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Abstract: Schizophrenia (SCZ) is a severe chronic psychiatric illness with heterogeneous symp-

toms. However, the pathogenesis of SCZ is unclear, and the number of well-defined SCZ risk fac-

tors is limited. We hypothesized that an abnormal behavior (AB) gene set verified by mouse model 

experiments can be used to better understand SCZ risks. In this work, we carried out an integrative 

bioinformatics analysis to study two types of risk genes that are either differentially expressed 

(DEGs) in the case-control study data or carry reported SCZ genetic variants (MUTs). Next, we 

used RNA-Seq expression data from the hippocampus (HIPPO) and dorsolateral prefrontal cortex 

(DLPFC) to define the key genes affected by different types (DEGs and MUTs) in different brain 

regions (DLPFC and HIPPO): DLPFC-kDEG, DLPFC-kMUT, HIPPO-kDEG, and HIPPO-kMUT. 

The four hub genes (SHANK1, SHANK2, DLG4, and NLGN3) of the biological functionally en-

riched terms were strongly linked to SCZ via gene co-expression network analysis. Then, we ob-

served that specific spatial expressions of DLPFC-kMUT and HIPPO-kMUT were convergent in 

the early stages and divergent in the later stages of development. In addition, all four types of key 

genes showed significantly larger average protein–protein interaction degrees than the back-

ground. Comparing the different cell types, the expression of four types of key genes showed 

specificity in different dimensions. Together, our results offer new insights into potential risk fac-

tors and help us understand the complexity and regional heterogeneity of SCZ. 

Keywords: schizophrenia; abnormal behavior gene set; region; differentially expressed genes; de 

novo mutation; copy number variant 

 

1. Introduction 

Schizophrenia (SCZ) is a severe chronic psychiatric disorder with a prevalence of 

<1% [1] and a heritability of 0.8 to 0.85 [2]. SCZ is characterized by positive symptoms, 

including delusions, hallucinations, and abnormal behavior, as well as negative symp-

toms, including social dysfunction, lack of motivation, and disorganized speech [3,4]. 

However, the genetic basis of SCZ remains largely undetermined, and the associations 

between SCZ’s clinical manifestation and genetics are unclear. Thus, identifying a po-

tential genetic basis for SCZ is needed to understand how these complex components 

contribute to the disorder. 

One of the primary goals of genomic medicine is to identify genetic risk factors for 

diseases. An important method used for discovering the genetic basis of diseases is based 

on using experimental mouse models to translate information from animals to humans. 

The abnormal behavior gene set (MP:0004924) derived from the Mouse Genome Infor-

matics (MGI) database [5] is defined as any anomaly in the actions, reactions, or perfor-

mance of an organism in response to external or internal stimuli compared to the con-
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trols. It is still a challenge to elucidate SCZ genes based on the evidence indicated by the 

abnormal behavior (AB) gene set. 

To our knowledge, limited research has been carried out to systematically investi-

gate which genes in the AB gene set are truly associated with SCZ. Today, the incre-

mental growth of genetic studies provides another chance for using multi-omics integra-

tive analysis to understand the etiology of SCZ, which has already resulted in hundreds 

of genetic loci being associated with SCZ [6]. Meanwhile, the links between psychiatric 

disorders and mutations, including copy number variants (CNVs) and de novo mutations 

(DNMs), have also been firmly established [7,8]. The Schizophrenia Exome Sequencing 

Meta-analysis (SCHEMA) consortium made an extensive effort to identify 10 exo-

me-wide significant genes, with 24,248 cases and 97,322 controls [9]. Since the 22q11.2 

deletion syndrome was first linked with SCZ [10], the research on SCZ and associated 

mutations has rapidly progressed. So far, the evidence for the roles of CNVs and DNMs 

in SCZ is overwhelming [11–15], as summarized in mutation databases such as PsyMuKB 

[16]. In addition, numerous SCZ transcriptome studies have identified various differen-

tially expressed genes (DEGs) between patients and healthy controls [17,18], especially in 

brain regions such as the hippocampus (HIPPO) [17] and dorsolateral prefrontal cortex 

(DLPFC) [18,19]. However, determining the biological significance behind different brain 

regions is still a challenging task for SCZ research. In summary, both types of identified 

genes—genes with genetic variants (MUTs) and those with differentially expressed 

genes—may have different contributions to SCZ and may involve convergent or diver-

gent biological functions. Analysis using the two types of gene sets could serve as a via-

ble investigation method for identifying potential disorder risk factors based on the AB 

genes. 

To better understand (1) which AB genes are the key genes of SCZ, (2) how the 

disruptions of these key genes in different brain regions are involved in SCZ, and (3) 

whether DEGs and MUTs are involved in convergent or divergent biological functions, 

we performed an integrative analysis (Figure 1). Two types of risk genes (DEGs and 

MUTs) were separately overlapped with AB genes from the PsyMuKB database. Then, 

we constructed the co-expression networks separately in DLPFC and HIPPO using the 

RNA-Seq expression data from BrainSeq Phase 2 [17]. Consequently, we identified four 

types of key genes affected by different types (DEGs and MUTs) in different brain re-

gions (DLPFC and HIPPO): DLPFC-kDEG, DLPFC-kMUT, HIPPO-kDEG, and HIP-

PO-kMUT. Four types of key genes from the AB gene set were identified for subsequent 

analysis, including brain function, the protein–protein interaction (PPI) network, and 

spatial and cell-type-specific expression patterns, to uncover all possible underlying ge-

netic links. Together, our results indicate that the key genes found by our integrative 

analysis could help in understanding and studying the potential risk genes in SCZ. 
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Figure 1. Flowchart of the study. (A) Data collection and filtration. RNA-Seq data analyzed in this study were obtained 

from BrainSeq Phase 2, which was also used to identify differentially expressed genes (DEGs). Copy number variants 

(CNVs) and de novo mutations (DNMs) associated with schizophrenia (SCZ) and the abnormal behavior (AB) gene set 

were collected from PsymuKB. DEGs and MUTs separately overlapped with the AB set. (B) The two co-expression net-

works were constructed from the AB gene expression profiles of two different brain regions separately (DLPFC and 

HIPPO). (C) The integrative analyses pipeline, including protein–protein interaction (PPI) analysis, brain function, spa-

tial-specific and cell-type-specific expression patterns, was followed. DLPFC, dorsolateral prefrontal cortex; HIPPO, 

hippocampus. 

2. Materials and Methods  

2.1. Data Collection and Filtration 

The RNA-Seq data analyzed in this study were obtained from BrainSeq Phase 2 [17], 

downloaded from http://eqtl.brainseq.org/phase2 and consisting of 286 SCZ cases and 

614 control samples. We used all 284 SCZ cases and 460 control samples over 18 years of 

age for subsequent analysis. Then, we chose genes that were expressed in the brain (de-

fined as the average RPKM > 0.1 in BrainSeq Phase 2 [17]) for further analysis. The AB 

gene set (Table S1), CNV (Table S2), and DNM (Table S3) data for SCZ were collected 

from the PsyMuKB [16] in-house database (URL: http://www.psymukb.net/). AB genes 

with an average RPKM < 0.1 in BrainSeq were also removed. 
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2.2. Detection of Differentially Expressed Genes 

Differential expression was assessed using the DESeq2 [20] package in R between 

SCZ cases and control samples separately by tissue from 2 brain regions: HIPPO and 

DLPFC. The significance threshold was an adjusted p-value of < 0.05 and a log2 fold 

change (FC) value of > 1.2. 

2.3. Weighted Co-Expression Network Construction and Key Module Identification 

The weighted co-expression network was built using the WGCNA [21] package in R. 

The networks were constructed separately by tissues, and AB genes with evidence of 

robust expression (see above) were included in the network. Then, network construction 

was performed using the blockwiseModules function. The soft-thresholding power was 

chosen based on the smallest threshold that resulted in a scale-free R2 fit of 0.9. We also 

set the minimum module size to 30 genes and the minimum height for merging modules 

to 0.25. Key modules were identified by the odds ratio. The module of each tissue with 

the highest odds ratio and p-value of < 0.01 (Chi-square test) was chosen as the significant 

module for subsequent analysis. 

2.4. Gene Ontology and Gene Set Enrichment Analyses 

Unless otherwise noted, we used the enrichGO function from clusterProfiler [22] for 

gene ontology [23] enrichment analyses with a pvalueCutoff of 0.01 and a qvalueCutoff 

of 0.05. The gene-concept network was plotted using the cnetplot function of clusterPro-

filer. 

2.5. Analysis of Spatial/Cell-type Specific Expression of Genes 

We applied the Expression Weighted Celltype Enrichment (EWCE) R package [24], a 

bootstrap enrichment tool based on the specificity matrix, to conduct an enrichment 

analysis on two datasets: Brainspan [25] for the period and region analyses and Dronc 

[26] data for the adult brain cell type analysis. Specificity used the definition described by 

Saunders et al. (2018) [27]. We first calculated the specificity matrix of 2 single-cell da-

tasets with the “generate.celltype.data” R function. Next, enrichment of all 4 types of 

genes was tested with the “bootstrap.enrichment.test” R function. The background gene 

list was defined by all genes annotated in the tested single-cell dataset. 

2.6. Brain-Expressed PPI Statistics for Disease Genes 

We calculated the numbers of PPI partners with other brain-expressed genes (bPPI) 

in the BioGRID [28] database for all brain-expressed genes. We then compared the aver-

age number of PPI partners for each gene type with other brain-expressed genes referred 

to as the background by bootstrapping 10000 times. p-values were calculated using a 

2-tailed hypothesis test. For example, DLPFC-kDEG contained 99 genes with an average 

of 35.93 PPI partners. We randomly chose 99 genes from among all the brain-expressed 

genes and calculated their average number of partners 10000 times. In 9,962 bootstraps, 

the average number was smaller than 35.93. Since the average number was larger than 

35.93 in only 38 bootstraps, the p-value was 0.0038 for the alternative hypothesis “larger.” 

3. Results 

3.1. Abnormal Behavior Genes Were Significantly Enriched in SCZ Gene Sets 

We focused on genes harboring mutations and differentially expressed genes in SCZ 

patients' brains to define the subsets of different kinds of functional genes in SCZ. We 

first collected genes with genetic variants (MUTs), including CNVs and the DNMs of 

SCZ from PsyMuKB [16], as well as 2363 and 2981 genes that were identified to be dif-

ferentially expressed between an adult with schizophrenia and a healthy control in 

DLPFC and HIPPO, respectively, with p.adj  <  0.05 and fold changes  >  1.2. Next, we ex-

tracted the AB gene set from PsyMuKB [16]. We observed a significant overlap between 
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the AB gene set and the DNM gene (p.adj = 4.04  10−38 calculated using a hypergeomet-

ric test and adjusted with a Bonferroni test) but no significant overlap between the AB 

gene set and the CNV gene (p.adj = 0.138 calculated by a hypergeometric test and ad-

justed by a Bonferroni test) (Figure 2A). For DEGs, significant results were found for both 

overlaps between the AB gene set and DEGs in HIPPO (p.adj = 3.36  10−11 calculated by 

a hypergeometric test and adjusted by a Bonferroni test) and DLPFC (p.adj = 1.11  10−4 

calculated by a hypergeometric test and adjusted by a Bonferroni test) (Figure 2B). In 

summary, except for the overlap between the AB gene set and the CNV gene, the other 

three overlaps were all significant. 

 

Figure 2. Overlaps between the AB gene set and different types of SCZ risk genes. (A) Venn diagram of AB and MUT by 

different types (CNV and DNM). (B) Venn diagram of AB and DEGs by brain region (DLPFC and HIPPO). The p-value 

was calculated by a hypergeometric test and adjusted by the Bonferroni method. AB genes, abnormal behavior gene set; 

CNV genes, genes associated with copy number variation; DNM genes, genes associated with de novo mutation; 

DLPFC-DEGs, differentially expressed genes detected in dorsolateral prefrontal cortex; HIPPO-DEGs, differentially ex-

pressed genes detected in hippocampus. 

3.2. Two Significant Modules Were Identified in DLPFC 

We performed a weighted gene co-expression network analysis (WGCNA) [21] to 

extract the biological information embedded in the multidimensional transcriptome da-

taset, which allowed us to identify modules of co-expressed genes. To identify discrete 

groups of co-expressed genes showing transcriptional differences between SCZ and the 

controls, we constructed a co-expression network using RNA-Seq data composed of both 

SCZ and control samples. Using a combination of SCZ cases (N = 152) and controls (N = 

222) with the RNA-Seq expression data in the DLPFC from BrainSeq Phase 2 [17], 10 

modules were identified, which were first examined for enrichment of DEGs and MUTs 

(Figure 3A). We found that DEGs overlapping with the AB gene set were significantly 

enriched in the black module (odds ratio (OR) = 5.189, Chi-square test p = 1.889  10−19) 

(Figure 3B). The MUTs of SCZ overlapped with the AB gene set and were significantly 

enriched in the pink module (OR = 1.768, p = 0.006) (Figure 3B). No significance was ob-

served for any of the other modules. Thus, we defined genes within the black module as 

the keys of differentially expressed genes in DLPFC (DLPFC-kDEG) Likewise, genes 

within the pink module were considered the key genes affected by mutations in DLPFC 

(DLPFC-kMUT). 

We next explored whether DLPFC-kDEG and DLPFC-kMUT diverged in their bio-

logical or neuronal functions. We performed Gene Ontology–Biological Pathway 

(GO-BP) analysis on DLPFC-kDEG and DLPFC-kMUT alone using the clusterProfiler 

[22] R package. DLPFC-kDEG was significantly enriched with gene ontology terms re-

lated to its response to lipopolysaccharides, positive regulation of cytokine production, 

and inflammatory response, among other factors. (Figure 3C). It was reported that stim-
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ulation of the peripheral blood mononuclear cells by lipopolysaccharides leads to the 

release of cytokines and other inflammatory mediators [29]. Schizophrenic patients fea-

tured an inflammatory cytokine profile and regulatory cytokines. The severity of symp-

toms may affect abnormal cytokine levels in these patients [30]. DLPFC-kMUT, on the 

other hand, was enriched in gene ontology categories related to the synapses, including 

modulation of chemical synaptic transmission, regulation of trans-synaptic signaling, 

and synapse organization (Figure 3D). We also found that 28 genes of DLPFC-kMUT 

overlapped with a synaptic gene group associated with SCZ, as identified by Lips et al. 

[31]. 

 

Figure 3. Module identification and functional enrichment in DLPFC. (A) Clustering dendrograms of the AB gene set 

according to gene expression data in DLPFC, with dissimilarity based on the topological overlap. Each colored row rep-

resents a color-coded module that contains a group of highly connected genes. In total, 10 modules were identified. (B) 

Modules are listed on the x-axis, and the y-axis indicates the odds ratio. The horizontal line indicates the threshold of y = 

1, which distinguishes the modules enriched in a greater proportion by the target genes. The p-value was calculated by a 

Chi-square distribution test. A star with a significant p-value marks two identified modules. (C) GO-BP analysis for the 

black module genes (DLPFC-kDEG) showing the top 10 enriched gene ontology categories. Pathway names are shown on 

the left, and the color of dots on the right represents the adjusted p-value of the corresponding pathway. (D) Gene On-

tology–Biological Pathway (GO-BP) analysis for pink module genes (DLPFC-kMUT) showing the top 10 enriched gene 

ontology categories. The red box indicates the GO terms that were the same as those in the blue module in HIPPO. 

3.3. Two Significant Modules Were Identified in HIPPO 

To identify the key genes in HIPPO, we also constructed a co-expression network 

using similar analyses in DLPFC. With a combination of SCZ cases (N = 132) and controls 

(N = 238) using RNA-Seq data in the HIPPO from BrainSeq Phase 2 [17], eight modules 

were identified (Figure 4A). The yellow module was enriched in genes identified as 

DEGs overlapping with the AB gene set between the SCZ cases and controls, reflected by 

a significant odds ratio (OR = 2.272, p = 7.086  10−06) (Figure 4B). For the MUTs of SCZ 

overlapping with the AB gene set, the blue module was identified to be significantly en-

riched (OR = 1.415, p = 0.005) (Figure 4B). Genes of the yellow module were defined as the 

key for differentially expressed genes in HIPPO (HIPPO-kDEG). Likewise, the blue 

module genes were defined as the key genes affected by mutation in HIPPO (HIP-

PO-kMUT). 
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To determine whether there is a difference in biological or neuronal functions, we 

also performed a GO-BP analysis on HIPPO-kDEG and HIPPO-kMUT alone. We ob-

served that the enrichment of HIPPO-kDEG was associated with gene ontology terms 

related to gliogenesis, glial cell differentiation, and the ensheathment of neurons, among 

other factors (Figure 4C). As observed, the top three gene ontology categories of HIP-

PO-kMUT were consistent with those of DLPFC-kMUT (Figure 4D). This result indicates 

that the MUTs of SCZ featured unified biological functions in both DLPFC and HIPPO 

based on the modulation of chemical synaptic transmission, the regulation of 

trans-synaptic signaling, and the regulation of membrane potential. Many studies have 

noted that subjects with SCZ appear to share a common abnormality in synaptic trans-

mission control [32]. 

 

Figure 4. Module identification and functional enrichment in HIPPO. (A) Clustering dendrograms of the AB gene set by 

gene expression data in HIPPO with dissimilarity based on the topological overlap. A total of eight modules were iden-

tified. (B) The histogram shows significant modules. (C) GO-BP analysis for yellow module genes (HIPPO-kDEG) 

showing the top 10 enriched gene ontology categories. (D) GO-BP analysis for blue module genes (HIPPO-kMUT) 

showing the top 10 enriched gene ontology categories. The red box indicates the GO terms that were same as those in the 

pink module in DLPFC. 

3.4. Comparison between DLPFC-kMUT and HIPPO-kMUT 

Considering the consistency of the top 3 GO terms of DLPFC-kMUT and HIP-

PO-kMUT, we compared the genes of the 2 categories and found that 42 genes were 

overlapped. Moreover, the overlap ratio of genes accounted for 15.2% of HIPPO-kMUT 

and reached 47.7% of DLPFC-kMUT (Figure 5A).  

Considering that DLPFC-kMUT and HIPPO-kMUT converged in their biological 

functions, we combined these two categories of genes to perform the functional enrich-

ment analysis. As shown in Figure 5B, the five most significant GO terms were the mod-

ulation of chemical synaptic transmission (p.adj = 5.93  10−33), the regulation of 

trans-synaptic signaling (p.adj = 5.93  10−33), cognition (p.adj = 5.87  10−23), regulation 

of membrane potential (p.adj = 2.01  10−22), and learning or memory (p.adj = 2.84  

10−24). The two terms (modulation of chemical synaptic transmission and regulation of 

trans-synaptic signaling) shared the exact same genes. In the same way, cognition and 

learning or memory nearly shared the same genes. We observed that 13 genes connected 

these 5 GO terms, 4 of which (SHANK1, SHANK2, DLG4, and NLGN3) belonged to the 

overlap between DLPFC-kMUT and HIPPO-kMUT. 
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After determining that DLPFC-kMUT and HIPPO-kMUT converged in GO enrich-

ment, we sought to determine whether they also had specific expression patterns in 

terms of developmental periods. For this purpose, we applied the Expression Weighted 

Celltype Enrichment (EWCE) R package [24], a bootstrap enrichment tool based on a 

specificity matrix, to the Brainspan [25] dataset. The result showed similar trends during 

the early stages of development (prenatal and infancy) (Figure 5C). However, in child-

hood, adolescence, and adulthood, DLPFC-kMUT and HIPPO-kMUT diverged in the 

following trend: HIPPO-kMUT was specifically expressed in the child, adolescent, and 

adult brains, unlike that of DLPFC-kMUT. Although SCZ usually emerges between ages 

18 and 25, several longitudinal population-based studies have indicated that problems 

appear much earlier [33]. 

 

Figure 5. Comparison between DLPFC-kMUT and HIPPO-kMUT. (A) Overlapping gene counts of DLPFC-kMUT and 

HIPPO-kMUT. (B) GO-BP analysis for a combination of DLPFC-kMUT and HIPPO-kMUT, showing the genes contained 

in the first five most enriched GO terms. Blue dots show the genes contained in one of DLPFC-kMUT and HIPPO-kMUT, 

while the yellow dots show genes contained in both categories. The red box refers to genes related to all five GO terms. 

(C) Period-specific expression of DLPFC-kMUT and HIPPO-kMUT. The p-values calculated by the Expression Weighted 

Celltype Enrichment (EWCE) R package are shown. The x-axis shows the developmental stage, the y-axis shows the 

-log10 value of the p threshold, and the dashed line shows p-value = 0.01. 

3.5. Larger Average PPI Degree Compared with Background 

Furthermore, we explored the roles of our key genes in the gene interaction net-

works. Protein–protein interactions are a key factor in determining protein function and 

are a basic component of cellular protein complexes and pathways since proteins rarely 

act alone. Comprehending PPI is thus crucial to understanding complex molecular rela-

tionships. To understand PPI characteristics, we used a bootstrap test (10000 times) to 

compare the average degrees of four types of key genes with backgrounds defined by 

other genes that are expressed in the brain (average RPKM > 0.1 in BrainSeq Phase 2). 

Four types of key genes all showed a significantly larger average degree than the back-

ground (DLPFC-kDEG: p = 0.0344; DLPFC-kMUT: p = 0.0131; HIPPO-kDEG: p = 0.0049; 

HIPPO-kMUT: p = 0.0001) (Figure 6). In DLPFC-kDEG, for example, the P-value of the 

alternative hypothesis “smaller than the background” was 0.038, indicating that all four 

types of genes might act as hub genes in the PPI network. 
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Figure 6. Joy plot shows bootstrap results comparing the average degrees of different kinds of key genes with other genes 

that are expressed in the brain (average RPKM > 0.1 in BrainSeq Phase 2). x-axis: The difference between the average de-

gree obtained in the bootstrap tests and the actual average degree of the disease genes. y-axis: Density distribution. The 

horizontal line indicates x = 0, which means that the actual average degree equals the average bootstrap degree. The red 

and blue areas indicate the two-tailed test p-value threshold (p < 0.025 and p > 0.975). 

3.6. Different Cell-Type-Specific Expression Patterns 

We also tested the temporally specific expression patterns between DLPFC-kMUT 

and HIPPO-kMUT. As a result, we explored whether DLPFC-kMUT and HIPPO-kMUT 

have specific expression patterns in different cell types. We extended this comparison to 

all four categories via EWCE. 

We also tested the brain cell-type-specific expression in Dronc single-cell data [26]. Comparing the different cell types, 

the expression of four categories of key genes showed specificity in different dimensions. On the one hand, 

DLPFC-kMUT and HIPPO-kMUT were specifically expressed in neuronal stem cells (NSC), microglia (MG), oligoden-

drocyte precursor cells (OPC), granule neurons from the hip dentate gyrus region (exDG), and GABAergic interneurons 

(GABA), while DLPFC-kDEG and HIPPO-kDEG were not specifically expressed. Conversely, DLPFC-kDEG and HIP-

PO-kDEG were specifically expressed in pyramidal neurons from the hip CA region (exCA1/3) (Table 1). Therefore, the 

gene types explained cell-type-specific expression patterns better than brain regions.
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Table 1. Cell-type expression patterns of DLPFC-kDEG, DLPFC-kMUT, HIPPO-kDEG, and DLPFC-kMUT. 

Cell-type-specific expression of four types of genes. The p-values calculated by the EWCE R package are shown. p-values 

< 0.01 are marked as blue. Classes are divided by the number of specific expressions in the four categories. The red boxes 

indicate categories with similar specific expression patterns. NSC, neuronal stem cell; MG, microglia; OPC, oligoden-

drocyte precursor cell; exDG, granule neuron from the hip dentate gyrus region; GABA, GABAergic interneuron; 

exCA1/3, pyramidal neuron from the hip CA region; ODC, oligodendrocyte; ASC, astrocyte; exPFC, glutamatergic neu-

ron from the PFC; END, endotheliocyte. 

Class Cell Type 
p-value 

DLPFC-kMUT HIPPO-kMUT DLPFC-kDEG HIPPO-kDEG 

2 out of 4 

NSC 0.003 0.001 0.999 1.000 

MG 0.001 0.001 1.000 1.000 

OPC 0.001 0.001 1.000 1.000 

exDG 0.001 0.001 1.000 1.000 

GAGB 0.001 0.001 0.731 0.254 

exCA1 0.239 0.485 0.001 0.001 

exCA3 0.282 0.153 0.001 0.001 

3 out of 4 

ODC 0.001 0.001 0.344 0.001 

ASC 0.007 0.001 0.014 0.001 

exPFC 0.033 0.001 0.001 0.001 

1 out of 4 END 0.209 0.019 0.170 0.001 

4. Discussion 

In this study, we identified four categories of key genes (DLPFC-kDEG, 

DLPFC-kMUT, HIPPO-kDEG, and HIPPO-kMUT) in the AB gene set that may be poten-

tial SCZ risk factors and analyzed their characteristics. To our knowledge, this study is 

the first to focus on narrowing the scope of the AB mice gene set to determine the poten-

tial SCZ risk factors. These different categories of key genes will provide insights into the 

functional biology in SCZ. 

In the analysis of gene co-expression, we identified a correlation between the SCZ 

and the AB gene set that strongly depends on the gene type class. In each co-expression 

network, only one module was found for each type of gene. When considering the same 

types of genes associated with different brain regions, strong concordance was found. As 

shown by our analysis and the genetic studies of others [34], different brain regions may 

share a genetic basis, especially in the early development stages. A study of gene expres-

sion patterns in the DLPFC of subjects with SCZ revealed that the gene’s encoding pro-

teins involved in presynaptic function regulation were the most consistently altered [35]. 

The discovery of functional pathways is essential for explaining the biological pro-

cesses of diseases [36]. Determining the essential regulatory pathways that can affect the 

brain's molecular structure or function and that can lead to mental illness is an active 

research topic. Our finding that DLPFC-kMUT and HIPPO-kMUT share precisely the 

same top three GO terms associated with synaptic functions is worth exploring further. A 

previous study confirmed that DNMs on SCZ patients are significantly enriched in genes 

related to synaptic functions [37]. Furthermore, genes shared by the top five GO terms 

are highly associated with SCZ, including SHANK1/2/3, NLGN3, and DLG4. For the 

development stage, specific expression patterns of DLPFC-kMUT and HIPPO-kMUT 

converged in the early stage but diverged in the later stages of the developmental peri-

ods, which confirmed the notion that “early neurodevelopmental" injury may cause SCZ. 

Post-synaptic neuroglial protein (NLGN) is one of the most well-characterized 

synaptic cell adhesion molecules, promoting excitatory and inhibitory synapse for-

mation. In humans, there are five NLGN genes with NLGN1/2 located on the autosomes 
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and NLGN3/4/4Y on the sex chromosomes. Hamilton et al. [38] assessed an Nlgn3 

knockout mouse model that exhibited abnormalities in phenotypes, including juvenile 

play, perseverative behaviors, and sensorimotor gating. In a previous study, 19 genetic 

variants were identified by sequencing all the exons and promoter regions of the neu-

roligin-2 (NLGN2) gene with the cohort consisting of 584 SCZ patients and 549 control 

subjects, and the variant in NLGN2 was identified as a loss-of-function mutant in in-

ducing GABAergic synaptogenesis, which may be an important contributing factor for 

the onset of SCZ [39]. The mRNA expression levels of NLGN3 and SHANK3 were found 

to be significantly decreased in individuals with autism spectrum disorder (ASD) com-

pared to the controls [40]. SCZ and ASD are two severe psychiatric disorders that share 

considerable comorbidities in both clinical and genetic contexts [41]. The genetic influ-

ence of NLGN3 and SHANK3 on SCZ is also worth exploring. 

Post-synaptic density protein 95 (PSD95) is a member of the synapse-associated 

protein family of scaffolding molecules that control the organization, composition, and 

function of synapses [42]. PSD95 is encoded by the disks large homolog 4 (DLG4) gene. 

Feyder et al. [43] characterized increased repetitive behaviors, abnormal communication 

and social behaviors, impaired motor coordination, and increased stress reactivity and 

anxiety-related responses in mice with PSD-95 deletion (Dlg4−/−). A family-based associ-

ation analysis of genetic variants also highlighted a putative role for DLG4 in SCZ path-

ogenesis [44]. In addition, the linkage between DLG4 and SCZ has been well established 

through both variant association [45] and expression studies [46,47]. 

SHANK family members share five main domain regions: N-terminal ankyrin re-

peats, the SH3 domain, the PDZ domain, the proline-rich region, and a C-terminal SAM 

domain. Through these functional domains, SHANK interacts with many PSD proteins 

[48]. This complex has been shown to play an important role in targeting, anchoring, and 

dynamically regulating the synaptic localization of neurotransmitter receptors and sig-

naling molecules [49]. Several genetic Shank mouse models have been generated, in-

cluding Shank1 [50], Shank2 [51,52], and Shank3 [51,53–55] knockout mice models. In 

these studies, assays for detecting behavioral phenotypes in the following domains were 

included: (I) Social behavior, (II) communication, and (III) repetitive and stereotyped 

patterns of behavior. Numerous studies have strongly suggested a causative role of rare 

SHANK1/2/3 variants in SCZ [39,56–58] and have underlined the contribution of these 

variants in a variety of neuropsychiatric disorders. The genetic influence of SHANK1/2/3, 

NLGN3, and DLG4 on SCZ needs further experimental verification. In addition, the 

PSD95/SAPAP/SHANK postsynaptic complex may play an important role in SCZ. This is 

also worth exploring in subsequent research. SCZ and ASD are two different severe 

neurodevelopmental disorders with similar phenotypes and high comorbidity. It will be 

of great significance to study the common pathological mechanisms of the two disorders. 

The four types of key genes all showed significantly larger average PPI degrees than 

the background. The availability of high-throughput PPI datasets has also led to various 

studies [59,60]. Previous analyses have suggested that an interactive network usually 

consists of a small number of highly connected "hubs" and many low degree nodes [61]. 

At the molecular level, highly connected “hub” genes are more sensitive to perturbations. 

Today, high-degree proteins remain a research hotspot. Our analysis suggests that these 

key genes involved in the abnormal behavior of experimental mouse models are more 

likely to be highly connected "hubs" in the network of SCZ. 

Through macroscopic research, many remarkable results have been obtained. 

However, scientists have also begun to focus on the subtle differences between individ-

ual cells from the same organ or tissue to determine cell heterogeneity, which plays a 

vital role in complex neuropsychiatric illnesses. When studying cell-type-specific ex-

pression, DLPFC-kMUT and HIPPO-kMUT were found to be specifically expressed in 

the cells associated with neurons (NSC, MG, GABA, etc.). In SCZ, GABA may play an 

important role in the pathophysiology of SCZ due to changes in the presynaptic and 

postsynaptic components of its neurotransmission [62]. Using biological annotations and 
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brain gene expression, we showed that the mutation class explains specific expression 

patterns better than specific brain regions. 

In summary, although our current study has some limitations, we provided a 

strategy for discovering the potential genetic basis of diseases using experimental mouse 

models to translate information from animals to humans. Our strategy provides new in-

sights into the possibility of studying potential risk genes of SCZ. These key genes we 

discovered may continue to be used to study mental disorders. These four categories of 

key genes provide new inspiration for follow-up experimental verification. These genes 

may serve as biomarkers to be applied as potential therapeutic targets for SCZ. Targets 

identified because they inhabit high-confidence networks related to both risk and the 

illness state may act better than specific gene candidates. These current findings on key 

genes likely foreshadow the regional heterogeneity and biological differences in the gene 

types of SCZ. The present integrative analysis strengthens our understanding of SCZ and 

enhances our ability to find new ways to improve the lives of individuals affected by this 

disorder. 

5. Conclusions 

In our study, we identified four categories of key genes in an abnormal behavior 

gene set that may be potential SCZ risk factors (DLPFC-kDEG, DLPFC-kMUT, HIP-

PO-kDEG, and HIPPO-kMUT) and analyzed their characteristics. We found a similar 

synaptic function between DLPFC-kMUT and HIPPO-kMUT. For the development stage, 

specific expression patterns of DLPFC-kMUT and HIPPO-kMUT converged in the early 

stage of development and diverged later. The four types of key genes all showed a sig-

nificantly larger average PPI degree than the background. Through cell-type-specific 

expression patterns, gene types explained cell-type-specific expression patterns better 

than brain regions. These different categories of key genes may provide insight for se-

lecting biomarkers of SCZ. 
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