully supervised
tasks. To deal with the problem of negative sample balance and the possibility of newly
labeled samples being added to the optimization process at any time, we also calculated
the gradients of LCross−Entropy and LTversky loss functions and directly optimized the model
parameters using the loss function gradient weighting method based on the deviation from
their corresponding two-norm weights. Finally, we proposed the JSWPVI method, which
is effective for extracting and counting PV panels and substations from high-resolution
aerial photos and exhibits strong generalization ability in both centralized and distributed
scenarios. With a small number of samples, good segmentation results can be obtained.
To overcome the problems of spatial and value domain noise in the segmentation results,
we combined guided filtering to improve the extraction results. Overall, the JSWPVI
method can effectively determine the quantity and area of PV panels and substations in
complex environments, providing a valuable reference for PV system construction and
data updating.
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Appendix A. Find the Optimal Learning Rate
The simulated annealing (SA) algorithm defines the probability of the model accepting

new values during the Metropolis-based annealing operations. The expression for this
probability is given in Equation (A1):

P =

{
1 Li > Li+1

e
−(Li+1−Li)

knT Li+1 > Li
(A1)

In Equation (A1), P is the acceptance probability, L is the objective function, k is
the temperature decay exponent, T is the initial temperature, and n is the number of
temperature decays. According to Hutter et al.’s research, the annealing temperature
should be on the same order of magnitude as the objective function [50]. Therefore, we set
T = 0.1 ◦C, k = 0.8, and end the iteration when the temperature is below 0.1 ◦C.

We employed a simulated annealing algorithm to minimize the loss function of JSWPVI
with an initial learning rate of 30 and an initial learning rate perturbation range of [−5, 5].
To further accelerate the learning rate optimization process and achieve faster convergence
of model retraining, we reduced the number of channels in the model up-sampling process
by a factor of eight and used one-quarter of the number of samples [51]. Additionally, the
perturbation range of the learning rate decreases with temperature, i.e., [−5 kn, 5 kn]. This
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not only reduces the computational complexity of the model, but also has no impact on the
final optimal learning rate of the model.

Figure A1a,b present the variation curves of the learning rate concerning the objective
function and temperature iteration process, respectively. During the simulated annealing
process, the temperature is iterated five times. The yellow marked points represent the new
values accepted by the model, while the blue marked points indicate the rejected values.
Through observation, we can infer that our adjusted simulated annealing algorithm is
closer to the gradient descent algorithm. The learning rate exhibits an overall single-valley
shape, and therefore, we can achieve an approximate optimal solution of the learning rate
with fewer iterations. The optimized learning rate stabilizes at around 22.

Figure A1. Simulated annealing algorithm used to find the optimal learning rate. (a) Variation of the
objective function with respect to the learning rate. (b) Variation of the temperature with respect to
the learning rate during the iteration process.
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