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Abstract: Gene duplication followed by mutation is a classic mechanism of neofunctionalization,
producing gene families with functional diversity. In some cases, a single point mutation is sufficient
to change the substrate specificity and/or the chemistry performed by an enzyme, making it
difficult to accurately separate enzymes with identical functions from homologs with different
functions. Because sequence similarity is often used as a basis for assigning functional annotations
to genes, non-isofunctional gene families pose a great challenge for genome annotation pipelines.
Here we describe how integrating evolutionary and functional information such as genome context,
phylogeny, metabolic reconstruction and signature motifs may be required to correctly annotate
multifunctional families. These integrative analyses can also lead to the discovery of novel gene
functions, as hints from specific subgroups can guide the functional characterization of other members
of the family. We demonstrate how careful manual curation processes using comparative genomics
can disambiguate subgroups within large multifunctional families and discover their functions.
We present the COG0720 protein family as a case study. We also discuss strategies to automate this
process to improve the accuracy of genome functional annotation pipelines.

Keywords: paralog; ortholog; homolog; annotation; genome context; phylogeny; signature motif;
genome; multigene families

1. Introduction

The advent of low-cost, high-throughput sequencing technologies has created the global capacity
to generate complete genome sequences at an unprecedented rate, with tens of thousands of organisms
currently at various stages in genome sequencing pipelines [1–3]. This rate is expected to continue
increasing, at least for the foreseeable future, as technologies continue to improve. This genome
sequencing “revolution” has profound implications. Classically, analysis methodologies focused
heavily on rigorous small-scale experimentation and statistical approaches for boosting power to
detect differences in small data sets [4–6]. The deluge of genome sequence data makes small-scale
experimental approaches impractical, while the coincident increase in computational power has made
high-throughput bioinformatics analyses an attractive alternative [7–9]. Out of necessity, biologists are
relying increasingly on bioinformatics-based predictions to generate information [10].

Although the development of efficient algorithms for identifying protein-coding sequences
(CDSs) is still an active area of bioinformatics research, “gene finding” has improved greatly in
recent years, particularly for prokaryotes [11–15] (even if the calling of start sites is still often
problematic [16]). However, the functional annotation of CDSs is particularly difficult to automate.
Current state-of-the-art functional annotation pipelines integrate multiple types of evidence [17–19],
but unfortunately the quality of functional annotations remains generally poor [20–23] and is highly
dependent on resource-intensive manual curation [24,25].
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Early pioneers in function annotation were quick to identify potential problems with large-scale
annotation efforts [26–28], and misannotation is a growing concern among the general research
community, as misannotated genes can have a “ripple effect” impacting diverse areas of biological
inquiry [29–31]. By different measures, 10%–25% of functional calls are wrong, even in very small
bacterial genomes [32]. High-throughput functional calls can be incorrect due to a variety of
factors [33,34], but the most common errors (>85%) are over-annotations, in which a gene is given
a specific but incorrect function [21,32,35]. Once made, functional annotation errors can be difficult
to correct in large sequence databases and can often “propagate” themselves to newly sequenced
genomes through “(mis)annotation transfer” [36–39].

Multigene families—defined as having more than one member of the family in a given
genome—can be notoriously difficult to correctly annotate, primarily due to over-annotation
problems [21]. Large multigene families are also a potential goldmine for discovering new functions,
because many of the enzymes within a family are likely to perform chemically similar reactions on
similar substrates, reducing the functional space to explore in comparison with totally unknown
enzymes (see Table 1 for examples). Overcoming the challenges of annotating multigene families and
exploiting their potential for discovering new gene functions will likely require integrating large-scale
and small-scale annotation methods. To date, the majority of genome-scale functional annotation
pipelines have been developed in isolation from small-scale annotation efforts or experimental
validation. While large-scale approaches are inherently limited due to the need for computational
efficiency and generalizability, many smaller-scale efforts are combining advanced bioinformatics
tools with experimental validation to disambiguate multigene families and are producing high quality
functional annotations and discovering novel or missing functions in the process [40–43]. In our
view, “closing the loop” between these different approaches has a tremendous potential to improve
the quality of functional annotations stored in major online databases. A recent call for functional
microbiologists to be more involved in the genome annotation process stresses this point [44].

Table 1. Examples of paralogs with different functions elucidated by comparative genomic approaches.

COG 1 Paralog Subfamilies Ref.

0780 and 0302 QueF (Queuosine synthesis) FolE (Tetrahydrofolate
synthesis)

QueF-Like (Aracheosine
synthesis) [45,46]

1539 FolX (Tetrahydromonapterin
synthesis)

FolB (Tetrahydrofolate
synthesis) [47]

1028 and 0262 FolM (Tetrahydromonapterin
synthesis) FadG (fatty acid synthesis) FolA (Tetrahydrofolate

synthesis) [47]

0009 YciO (Unknown function) YrdC/TsaC (t6A synthesis) [48]

1509 YjeK (Protein modification) LamB (Lysine degradation) [49]

2269 and 1190 YjeA (Protein modification) LysRS (Protein synthesis) [49]

0354 and 0404 YgfZ (Iron-sulfur cluster repair) GcvT (One carbon
metabolism) [50]

2102 Dph6 (Diphtamide synthesis) DUF71-B12 group (function
unknown, B12 salvage) [51]

5424 PqqC (PQQ synthesis) CT610 (Para-aminobenzoate
synthesis) [52]

1478 CofE (F420 synthesis) CT611 (Tetrahydrofolate
synthesis) [53]

1901 TrmY Archaeal
m1Psi54 methylase

Bacterial unknown
methylase [54]

0720 PTPS-I (QueD,
Queuosine synthesis) PTPS-II (Biopterin synthesis) PTPS-III (Folate synthesis) [55]

0523 15 subfamilies identified [56]

0212 5-formyltetrahydrofolate
cycloligase (5-FCL) Thiamin metabolism [57]

1 Data obtained from the Clusters of Orthologous Groups of proteins (COGs) database, 2003 COGs,
2014 update [58]. Please note that if some paralog pairs are currently mapping to more than one COG,
it was not the case at the time of the reported studies.
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In this work, we argue that focusing on individual genomes that have readily identifiable paralogs
and examining similarities and differences in the corresponding gene neighborhoods is an efficient way
to identify and separate similar genes with different functions. We propose an annotation workflow that
“bootstraps” information gained by identifying specific genomes harboring functionally differentiated
paralogs to potentially improve annotations of related genes in other genomes (Figure 1). We expect this
type of annotation workflow could both guide the experimentalist and improve automated annotation
of large multigene families.
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Figure 1. Differential paralog clustering can be used to identify non-isofunctional genes in multigene
families. (A) Although single-copy genes can be accurately annotated by current high-throughput
pipelines, they comprise a small percentage of the genome’s total gene count (12%, according to the
National Center for Biotechnology Information (NCBI) Clusters of Orthologous Groups of proteins
(COGs) database (2014 update) [58]). Genomes for which there is more than one homolog among
a multigene family suggest the existence of paralogs among this family, and transfer of annotation
based on homology is problematic among paralogs that can be non-isofunctional; (B) Paralogs with
different flanking genes (genomic contexts) conserved across multiple species can be inferred as having
different functions, even if their functions are not known; (C) Once paralogs are differentiated into
provisional isofunctional groups by conserved genomic context, patterns of sequence conservation
within and among isofunctional groups can be used to derive paralog-specific motifs, which can
be used to annotate additional members of the isofunctional group for which there is no physical
clustering conservation.



Life 2016, 6, 39 4 of 25

2. Protein Function and Evolution

Protein functional annotation can vary widely in the degree of precision and can be defined
in multiple ways, including phenotype, cellular localization, ligand interactions or interaction
partners [59,60]. Efforts to unify and standardize functional annotations using controlled hierarchical
vocabularies—although controversial and incomplete—have provided an objective framework for
functional annotation that can be computed automatically [61,62]. However, these approaches are
only beginning to be incorporated into genome annotation pipelines, requiring older genomes to be
re-annotated [63,64]. For the purpose of this study, we will use a very strict definition of function in
which both the molecular function and its functional context have been elucidated (sometimes called
a two-dimensional annotation [65]). For an enzyme, this would be the Enzyme Commission number
(EC number) and the biological pathway the enzyme participates in.

As it is impossible to experimentally verify the function of every newly sequenced gene,
researchers have sought to elucidate the “evolutionary rules” governing when it is—and when it
is not—appropriate to “transfer” specific functional information from a gene of known function to
a related gene whose function is not known. We would expect genes with very similar sequences to
have similar functions, while genes with more dissimilar sequences are more likely to have different
functions. Indeed, the earliest functional annotation algorithms simply used sequence similarity
searches to predict protein function by “annotation transfer” [66,67], but these generally led to
unacceptably high error rates [32,33]. The fact that gene duplication and speciation events followed by
mutation can lead to functional changes means that proteins with high sequence similarity might not
have the same function [68].

More sophisticated approaches attempt to identify specific evolutionary patterns that may
correlate with functional conservation or divergence [69–71]. The evolutionary relationship between
two genes in a protein family (i.e., “homologs”, genes that have descended from a common ancestor)
can be broadly classified into two types: “orthologs” are two genes from different species that derived
from a single gene in the last common ancestor of the species, while “paralogs” are two genes (within
the same or different species) that derived from a single gene that was duplicated within the genome
of some species [72].

Current thinking and empirical evidence supports the conclusion that, in general, orthologous
genes have equivalent functions more often than paralogs [73]. This has led to numerous approaches
for identifying groups of orthologs (e.g., OrthoMCL, OMA and eggNOG [74–76]) and transferring
functional annotations among members of an ortholog group. Some researchers have gone so far
as to “redefine” the term “orthologs” to mean “genes with equivalent functions” [77]. In agreement
with R.A. Jensen [78], we feel that the “functional” definitions of “ortholog” and “paralog” are
unwarranted and invite confusion, and we retain the original “evolutionary” definitions in this work.
There are certainly examples of orthologs that have different functions in different species [78–81],
and functional differentiation between orthologs from different species (particularly those separated
by large evolutionary distances and/or major changes in lifestyle or habitat) may be common enough
that simply transferring functional annotations among orthologs—without considering additional
information—is likely to lead to potential errors [82].

It may be comforting to assume that the converse relationship may hold more universally: perhaps
paralogous genes in the same species always have different functions. However, duplicate genes with
equivalent functions can be retained to supply specific gene or protein dosage, providing a scenario in
which paralogous genes have equivalent functions [27,83–86]. In multicellular eukaryotes, this can
occur when gene regulatory functions are partitioned between daughter genes (i.e., the same protein is
expressed by different genes in different tissues, cell types, or different periods of time/development).
This regulatory split also occurs in bacteria [87,88]. Hence, orthology/paralogy—in and of itself—is
insufficient as a universal means for dividing related genes into functional classes, although it can
provide crucial information as part of a more comprehensive strategy.
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3. Identifying Orthologs and Paralogs in Practice

In theory, identifying orthologs and paralogs with phylogenetic trees should be straightforward.
“Ortholog” and “paralog” are evolutionary concepts that are well-defined from a phylogenetic
perspective; given a gene family tree and a species tree that are both known with absolute certainty,
orthologs and paralogs can be identified without error [89,90]. However, neither gene nor species
trees are ever known with absolute certainty, and current gene-species tree reconciliation methods
have limited capacity to incorporate phylogenetic uncertainty or complex realistic evolutionary
scenarios [49,91–94]. Even sophisticated phylogenetic reconstruction methods can be subject to
methodological bias under some conditions [95–98], and strongly supported errors in either the
gene tree or the species tree can produce radical errors in ortholog/paralog identification [97]. Even if
the phylogenies of extant genes and species could be reconstructed without error, certain patterns of
differential gene losses can make paralogous genes erroneously look like orthologs (Figure 2).

Even with these caveats, recent phylogeny-based functional annotation methods have performed
very well, compared to competing approaches [99,100]. Unfortunately, rigorous phylogenetic analysis
does not scale well computationally, making it difficult to apply the most accurate tree reconstruction
algorithms to large data sets [71,101]. Fast tree reconstruction algorithms do exist but are more
prone to errors in both topology and confidence assessment than more computationally intensive
methods [97,102–104]. Even with the dramatic recent speed-up of phylogenetic reconstruction
algorithms, these methods are likely to remain too computationally expensive to deploy across
the growing wealth of whole-genome sequence data [71,105].
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Figure 2. Differential gene loss can obscure the identification of paralogous genes. (A) A hypothetical
example showing the historical evolutionary history of a simple multigene family across three
species. Gene duplication and speciation events are indicated, with red crosses indicating gene losses.
Grey names indicate unobservable “extinct” genes; (B) Even if the correct species tree were known with
certainty, differential loss of paralogs across the species in (A) would result in the indicated gene tree,
which is “correct,” given extant sequence data, but cannot observe the “extinct” genes. Gene-species
tree reconciliation results in the erroneous grouping of paralogous genes A and B as orthologs.
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Numerous approaches have been devised that use computationally efficient sequence similarity
comparisons, often combined with other sources of information, to approximate phylogenetically
based ortholog/paralog identification while improving throughput [106,107]. At their core, most of
these approaches use patterns of pairwise sequence similarity among genes to infer patterns of
orthology/paralogy. Historically, Koonin and co-workers were the first to implement such an approach
with their Clusters of Orthologous Groups (COGs), based on best birectional BLAST hits [108].
Many other approaches to ortholog/paralog identification use pairwise sequence similarity as a starting
point, differing mainly in how pairwise similarity networks are divided into ortholog/paralog
groups [74,109,110]. For example, Sequence Similarity Networks (SNNs) have been used successfully
to identify paralogs and isofunctional groups in large multigene families [111]. A major advantage
of SSNs over traditional phylogenetic trees is that relationships between protein sequences are easier
to visualize, allowing larger numbers of sequences to be examined, and it is generally easier to
automatically analyze similarity networks to divide them into orthology groups.

It is well recognized that patterns of sequence similarity only weakly approximate phylogenetic
relationships [71,112–114], so these approaches may be error-prone in orthology/paralogy inference.
As shown in Table 1, some known paralogs have been erroneously grouped in the same COG,
and some orthologs are erroneously split into different COGs. To estimate how frequently COG
families contained paralogs, we analyzed the genomic distribution of the latest COG set that lists
4695 COGs across 711 prokaryotic and archaeal genomes (2003 COGs, 2014 update) [58]. This analysis
revealed that only 12% of COGs have only one member in any given genome. For 88% of COGs,
a genome could be found that encodes at least two paralogous members of the same COG, reinforcing
that sequence similarity alone is insufficient to reliably group genes into sets of orthologs (Figure 1).
Of course, if errors in orthology/paralogy inference by sequence similarity happen to correlate
with the historical patterns of functional divergence among orthologs/paralogs, sequence similarity
methods may perform surprisingly well at predicting function, albeit because they may be fortuitously
“biased in the right direction” [114,115].

4. Lessons from Comparative Genomics

Comparing similarities and differences among genomes can be a powerful tool for functional
annotation. Not long after the release of the first whole genome sequence, visionary pioneers like
Koonin [116] and Overbeek [117,118] provided a framework for using comparative genomic methods to
improve gene annotations. In general, the “comparative genomic framework” combines evolutionary
relationships with additional information gleaned from whole-genome comparisons to improve
predictions about similarities and differences in gene function.

A gene’s function is impacted by the specific metabolic network or subsystem within which
it works as well as its role within that network or subsystem [65,119–121]. One of the underlying
principles of the comparative genomic framework is that various types of information, such as physical
clustering, gene fusions, co-regulation or regulons and phylogenetic co-distribution, can be used
to reconstruct a gene’s potential role within a network or subsystem [122–124]. These association
networks can be used to efficiently identify and annotate paralogs that have diverged in function,
particularly in the case of prokaryote genomes, where genes operating in the same subsystem are
often physically clustered. As the first dozens of bacterial genomes were sequenced, it became
apparent that conserved physical clustering of genes (conserved genome context) in phylogenetically
distant genomes is a strong suggestion of functional association [118,125–127]. The underlying
causes can vary but include maintaining co-regulation of functionally related genes [128–130] and
facilitating horizontal transfer of multigene functional units [131]. As more genomes have become
available, physical clustering and gene fusions—which can also be considered a form of physical
clustering [125,132]—have become a robust measure of functional association [127,133,134] used in
various integrated annotation platforms (e.g., STRING [135], SEED [118,136], Microbesonline [137],
Syntax [138], MaGE [139]).
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Examples of successful separation and annotation of paralogs within multigene families by our
group are given Table 1. In all cases, physical clustering analysis was key to the functional separation
of the multigene family into putative isofunctional subgroups. These examples are drawn from
families with only two to three subgroups, but physical clustering can also be useful for functionally
characterizing more complex gene families [140,141]. For example, a single bacterial genome can
contain dozens of individual genes from the Nudix hydrolase family. Members of this family are all
pyrophosphatases [142] but can vary widely in preferred substrate and are very difficult to functionally
separate by sequence similarity alone. However, substrate specificity can be accurately predicted by
incorporating physical clustering information [71,105,142,143].

Combining phylogenetic or sequence similarity information with additional comparative-
genomics information—gene clustering, protein-protein interactions, regulon membership,
presence/absence of specific functional domains, structure, chemistry and “signature” sequence
motifs—has produced some of the most effective examples of reliably separating functional groups
within multigene families [43,106,144]. These approaches are extremely effective when performed on
a single gene family, often in combination with experimental validation [145,146]. Although these
integrative approaches to functional annotation currently rely on expert understanding of the specific
gene family under examination and careful manual curation, recent advances have improved prospects
for future complete automation of integrative function-prediction analyses, with impressive results.
For example, the Structure-Function Linkage Database (SFLD) analyzes 12 superfamilies that cover
over 300 functional families [147], and the CATH-Gene3D and FunFams resources encompass more
than 2500 families [148,149]. These “middle level” resources fill an important gap between rigorous
small-scale experimentation and efficient high-throughput annotation pipelines; they are likely to
improve the accuracy of functional annotations for the gene families they cover but are not currently
deployed at a whole-genome scale. Future expansion of these and similar resources that carefully
integrate multiple data sources using sophisticated approaches that mimic the manual curation process
are expected to dramatically improve the overall quality of gene functional annotation.

5. The COG0720 Case Study

The COG0720 family is a good example of how comparative genomics can differentiate
paralogs, even in complicated cases with several functional divergence events. The founding
member of COG0720 is 6-pyruvoyl-tetrahydropterin synthase (PTPS). This enzyme catalyzes the
second step of tetrahydrobiopterin (BH4) biosynthesis. BH4 is a cofactor used by aromatic
acid hydroxylases in animals and certain bacteria [150]. It is synthesized from guanosine
triphosphate (GTP) in three enzymatic steps (Figure 3A). The first step is shared with the folate
biosynthesis pathway and catalyzed by GTP cyclohydrolase I (FolE). PTPS (EC 4.6.1.10) then
produces 6-pyruvoyl-tetrahydropterin (PTP) from dihydroneopterin-triphosphate (DHN-P3). The last
step is catalyzed by sepiapterin reductase (SR) (Figure 3A). The first cloned and sequenced
PTPS-encoding gene was from rat [151]. Some bacteria known to have a BH4 biosynthesis pathway,
like Synechococcus sp. PCC 7942, have two PTPS homologs. PTPS-I (BLAST e-value 6 × 10−31 to the
rat homolog) was shown not to be involved in BH4 synthesis, as deletion of the corresponding gene
did not affect the level of synthesis of the cofactor [152], while PTPS-II (BLAST e-value 5 × 10−20 to the
rat homolog) was shown to have canonical PTPS activity in vitro [152] (Figure 3A) (default BLAST
parameters were used). This is a clear case of bacterial paralogs with different functions and also
demonstrates that the best BLAST hit can be the wrong paralog.
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Figure 3. Functional roles of different PTPS subfamilies. Biosynthesis pathways in which PTPS-I,
II and III are involved (A) and example of conserved gene context of PTPS-I, II and III linking
them with these pathways (B); Note that Clostridium botulinum 19397 and Rhodothermus marinus
are among the organisms having more than one PTPS gene belonging to different conserved
gene contexts. Specific reactions catalyzed by PTPS-I, II and III, and conserved motifs
identified (C). Abbreviations: GTP: guanosine triphosphate; FolE: GTP cyclohydrolase I; FolE2:
GTP cyclohydrolase II; DHN-P3: dihydroneopterin-triphosphate; CTHP: 6-Carboxytetrahydropterin;
PTP: 6-pyruvoyl-tetrahydropterin; HMDHP: 6-hydroxymethyldihydropterin; PreQ0: 7-cyano-7-
deazaguanosine; QueE: 7-carboxy-7-deazaguanine synthase; QueC: 7-cyano-7-deazaguanine synthase;
SR: sepiapterin reductase; DHN: dihydroneopterin; [P-ase]: phosphatase; FolB: Dihydroneopterin
aldolase; FolK: 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase; FolP: Dihydropteroate
synthase; FolC: Dihydrofolate:folylpolyglutamate synthase; FolA: Dihydrofolate reductase.

Although COG0720 proteins are found in most bacteria, only ~50 are predicted to take
part in the BH4 biosynthesis pathway based on literature review and co-occurrence with the SR
protein (see “PTPS paralogs” subsystem http://pubseed.theseed.org//SubsysEditor.cgi?page=
ShowSubsystem&subsystem=PTPS_paralogs) [119]. Hence, metabolic reconstruction could have
flagged the 6-pyruvoyl-tetrahydropterin synthase annotation for most members of the COG0720 family
as questionable. However, this correction did not occur, and most COG0720 genes were incorrectly
annotated. In the initial COG database [116], COG0720 contained 55 proteins in 43 archaeal or bacterial
genomes. Even though eight genomes encoded multiple COG0720 copies, all COG0720 members were
annotated as 6-pyruvoyl-tetrahydropterin synthases. Our more recent analysis of the Joint Genome
Institute (JGI) Integrated Microbial Genomes (IMG) database (Table 2) found that ~15 percent of

http://pubseed.theseed.org//SubsysEditor.cgi?page=ShowSubsystem&subsystem=PTPS_paralogs
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bacterial genomes contain more than one COG0720 member. The COG0720 family is a clear case of
over-annotation caused by transfer of annotations between functionally divergent paralogs.

Table 2. COG0720 genome count from diverse genomes 1.

Domain Genome Count with
COG0720

COG0720 Gene
Count

Genomes with COG0720
Paralogs

Total
Genomes

Archaea 561 698 134 771
Bacteria 636 821 164 1056

Eukaryota 60 65 5 220
1 Data extracted from IMG using the search function as of 30 November 2015. Genome list is provided as
supplementary information in Table S1.

Using different types of comparative genomics evidence, we were able to predict, and then
experimentally verify, that at least two other COG0720 sub-families (PTPS-III and PTPS-I) perform
different reactions in other pathways (Figure 3A) [55]. PTPS-III is part of the tetrahydrofolate pathway
in Plasmodium falciparum and various bacteria [55,153,154]. In specific Archaea, members of the PTPS-III
group are involved in tetrahydromethanopterin biosynthesis, but in these cases the substrate might
be the monophosphate and not the triphosphate form [51]. PTPS-I is involved in the synthesis of
archaeosine and queuosine in tRNA [55,155,156]. In this case, physical clustering evidence (Figure 3B)
was sufficient to link the three PTPS gene families to their respective biochemical pathways.

Multiple alignments and structure comparisons allowed us to identify diagnostic signature
motifs for the subfamilies (Figure 3C) [55]. Enzymes belonging to the PTPS-II subfamily harbor the
motif CxxxxxHGH. The motif found in PTPS-III enzymes ExxHGH is not mutually exclusive with
the one found in PTPS-I enzymes QueD (CxxxHGH), i.e., an enzyme with a CExxHGH can exist.
Some organisms indeed have a PTPS-I/III hybrid version of the enzyme that can function in both
folate and Q pathways [55]. In addition to the examples presented here, other subfamilies have
been identified: PTPS-IV is involved in the synthesis of the archaeal cofactor F420 (de Crécy-Lagard
and R. White unpublished); PTPS-VI has been validated as a folate enzyme [51]; and the function of
PTPS-V is still unclear. Each of these subfamilies harbors specific signature motifs [55]. In summary,
the functional complexity of the COG0720 family—which appears only separable using a combination
of comparative techniques—makes it a good example to test automated annotation pipelines.

6. Current Methods for Paralog Annotation in Genome Annotation Pipelines

The above discussion suggests that careful methods for separating multigene families into
functional subgroups have become highly effective. However, these robust approaches are not regularly
incorporated into automated genome annotation pipelines, so the “best” methods are not being used
to annotate most genes. Indeed, in most cases, after a given CDS has been predicted, it is aligned using
sequence similarity to either a reference genome or to protein sequences available in large databases
such as Uniprot. If a high scoring homolog is identified, the annotation is typically transferred,
often without any significant additional analysis [67]. This process is far from perfect, as mentioned
above and discussed in detail by Richardson et al. [67]. Issues include the use of references with
outdated or misspelled annotations, inconsistent annotations among close orthologs, protein fusions
and, of course, paralogs.

A recent improvement in annotation pipelines has been to include family relationships
(e.g., OrthoMCL, CDD, COG, EggNOG, Pfam, TigerFam, FigFam) as part of the annotation [67]. This is
very useful for identifying fusion proteins that are a well-known misannotation problem [67,132].
However, unless domain families have been specifically designed to separate paralogs (such as
FigFam, used by the RAST pipeline), domain annotations do not disambiguate paralogs; on the
contrary, domain-family annotations typically group paralogs together. We evaluated if and how
paralogs were separated in the most popular genome annotation pipelines, including: IMG [17,157,158],
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RAST [13,159,160], NCBI prokaryotic annotation [161], EnsemblBacteria [162] and MaGE [139].
We specifically examined two COG0720 proteins from Pyrococcus furiosis DSM 3638: PF0219 and
PF1278. The first is a (preQ0) synthesis enzyme (PTPS-I) and the second a folate synthesis enzyme
(PTPS-III).

The NCBI Prokaryotic Genome Annotation Pipeline relies on protein cluster membership to
transfer functional annotations [161,163]. This method is not designed to separate paralogs without
additional curation. We found that PF0219 was correctly annotated, but PF1278 was not, and it remains
hypothetical (Table 3). IMG uses a combination of methods to assign IMG terms as a controlled
vocabulary for describing functional roles [164,165], but IMG relies on BLAST or family relationships
that do not explicitly separate paralogs. Interestingly, IMG has developed a series of integrated tools to
identify identical functional annotations within a genome and flag paralogs [166]. However, these tools
are not directly used in the annotation pipeline and are not easily accessible from a given gene page
through the IMG web browser interface. Many genomes have been re-annotated in IMG [157], but if
PF0219 was correctly annotated as a QueD enzyme in the first annotation, the re-annotation introduced
a functional ambiguity that obscured the PF0219 annotation. For PF1278, the function was not called
in the first IMG annotation, and it was miscalled in the re-annotation (Table 3).

RAST uses a curated set of protein families (FigFams) as a source of annotations for submitted
sequences. FigFams are defined as sets of isofunctional homologs based on sequence similarity
and conserved genomic context across closely related genomes [159,167]. This family definition
should allow separation of paralogs, and the two test proteins were indeed correctly called (Table 3).
We should note that, because of our long association with the SEED database that is the basis for
many RAST/PATRIC annotations, these genes were actually manually curated by our group. If the
initial curation of a few members of the FigFam is not correctly done, the paralog families will not
be separated.

MaGe (Magnifiying Genomes) annotates proteins based on sequence similarity searches against
non-redundant protein sequences, protein family identification and using HAMAP (High quality
Automated and Manual Annotation Proteins) profiles [168]. Gene contexts are said to be taken into
account in annotation calls [139], so in theory this should allow paralog separation. However, it does
not appear that this information is integrated at the level of functional annotation, as neither of
the two test proteins was correctly annotated in MaGe (Table 3). Finally, Ensembl Genomes uses
the InterProScan 5 pipeline for protein annotation [169,170], which primarily uses HMM (Hidden
Markov Model) signatures for identifying protein families [170]. If paralogs have not been separated
by the HMM signatures beforehand, they will not be separated in any new annotation. In addition,
the Ensembl platform provides a gene-oriented phylogenetic resource that should allow paralog
identification (see [171]). However, it is not available for every gene entry and does not appear to be
used for annotation purposes, as neither of the two test proteins was correctly annotated in Ensembl
(Table 3).

In summary, we found a major discrepancy between the tools available in large integrated
databases, which should in theory be capable of disambiguating or at least flagging paralogs, and the
actual annotation pipelines, which rarely appear to take advantage of these tools to transfer functional
annotations. In practice, large-scale functional annotation is still mainly based on similarity scores
alone. The identification of paralogs remains primarily a low-throughput manual process.



Life 2016, 6, 39 11 of 25

Table 3. Annotations and information available in diverse databases for the genes belonging to the classes PTPS-I and PTPS-III of Pyrococcus furiosus DSM 3638 1.

Annotation Database Identifier Annotation Database Identifier Annotation

NCBI annotation WP_011011332.1 6-carboxy-5,6,7,8-tetrahydropterin synthase
(NCBI Reference Sequence) WP_011012422.1 6-pyruvoyltetrahydropterin synthase

(NCBI Reference Sequence)
Ensemble bacteria AAL80343 putative 6-pyruvoyl tetrahydrobiopterin synthase (PF0219) AAL81402 hypothetical protein (PF1278)

PATRIC (uses the RAST
annotation pipeline) fig186497.12.peg.227 Queuosine biosynthesis QueD, PTPS-I fig186497.12.peg.1340

Folate biosynthesis protein PTPS-III,
catalyzes a reaction that bypasses
dihydroneopterin aldolase (FolB)

putative 6-pyruvoyl tetrahydrobiopterin synthase hypothetical protein

MaGe PF0219 putative 6-pyruvoyl tetrahydrobiopterin synthase
automatic/finished PF1278 hypothetical protein automatic/finished

NCBI RefSeq Annotation: putative 6-pyruvoyl
tetrahydrobiopterin synthase NCBI RefSeq Annotation: hypothetical protein

TrEMBL annotation: Putative 6-pyruvoyl
tetrahydrobiopterin synthase

TrEMBL annotation: Dihydroneopterin
monophosphate aldolase

IMG 638172701 2 preQ(0) biosynthesis protein QueD 638173858 2 hypothetical protein

2625830234 3 6-pyruvoyltetrahydropterin/
6-carboxytetrahydropterin synthase 2625831353 3 6-pyruvoyltetrahydropterin/

6-carboxytetrahydropterin synthase
1 Annotations considered correct are highlighted in bold; 2 Initial annotation; 3 Re-annotated genome.
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7. Integration of Tools for Paralog Separation in a Workflow

As discussed above, paralogs within large multigene families remain a potentially major source
of errors in high-throughput gene annotation pipelines. A “stop-gap” first measure for mitigating
the effects of paralogous genes on annotation quality could be to simply flag potential paralogs and
integrate this flagging into annotation confidence scores [18]. If a gene has a homolog in the same
genome, or even if it is part of a family that has several members in another genome, the confidence in
its functional annotation should be reduced. This would introduce a level of “healthy skepticism” into
predicted functional annotations that is lacking in most cases. This first step could be implemented
efficiently and easily incorporated into existing annotation pipelines, as data on the distribution of
gene families across genomes is already available in most integrated databases such as PATRIC, IMG or
MaGE. While flagging potential paralogs is an appropriate first measure, the ultimate goal here is
to examine the extent to which tools for rigorously separating multigene families into isofunctional
subgroups could be integrated into high-throughput annotation pipelines.

Information from the highly curated SFLD [147] or CATH-Gene3D platforms [148,149] are
considered the current “state of the art” in subfamily separation and classification. The COG0720
family is not currently covered by SFLD, but it is in CATH (CATH ID: 3.30.479.10). However, the CATH
pipeline was not able to correctly separate PTPS subfamilies, even if it did capture the chemistry for
two of them, PTPS-I and PTPS-II. That said, for the families covered, information from SFLD and
CATH-Gene3D has the potential to improve gene functional annotations and should therefore be
incorporated into annotation pipelines. Even if only some gene family annotations are expected to be
improved by incorporation of manually curated database information, incorporating this information
should help mitigate misannotation transfer errors and allow more generalizable—but computationally
expensive—methods to be applied in the more difficult cases for which they are needed.

We also tested whether SSNs and Genome Neighborhood Networks (GNNs) developed by
EFI [111] could separate the different COG0720 subgroups. We created an SSN from the COG0720
proteins extracted from the “PTPS paralogs” subsystem, a set of sequences for which the annotations
have been verified. Increasing stringency allowed good separation of the different PTPS subfamilies
into clusters, but the alignment score threshold required to fully separate the functional groups
was so high that the same subfamily is also split into different clusters (Figure 4A). This problem
persisted when we selected a more stringent set of starting sequences by examining only subsystem
sequences from genomes that contained more than one COG0720 family member (Figure 4B). As this
example demonstrates, in some “real-world” cases, sequence similarity may not be sufficient to
identify all isofunctional groups within a multigene family without also breaking some isofunctional
groups into multiple clusters. We then built the corresponding GNNs, as these might allow the
regrouping of clusters based on common gene neighborhoods (Figure A1). The GNN generated did
find neighbors that are relevant to the functions of the PTPS subfamilies. For example, we observed
the expected physical clustering between PTPS-I and QueC, QueF and FolE. However, proteins of the
same family were found in the neighborhood of proteins from different similarity clusters and more
generally the noisiness of the GNN results make them difficult to interpret. If nothing were known
about the family being analyzed, determining functional groups precisely using this data would be
a challenge.
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Figure 4. Sequence Similarity Networks Generated from the “PTPS paralog” Subsystem. An SSN
was generated from the sequences extracted from the “PTPS paralog” subsystem, at alignment score
threshold of 30 (A); A specific subset of sequences, limited to only to PTPS homologs in the same
genomes (paralogs), were used to generate an SSN with identical parameters (B).

In summary, the EFI network tools were able to create networks that separate the COG0720
subfamilies. However, their analysis requires prior knowledge of the families as well as trial and
error in order to provide accurate and reliable information about protein function. Noise-reduction
techniques and other similar statistical tools could be developed to make these methods more useful
for the average user or easier to integrate into automated annotation pipelines, but these additional
analyses would need to be validated prior to deployment on a large scale.

None of the automated functional annotation pipelines were able to correctly separate COG0720
paralogs, whereas these paralogs were easily identified manually using comparative genomic tools.
This suggests that an automated workflow inspired by our manual annotation strategy might be
appropriate for separating challenging paralog groups (Figure 5). The key idea in this workflow is
to focus initial analyses only on those genomes in which paralogs can be easily identified. Simply,
any single genome containing at least two members of a protein family must encode paralogs, although
the paralogs could perform the same or different functions. Once paralogs have been identified in
a single genome, physical clustering by gene neighborhood can be used to group paralogs likely to have
similar functions—because they physically group with the same genes across different genomes—and
separate paralogs likely to have different functions—because they cluster with different groups of
genes across genomes. Patterns of sequence conservation within and among paralog groups can then
be used to identify “signature sequence motifs” that reliably identify the group of paralogs performing
each functional role (Figure 1).

Tools to identify genomes encoding several genes of the same given family and extract the physical
gene-neighborhood clusters associated with these genes are already available in the same integrative
databases that already serve genome annotation pipelines such as IMG, MaGE or SEED, and we were
able to use them to characterize the COG0720 family. Similarly, automated tools to identify signature
motifs are now available. As shown in Figure 6, signature motifs identifying the three COG0720
families (PTPS-I, PTPS-II and PTPS-III) that we had created by manual analysis [55] could be recreated
automatically using the Weblogo [172] and Web2logo platforms [173]. Once these signature motifs have
been created, they can be used by tools such as HAMAP [168] to annotate all members of a multigene
family, regardless of gene neighborhood (Figure 5). The value of using well-defined signature motifs
as effective annotation tools has already been documented [174].

Based on our comparative genomics experience and approach, we propose the creation of
a workflow, assembled from tools available, that we use and that are individually working well,
to automate the identification of paralogs and their annotation. We believe that focusing on the difficult
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task of paralog annotation is needed, and will lead to valuable discoveries. In addition, improving the
annotation process will be beneficial for the general research community.Life 2016, 6, 39 14 of 25 
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Figure 5. Proposed workflow for improving paralog annotation that integrates existing tools. The key
features of this workflow are: focusing on genomes that already have paralogs, and building signature
motifs only on groups of sequences that share similar physical neighborhoods. Red boxes describe the
different required operations, and blue boxes list existing databases or software that provide the tools
to perform these operations. The use of SSN and GNN is proposed as a strategy to identify the groups
of sequences to build signatures as we feel their pipeline could become more automatable once it has
matured. FC: Functionally coupled.
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Figure 6. Motifs identified in paralogs from the same genome based on comparing with homologs
with conserved physical clustering. Logos of the region containing the signature sequence (amino
acids 23 to 38 in E. coli Uniprot P65870) from different COG0720 families (A); The choice of the
sequences for the logos was as followed: starting from genomes that had two or more members
of the family, only sequences that were in similar gene neighborhoods were chosen to generate
the logos. The set of sequences used is given in Supplementary Material Document S1. The logos
were generated using Weblogo [172]. Logos from the different subfamilies were compared using
the Two Sample Logo platform [173] (B). This automated comparison tool objectively identifies key
residues for each subfamily.

8. Materials and Methods

8.1. Bioinformatic Analyses

The BLAST tools and resources at NCBI were routinely used [175]. Analysis of the distribution
of genes of the COG0720 on the different kingdoms was performed using the tools of the IMG
database (Phylogenetic Profiler for Single Genes) [176] and by a parsing of data obtained from the COG
database [58].

Analysis of the phylogenetic distribution and physical clustering was performed in the SEED
database [119] on the 11,411 genomes available at the time of the analysis (November 2015). Results are
available in the “PTPS paralogs” subsystem on the public SEED server (http://pubseed.theseed.org/
/SubsysEditor.cgi?page=ShowSubsystem&subsystem=PTPS_paralogs) [119]. A subset of the analysis
is summarized Figure 3. Clustal Ω [177] was used to verify the belonging of sequences to the PTPS-I, II,
III or IV subfamilies, based on the strict presence of previously identified motifs [55] and re-annotated
when needed. Sequences that were too short (typically with a motif partly missing or integrally
missing) were re-annotated as “PTPS family” and flagged with the comment “#short, possible wrong
start call.” We estimate that around 15% to 20% of the genes seem to be wrongly called. Sequences
that align but for which no classification was possible based on the variability among the recognizable
motif were annotated as “PTPS family.” The PATRIC annotations [178] were extracted and mapped to
Uniprot genes when needed.

http://pubseed.theseed.org//SubsysEditor.cgi?page=ShowSubsystem&subsystem=PTPS_paralogs
http://pubseed.theseed.org//SubsysEditor.cgi?page=ShowSubsystem&subsystem=PTPS_paralogs
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For sequence logo analysis and comparison, selected sequences corresponding to PTPS-I, II and III
were extracted from the “PTPS paralogs subsystem” from genomes for which there is more than
one PTPS (and are defined as paralogs) and for which there is evidence of functional coupling
with genes previously identified involved in the specific PTPS pathway. Sequences were aligned
with Clustal Ω [177]. Obtained alignments were trimmed with AliView-1.17.1 [179] to focus on the
conserved motif area. The reference for the comparison contains all the extracted sequences and is
used as a representative for the PTPS family. From the alignment, WebLogo [172] was used to create
logos of the HGH motif region. Each logo was compared with the others in Two Sample Logo using
the t-test option [173]. The sequences extracted are available in document S1.

8.2. Sequence Similarity Network (SSN) and Neighborhood

A script allowing the extraction of homologous sequences that are present in the same genome
from the PTPS Exploration subsystem on PubSEED was used as input to generate a Sequence Similarity
Network (SSN) and a Genome Neighborhood Network (GNN). Networks were also generated using
PTPS sequences from the entire subsystem as input. The networks were generated using the EFI
Enzyme Similarity Tool and Genome Neighborhood Tool [111,180] available at http://efi.igb.illinois.
edu/efi-est/. The SSN was generated with an initial alignment score threshold of 15 using the
custom Fasta option (option C). Cytoscape was used to visualize and edit the networks [181]. Uniprot
accessions were imported into the SSNs and all nodes that did not contain a Uniprot accession were
removed. The alignment score threshold of the networks was increased by deleting edges with
increasing alignment score values in order to visualize separation of clusters. A table with manually
determined annotations extracted from the “PTPS paralogs” subsystem was added to the network in
order to test whether the clusters were iso-functional groups. The GNN was generated with default
values using the SSN with only nodes containing a Uniprot accession at an alignment score threshold
of 25 as input. This score was chosen based on the complete separation of PTPS families.

9. Conclusions

The issue of gene functional annotation quality will need to be solved for systems biology
approaches to reach their full potential. As discussed here, paralogs are a major source of errors in
gene functional annotation, and annotation quality cannot generally improve until paralog families
are better annotated. Given recent advances in computational infrastructure and recent development
of robust small-scale annotation efforts, we feel the time is right for large-scale annotation pipelines to
begin integrating the methods used in small-scale expert-based annotations. With genome sequencing
poised to generate a super-exponential increase in total sequence data over the coming years, failure to
incorporate reliable gene-annotation methods now could leave us with a challenging “re-annotation”
problem in the future. Although the methods described here are mainly applicable to prokaryotic
genomes, as physical clustering is rare in eukaryotes, they may provide information informing
annotation of the portion of eukaryote genomes that have bacterial homologs [48]. In addition to
improving annotation quality, reliable identification of paralogs within multigene families is expected
to provide identification of subfamilies with specific—but unknown—chemistry, potentially driving
the discovery of previously unanticipated novel gene functions as shown with the examples in Table 1.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-1729/6/3/39/s1.
Table S1: Genome list is provided as supplementary information. Document S1: Sequences. The sequences from
which the logos and compared logos figures were created are available in this file.
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Figure A1. Genome Neighborhood Network (GNN) generated from the “PTPS paralog” subsystem. 

A Sequence Similarity Network was generated with the COG0720 proteins extracted from the “PTPS 

paralog” subsystem, but only from genomes that harbored several proteins of the family and that 

could be mapped to an Uniprot ID (A); The alignment score threshold was 25. Each SSN cluster is 

identified with a unique number. To create the GNN (B), the neighboring (10) genes of each gene in a 

given cluster are captured as a PFAM ID. The hexagonal inside nodes are these PFAMs and the 

external nodes represent the clusters that have this PFAM in their neighborhoods. Broad PFAM 

families such as ABC transporters (ABC-trans) or Histidine kinase (HisKA) are linked to clusters that 

belong to different subfamilies introducing background noise that make a blind analysis difficult. 

When looking at PFAMs associated with PTPS-I clusters (C), relevant neighbors such as QueC, QueF 

and FolE (PFAM name: GTP_CyclohydroI) are identified. However, not all PTPS-I clusters are 

present: the clusters 4, 12, 20, 17, 16, and 10 are missing. 
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Figure A1. Genome Neighborhood Network (GNN) generated from the “PTPS paralog” subsystem.
A Sequence Similarity Network was generated with the COG0720 proteins extracted from the “PTPS
paralog” subsystem, but only from genomes that harbored several proteins of the family and that could
be mapped to an Uniprot ID (A); The alignment score threshold was 25. Each SSN cluster is identified
with a unique number. To create the GNN (B), the neighboring (10) genes of each gene in a given
cluster are captured as a PFAM ID. The hexagonal inside nodes are these PFAMs and the external nodes
represent the clusters that have this PFAM in their neighborhoods. Broad PFAM families such as ABC
transporters (ABC-trans) or Histidine kinase (HisKA) are linked to clusters that belong to different
subfamilies introducing background noise that make a blind analysis difficult. When looking at PFAMs
associated with PTPS-I clusters (C), relevant neighbors such as QueC, QueF and FolE (PFAM name:
GTP_CyclohydroI) are identified. However, not all PTPS-I clusters are present: the clusters 4, 12, 20, 17,
16, and 10 are missing.
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