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Abstract: Prebiotic chemistry often involves the study of complex systems of chemical reactions that
form large networks with a large number of diverse species. Such complex systems may have given
rise to emergent phenomena that ultimately led to the origin of life on Earth. The environmental
conditions and processes involved in this emergence may not be fully recapitulable, making it difficult
for experimentalists to study prebiotic systems in laboratory simulations. Computational chemistry
offers efficient ways to study such chemical systems and identify the ones most likely to display
complex properties associated with life. Here, we review tools and techniques for modelling prebiotic
chemical reaction networks and outline possible ways to identify self-replicating features that are
central to many origin-of-life models.

Keywords: prebiotic chemistry; automated chemical space searches; chemical reaction networks;
computational modelling; network autocatalysis; self-replicating structures

1. Introduction

The study of prebiotic chemistry requires understanding complex phenomena in-
volving the interplay of highly variable and as-yet uncertain primitive environmental
conditions, often in the context of diversity-generating chemical reactions [1]. These reac-
tions may have together produced large and diverse sets of products that can differ subtly
or dramatically under variable conditions, e.g., [2–5]. This interplay has been speculated
to have produced the emergent chemical systems which gave rise to life. However, the
specific environmental conditions and chemical processes which gave rise to life have now
been lost to Earth’s dynamic geological history, and it is difficult for experimentalists to
recreate all possible combinations of conditions that may have been present on primitive
Earth in the laboratory, or analyze the complex products which often result from such lab
simulations [6].

Computational approaches (see for example [7]) offer efficient ways for chemists to
study chemical systems which may display complex properties conducive to the emergence
of chemical systems with life-like properties. Here we name the putative collection of
chemical processes, their interplay with environmental parameters, and the resultant chem-
ical diversity that appears in such a computational model as a chemical reaction network
representation (CRNR). CRNRs may be thought of as idealized collective material flows
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through allowed reactions channels, which can vary as a function of reaction conditions,
including temperature, pH, concentration, molecularity, etc. (e.g., [8–10]).

These representations may not necessarily be complete descriptions of complex reac-
tion systems, but may nonetheless offer roadmaps for understanding complicated fluxes
through chemical systems. Many aspects of real chemical reaction network (CRN) chem-
istry may not be realized in CRNRs. Understanding why CRNRs fail to accurately mimic
real CRN outcomes is a central challenge for computational chemistry to help understand
prebiotic chemistry and the origins of life, and offers a route to improve the use of CRNs as
guides for such purposes. Many important questions remain as to how real CRNs could
have become capable of Darwinian selection [11,12]. Some authors have suggested the
emergence of complexity due to network properties may be as important as the nature
of the chemical reactions involved in CRNs [13,14]. An overview of current questions
and methods aiding in the exploration of prebiotic chemical reaction space is depicted in
Figure 1.

Figure 1. Some of the current questions and methods for the exploration of prebiotic CRNRs.

Comparing computational and experimental investigations of CRN reactions, real-
world reactions may produce hundreds to millions of products, and their identification is
limited by analytical method detection limits. The size of the product space that can be
practically computed, if not carefully informed by undetermined variables associated with
kinetic parameters, may also grow exponentially (e.g., [15]). Locally variable environmental
factors, such as the presence of certain minerals (e.g., [2,16]), may also alter the course of
reactions and steer product distributions (e.g., [17]). Figure 2 illustrates one example of
how CRNRs attempt to predict the outcomes of real-world CRNs.
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Figure 2. CRNRs may accurately predict the many features of CRNs. (A) The 150–210 amu region of
the mass spectrum of the products of a laboratory formose reaction measured using high-resolution
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in negative ESI mode.
(B) The predicted mass distribution after six generations of the products of the same reaction was
generated using CRNR methods. In this formose reaction, 2 M paraformaldehyde, 1 M glycolalde-
hyde, and 0.05 M Ca(OH)2 were heated in aqueous solution in sealed glass ampoules under nitrogen
at 85° for eight days. The code for generating this figure is described in Supplementary Materials.

Because the salient features of prebiotic chemical systems may be difficult to measure
directly, CRNR methods [18,19], in silico exploration of high-dimensional chemical spaces
(e.g., [15,20,21]), and network theory offer promising tools to explore origins questions
(e.g., [12,22]). As Smith et al. [23] have pointed out, network theory may be useful in the
study of collective chemical behavior. It is crucial that collective systemic behavior be
understood to fully characterize a chemical or biological system, as the study of only one
or a few components of a complex product suite is likely inadequate to infer higher-order
properties of chemical systems.
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A large variety of computational tools can be pipelined in CRNRs to explore prebiotic
chemical reaction space, ranging, for example, from ab initio molecular dynamics (MD)
simulations (e.g., [24,25]) to chemical assembly theory (e.g., [26]), and molecular assembly
trees (e.g., [27]). Informatics has also opened many new avenues of study in biology
and chemistry [28]. Chemoinformatics has rapidly become a routine discovery tool [29],
with ever more powerful open-source resources becoming available [30,31]. Likewise,
the types of chemical systems of prebiotic relevance that CRNRs can be applied to are
diverse, ranging from experimental methods for life detection (e.g., [32]) to the simulation
of primitive planetary atmospheric chemistry (e.g., [33]).

In the present article, we briefly review the developments in computational chemistry
that can assist in the application of CRNR computation and analysis to understanding
problems of astrobiological relevance, especially prebiotic chemistry.

2. Modelling Prebiotic Chemistry: From Individual Reactions to a Network

While performing a bottom-up synthesis of a computational reaction network repre-
sentation, going from a small set of reaction species to a network often requires making
approximations due to time and computing resource limits. One must be wary of the
sacrifice in the accuracy of model predictions when such approximations are made. The
advantages of the different approaches to modelling, from quantum chemistry to graph
theory, must be weighted based on the scale of the network and the desired accuracy.
For example, rigorous quantum chemistry can provide a more precise estimation of the
mechanism, kinetics or outcome of a single reaction, while graph theory-based modelling,
with its less costly computations, can provide a convenient framework for the synthesis, vi-
sualization and analysis of large scale CRNRs from a network theory perspective. Here, we
contrast some of the approaches that have gained traction in prebiotic chemical modelling.

The first of these sets of approaches use quantum chemistry-based computations,
which can provide accurate predictions of reaction outcomes (e.g., [34]). Computational
quantum chemical approaches have been used to understand prebiotic reaction pathways
(e.g., [35–37]); however, these approaches often scale poorly due to the cost of computation
involved, which currently limits their use in simulating complex prebiotic networks [38].
Besides computational resource issues, such approaches may rely on prior knowledge of
intermediate transition states or efficient searches for these intermediates on the reaction’s
potential energy surface (PES) (e.g., [39]). More recently, computational efficiency of
the global optimization problem algorithm has been explored by combining quantum
chemistry techniques with network analysis methods such as exploration of optimal
thermodynamic and stoichiometric pathways [40] or random sampling processes [34].

Chemical graph theory approaches, on the other hand, offer a way to streamline han-
dling of large CRNRs [41,42]. Graph theory is commonly used in computational chemistry
since molecules can be precisely represented as graphs [43], with nodes representing atoms
and edges representing chemical bonds between them. These molecular “graphs” are
then transformed by applying user-defined reaction templates that guide the synthesis
of products using “seed” molecules. The reaction templates are rules that search for a
particular pattern in a molecule, then apply transformations by modifying the edges of the
graphs. The accuracy of reactions performed this way thus has a clear dependence on the
selected reaction mechanism, and can be tuned to be appropriately restrictive or permissive.
For more reliable reaction predictions using graph theory, one can use estimates of thermo-
dynamic parameters to determine the feasibility of a reaction. A schematic describing how
multiple rounds of reaction generation leads to the synthesis of a full network is shown in
Figure 3.
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Figure 3. Schematic for the forward synthesis of a network using graph theory-based tools. Typically,
a set of “reaction rules” are loaded, which specify how certain substructures are to be altered during
a reaction. All the rules are then applied combinatorially to a set of initial reactants, which gives a set
of products as the graph transformations happen that give product molecules, connected by “edges”
representing reactions. Constraints that certain molecules (or “graphs”) with certain substructures
should not form can be used to filter out unstable species. Iterative application of these rules to the
product suite at each step gives a complete CRNR.

Graph theory-based tools have been developed to use intuitive ways of representing
molecules (e.g., simplified molecular input line entry system, SMILES) and codifying
reactions, for instance, the human-readable Graph Modeling Language (GML) format used
in tools such as MØD, a software package developed for graph-based cheminformatics [41].
Graph theory also allows for various generalizations of sophisticated chemical phenomena,
for example, allowing concepts such as autocatalysis and tautomerism, among others, to be
formalized. Graph grammars can encode generalizable reaction mechanisms (referred to in
Figure 3 as “reaction rules”). An early stage CRNR generated for the glucose degradation
reaction using the graph-grammar approaches is shown in Figure 4.

Various tools for constraining the feasibility of reactions using thermodynamic calcu-
lations based on quantum chemistry methods exist. Quantum chemical calculations have
been employed to provide more accurate determinations of the course of reaction pathways
in prebiotic reaction networks [44]. Density functional theory (DFT) methods have been
used to characterize thousands of molecules and chemical reactions [45] but are expensive
in terms of required computing resources. However, there are classical group contribution
methods (GCMs) that are less computationally demanding [46]. Joback and Reid’s classic
GCMs can be used on the chemical reaction spaces with the help of tools such as JRgui [47],
eQuilibrator [48] and the Benson group’s additivity methods [49]. The eQuilibrator pro-
gram makes use of component contribution methods, which are a modification of GCM
methods [50]. Semi-empirical approaches to studying prebiotic chemical thermodynamics
have been made using software packages such as MOPAC [51]. Automated approaches
like AutoMeKin combine molecular dynamics (MD), graph theory algorithms and Monte
Carlo simulations to discover likely relevant reaction mechanisms [52]. Quantum mechan-
ics/molecular mechanics (QM/MM) and MD simulations have been combined to study
prebiotic nucleic acid analogues [53] and lipids [54]. Kua et al. [55], benchmarked thermo-
chemical estimations for compounds thought to be important in protometabolism derived
from eQuilibrator to those derived from more accurate yet computationally demanding
DFT quantum chemical methods, and found them to be remarkably similar.
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Figure 4. A primitive CRNR for glucose degradation reaction, generated using the graph grammar-
based program MØD. The in silico synthesis of this CRNR was done as per the general methods
outlined in Figure 3. The reaction rules used were selected based on prior knowledge of mechanisms
known to dominate in this chemical system under pH and temperature conditions of interest. A single
cycle of reaction rule application (i.e., one “generation”) is shown here. In the visual representation
used here, molecules are shown in ovals, while reaction nodes are shown as squares.

Interactive frameworks for exploring chemical reaction space have been developed,
for example Molpher software [56]. Bespoke automated computational approaches for gen-
erating CRNRs can be constructed modularly, for example by integrating graph grammar
operations such as those used in MØD [41], reactive molecular dynamics tools such as
ReacNetGenerator [57] and Python (programming language frameworks) such as Reac-
tion Mechanism Generator (RMG) [58,59], CGRtools (Condensed Graph of Reaction) [60],
and Rule Input Network Generator (RING) for generating CRNRs from complex reactive
systems [61], among others. Other tools potentially useful for constructing such pipelines
include pReSt [62] to discover novel chemistries in automated CRNRs, and CERENA
(ChEmical REaction Network Analyzer) [63] to model stochastic chemical kinetics in
chemical reaction networks.

For the sake of simplicity, many computational studies relying on graph theory use
flattened molecular representations that lack stereochemical information, but stereochemi-
cal information can be encoded in such frameworks [64]. Such information can be used
to gain insight into the kinetic mechanisms of stereochemical symmetry breaking which
evidently occurred during the emergence of homochiral biological systems [65]. Efficient
stereochemical handling in chemical reaction networks is so far limited to relatively small
systems [66], partially due to complexities in representing Cahn—Ingold—Prelog rules to
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unequivocally label stereoisomers. The ability to more agiley model stereochemical trans-
formations would be a major advance for this field. Open source stereoisomer generation
methods include RDKit’s EnumerateStereoisomers module [67] and MAYGEN [68], among
many others.

3. Detection of Autocatalytic Motifs in Computed Chemical Networks

A common feature of origins of life models is the involvement of self-replicating
molecules or systems [69–74], which can be quantified as autocatalytic sets within CRNs [75].
Autocatalysis represents a range of phenomena of variable complexity potentially responsi-
ble for many processes of prebiotic interest [76], for example the formose reaction e.g., [77]
and formaldehyde-catalyzed HCN oligomerization [78]. The detection of the emergence
of autocatalysis is a major goal of prebiotic chemistry [79], and autocatalytic reactions
may represent an important link between prebiotic chemistry, primitive metabolism and
modern biochemistry [80–82]. It remains to be determined how common autocatalytic
reaction systems are; they may be rather common but simply hard to detect, depending on
their kinetics, complexity and context, or truly relatively rare.

There are two fundamentally different types of autocatalytic networks: ones which
produce autocatalysis through topological network effects and those which generate feed-
back catalysis [83], in which some products of the reaction networks serve as true catalysts
(as opposed to network catalysts) for existing or novel reactions. Both types can potentially
fundamentally change the evolution of CRNs [79,84,85].

The former type depends most heavily on thermodynamic considerations: in order
for a large number of reactions to proceed favorably and at a comparable pace, they must
have low activation energy barriers. Indeed a frequent aspect of many proposed prebiotic
chemical reactions is their seeding by high free-energy species generated by the action
of environmental energy sources (e.g., HCHO or HCN generated by electric discharges,
photochemically, etc.). CRNs can be driven by various energy inputs (e.g., [9]), including
radioactive decay [86–89], though it might be expected that solar radiation may be more
important due to its larger flux [90], and the dissipation of potential chemical energy likely
plays a role in the development of CRNs. Dissipative chemistry may partially explain the
growth of complex CRNs [91]. Semenov et al. [92] studied a nonenzymatic autocatalytic
reaction network using continuous st flow reactors and found them to display oscillatory
behavior. CRNRs may offer methods for designing such chemical systems rapidly from
first principles. An autocatalytic loop motif in a sample CRNR is illustrated in Figure 5.

Andersen and colleagues [93] have proposed the use of integer hyperflows, which
explore how varying stoichiometric relationships among CRN pathways may affect the
overall flux of material through them as tools for the universal definition of autocatalysis
in chemical reaction networks. Chemical cycles such as the reverse tricarboxylic acid
cycle have been explored computationally [94,95], and graph grammar methods can also
be applied to study alternative prebiotic pathways such as Eschenmoser’s glyoxylate
pathway [96].
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Figure 5. General features of autocatalysis and a specific example of an autocatalytic cycle detectable
within CRNRs. (A) The basic idea of autocatalysis is that a sequence (or network) of reactions begins
with a specific molecule A and produces more than one copy of A, assuring that the cycle produces
more A than it consumes. (B) A concrete example of such a cycle within a larger CRNR. Here, two paths,
A → B → E → F → A and A → B → C → D → A, contribute to produce stoichiometrically larger
quantities of A. The CRNR illustrated here was produced using five rounds of reaction generation in the
glucose degradation chemistry discussed above. The layout of the graph was executed using Gephi.
The size of the nodes corresponds to each node in-degree. Each color represents a new generation.

4. Use of Machine Learning (ML) for Understanding CRNs

ML has transformed computational chemistry and also holds immense potential for
exploring chemical systems [97,98]. ML and neural networks (NNs) have been used to
explore molecular structures, reactions and reaction mechanisms (e.g., [99]), and these
methods can be applied for exploration of the generated CRNRs. The number of chemical
reactions or transformations a molecule can participate in can be examined using auto-
mated reaction template analysis [100]. Much like graph theory-based implementations,
deep learning has been applied to generating molecular structures and predicting their
properties [101]. The use of ML in cheminformatics to predict plausible reaction mech-
anisms (e.g., [102,103]) has allowed approaches such as NN-based methods to predict
chemical reaction space [104]. Combined graph theory-NN methods have also been used
to predict the activation energies of organic reactions [105].

ML methods have been coupled with chemoinformatic molecular descriptors [106] and
structure-based reactivity estimation approaches to predict reaction outcomes [107,108]. Deep
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learning, which is a subset of ML, has been used in chemical reaction prediction [109] and to
predict reaction yields [110] using interfaces like IBM RXN for Chemistry [111,112], which
can be further modified to predict enzymatic reactions [113], and being open-source, these
approaches can be readily modified to meet user requirements. Meuwly [114] reviewed
the utility of ML methods for chemical reactions. To date, we are not aware of careful
comprehensive comparisons of these methods which would suggest one approach is better
than another, merely that applying such approaches culls CRNR outputs.

5. Problem-Specific Cheminformatic Tools and Approaches
5.1. Computing Molecular Descriptors

It is often useful to characterize chemical species quantitatively using molecular struc-
ture based metrics. “Molecular descriptors” estimate properties such as octanol/water
partition coefficients (LogP), aqueous solubility [115], and drug-likeness [116], among
various other properties including topological and geometric ones. Computed descriptors
provide a way to compare a wide range of species with varied structural and chemical
properties, and to identify particular molecules with certain desirable properties or col-
lections of properties among very large datasets. Descriptor-based analyses are often
used for chemical space exploration, e.g., [117]. Tools for descriptor computation include
PaDEL [118], RDKit [119], ChemDes [120,121], Mordred [122], CDK-GUI [123] and Py-
BioMed [124]. There is some overlap with respect to the descriptors each of these packages
computes, in addition to unique functionalities of each package.

5.2. Broad Functionality Chemoinformatics Tools

RDKit [119] is a widely used general purpose cheminformatics package with functionali-
ties for molecular manipulation, curation, library building, and molecular analysis that also
computes numerous molecular descriptors supporting various cheminformatics input for-
mats such as SDF, SMILES, MOL and reaction templates such as SMARTS and SMIRKS [125].
Similar toolkits exist which have at least some degree of overlap in functionality, such as
CDK [123], Indigo Toolkit [126], and OpenBabel [127], and are available as a bundle within a
single package called Cinfony [128], which provides a simplified programmable application
programming interface (API) for cheminformatic operations, and Chembench [129], which is
a publicly accessible cheminformatics web portal to mine and model chemical data.

5.3. Handling Isomerism

Representations of molecular structures are approximations of real chemical bonding,
and chemists have developed several concepts, such as resonance and tautomerism, to
deal with nuances glossed over by these shorthand representations. These phenomena
have collectively been termed delocalization-induced molecular equality [130], and the
multiplicity of equivalent representations of the same compound can create complications
in the computational generation of reaction networks, as they may introduce meaningless
redundancies. Tautomerism is a challenging problem in computational chemistry [131] and
tautomers may represent unique formalisms for understanding how chemicals engage in
reactions, thus making their representation meaningful. There are many open-source soft-
ware packages and libraries available for treatment of computationally generated tautomers
and isomers. Tautomer generation can be accomplished using open-source tools such as
AMBIT [132], TautGen [133], and RDKit’s MolVS Wrapper [134], which has been used to
enumerate all possible tautomers in small molecule libraries [135]. Each of these has its own
unique approaches to enumerate and prioritize tautomeric structures. Commercial software
packages, including OpenEye [136], Chemaxon [137] and CACTVS [138], are also able to
enumerate and rank tautomeric structures in terms of their relative importance. Databases
like TautoBase [139] may also help in the comparison and evaluation of tautomers.

It is often important to find the lowest energy conformers of chemical species to
predict energetically plausible reaction mechanisms. Several methods are available to
explore PES for this purpose, each with its own nuances and utility. Applications like
Molassembler [140] combine molecule generation and conformer exploration methods in
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a single package. Conformer generation tools using semi-empirical approaches include
DataWarrior [141], OMEGA [142], Balloon [143], Confab [144], ConfGen [145], Frog2 [146]
and RDKit, which use various force-field estimations and algorithms [147,148]. Packages
employing molecular mechanics such as Tinker 8 [149] have also been used for conformer
generation, which allows thorough searches for low-energy conformers [150].

Graph-based conformer clustering methods, such as AutoGraph, are helpful for
generating ensembles of lowest-energies conformers after conformers have been processed
with semi-empirical methods [151].

5.4. Miscellaneous Tools

Libraries such as ChemPy [152] and Catalyst.jl [153] were built to explore the dynam-
ics of chemical reaction networks by solving systems of coupled continuous or stochastic
differential equations and handling of chemical kinetics processes. Apart from Python,
several cheminformatics tools and libraries have been developed in other languages as
well, including, in the R programming language, such resources as ChemMine tools [154],
ChemmineR [155] and rcdk [156]. The MolecularGraph.jl package provides cheminfor-
matic capabilities using the Julia language [157].

Platforms like Dask [158] help bring the power of parallel computing to cheminformatics
for large-scale, rapid analysis and manipulation of cheminformatic data. Calculated molecular
fingerprints are used for rapid substructure matching and similarity searching [159] and can be
calculated with tools like chemfp [160]. Molecular Set Comparator [161] uses cheminformatic
approaches to compare two sets of datasets and properties like Tanimoto distances [162] are
used to compare similarities in molecular representations as reduced to a two-dimensional
mapping using t-distributed stochastic neighbor embedding (t-SNE, [163]). Statistical tools
like principal component analysis (PCA) can also help in similarity clustering, which can be
useful for identifying where similar types of species are generated among CRNs. Various
visualization tools, including chemical scaffold networks and trees, can be generated and
analyzed using automated scaffold graphs [164] or deep learning methods [165]. These may
assist in the interpretation of the organization of these features as they are generated in CRNs.

Generating pKa data for organic molecules can be done by using proprietary software
such as ChemAxon, and there has been considerable interest in computationally predicting
pKa values, either by using ML methods coupled to QSAR (Quantitative Structure-Activity
Relationship) [166,167] or by using Graph NN methods [168], developing interactive
applications such as MolGpka [169].

Stoichiometric network analysis and flux balance analysis for such networks [170,171]
can help get kinetic information off the reactions participating in the network.

6. Experimental Vetting of the Computational Methods

Experimental validation of computational models can be accomplished through com-
parison with products detected using chemical analysis [172,173], for example by using
integrated NMR and mass spectral approaches [174–176], which provide complementary
information regarding chemical diversity and bonding. Van Krevelen diagrams are used by
geochemists to characterize large sets of chemical species by plotting the atomic ratios of
certain elements. Automated R and Python libraries exist that can generate Van Krevelen
diagrams from MS data [177,178]. Kendrick mass defect (KMD) analysis has been used to
study large chemical networks using FT-ICR-MS data [32,179], allowing easy identification
of homologous series of molecules. R programming language libraries to rapidly analyze
such data to generate Kendrick mass defect (KMD) diagrams are commonly used [180].
To see if a CRNR is able to synthesize known metabolites, it may be useful to refer to
databases like REAXYS [181], the Human Metabolites Database (HMDB, [182]), and the
Kyoto Encyclopedia of Genes and Genomes (KEGG, [183]). The R package biodb [184]
provides an interface for querying such chemical databases, while open source packages
like Webchem enable scraping of several databases of interest [185]. Similar software
packages are available to query these databases, such as PubChemPy for PubChem [186].
Many of the compounds and reactions submitted to the databases discussed in this section
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are biologically, medically, or industrially relevant. There is a need unified for libraries
and databases of prebiotic relevance that accurately predict compounds that should be
expected to occur in abiotic systems. Creating databases specific to prebiotic considerations
would help train the data used in Machine Learning (ML) models.

7. Visualization of Chemically Relevant Datasets

Visualizing dense datasets is a challenge in computational chemistry [187] and there
are various interactive approaches for displaying “big data”, such as the use of minimum
spanning trees in TMAP [188] and WebMolCS [189] for interactive visualization of chemical
space. CRNRs can also be visualized using Gephi [190] (see Figure 6). To visualize networks
using Gephi, firstly, a “source-target” table is required that lists how the nodes are connected,
indicating which reactive node or product of a certain reaction is relevant. Subsequently,
a layout based on the Gephi Force-Atlas 2 algorithm is made to show how to group the
clusters according to its connectivity. Some additional tools that are used to visualize CRNRs
are CytoScape [191], NetworkX [192], Graph Tool [193] and ReNView [194].

Graph databases such as Neo4J [195] can aid in developing pattern searching algo-
rithms, along with enhanced visualizations of the reaction sequences generated. The
associated SMILES format for cheminformatics can be visualized and embedded using
tools such as SmilesDrawer [196] and Leruli [197], which help in the development of
web-based representations of datasets for easier community access.

Figure 6. Gephi representations of CRNRs for (A) glucose degradation, (B) formose reaction, (C) pyru-
vic acid degradation, and (D) the reaction of HCN + NH3. All CRNRs were generated using the
graph-grammar techniques previously discussed, and the figures shown here were produced using
the Gephi software. Such visualization tools are helpful for broad visual classification of CRNRs. The
size of the nodes in these graphs is proportional to the node’s in-degree as a function of how many
edges reach it. Node color indicates the generation in which each compound was first generated.
The code for generating this figure is described in Supplementary Materials.
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8. Conclusions

There has been considerable progress in computational methods to predict the out-
comes of organic reactions. Detailed and accurate modelling procedures exist for the
prediction of most single-step reactions and for reactions with ambiguous mechanisms.
However, applying such techniques to concatenated reactions is often resource-expensive
and difficult to scale to the degree that it would be of benefit to prebiotic chemists. Less
sophisticated techniques involving lesser computational costs, such as those based on
graph theory, exist, but they come at the expense of reliability of the predictions, as they
are not based on estimates of some physical or chemical parameters that drive reactions.

To accommodate the needs of prebiotic chemists, it is likely preferable to employ
a blend of chemical graph theory that is guided by thermodynamic energy estimates
to determine reaction feasibility using semi-empirical methods (e.g., the eQuilibriator
API). Such semi-empirical methods provide a good approximation consistent with low-
level quantum mechanical treatments. Having generated a network, one can study the
essential features of the chemistry that is involved. In this context, being able to identify
self-replicating features such as autocatalytic cycles could be useful for prebiotic chemists.
Although an agreed-upon definition of autocatalysis remains to be defined, it is possible to
detect topological features in networks that one considers to resemble autocatalysis.

Studying large networks and analyzing their product suites manually can be difficult.
One can make use of statistical metrics to quantify broad, important features of the network
as a whole, or find clusters within the network. Additionally, one can make use of molecular
descriptors to quantitatively assess structural properties of the products of the chemistry
and see how they vary within the network. As for any scientific model, the ultimate test
for these computer models is an agreement with the experiment. One ought to test if
the CRNR predictions can match with observations, which could be gathered using mass
spectrometry or analytical detections of experimental syntheses.

There are many potential applications of these computational tools to astrobiology,
including understanding prebiotic chemistry and the origins of life. In addition to concerted
studies to increase the accuracy of prediction methods, the development of user-friendly
open-source pipelines will allow much greater community development of methods for
rapidly exploring prebiotic chemistry in silico to understand real-world phenomena.

Supplementary Materials: The code for generating Figures 2 and 6 is available online on GitHub:
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