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Abstract: It is believed that the codon–amino acid assignments of the standard genetic code (SGC)
help to minimize the negative effects caused by point mutations. All possible point mutations
of the genetic code can be represented as a weighted graph with weights that correspond to the
probabilities of these mutations. The robustness of a code against point mutations can be described
then by means of the so-called conductance measure. This paper quantifies the wobble effect, which
was investigated previously by applying the weighted graph approach, and seeks optimal weights
using an evolutionary optimization algorithm to maximize the code’s robustness. One result of
our study is that the robustness of the genetic code is least influenced by mutations in the third
position—like with the wobble effect. Moreover, the results clearly demonstrate that point mutations
in the first, and even more importantly, in the second base of a codon have a very large influence on
the robustness of the genetic code. These results were compared to single nucleotide variants (SNV)
in coding sequences which support our findings. Additionally, it was analyzed which structure of a
genetic code evolves from random code tables when the robustness is maximized. Our calculations
show that the resulting code tables are very close to the standard genetic code. In conclusion, the
results illustrate that the robustness against point mutations seems to be an important factor in the
evolution of the standard genetic code.

Keywords: genetic code; point mutations; wobble effect; evolutionary algorithm

1. Introduction
1.1. Motivation

The origin and the structure of the standard genetic code (SGC), i.e., the codon–amino
acid assignment is still a subject under research [1]. There are at least three major theories
(overview in [2]): (1) The stereochemical theory states that codon assignments for specific
amino acids are determined by physicochemical affinities between amino acids and cognate
codons or anticodons [3]. This hypothesis is not very well supported by experimental data,
though. (2) The coevolution theory explains the structure of the standard code by pathways
of amino acid biosynthesis which were added step by step [4,5]. (3) A third theory (adaption
theory) claims that the SGC has evolved under selective pressure to minimize translation
errors [6]. In particular, the code is robust against point mutations under this assumption.

All three theories agree to some extent that evolution has included more amino acids
to be encoded [7,8]. Understanding the principles of the genetic code enables the develop-
ment of a modified SGC with non-canonical amino acids [9,10]. This is of importance in
biotechnology as, for instance, it facilitates the development of novel drugs. Recently, Błażej
and colleagues analyzed the extension of the SGC that was inspired by the robustness of
the code against point mutations [11].
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A graph-based approach was presented in our previous work [12] which quantifies
for a (generalized) genetic code its robustness against point mutations. A weighted graph
represents possible point mutations for each codon (or tuple in general). We demonstrated
that such a genetic code shows better robustness and the weights are related to the wobble
effect. This paper continues our work and searches for weighted graphs that maximize the
robustness of the standard genetic code.

1.2. Conductance of the Genetic Code

This section briefly recalls the definitions from [12] which are based on [13]. Let Σ
be a finite alphabet of even cardinality |Σ| = 2n for some n ∈ N. As a special alphabet
B = {A, C, G, T(U)} is used for the standard genetic alphabet.

Definition 1. Let ` ∈ N and P = {p{N,N′}
i | i = 1, . . . , `, N 6= N′ ∈ Σ} where p{N,N′}

i are
non-negative weights. We define a weighted graph G(V, E) = GP

l (V, E, w) as follows:

(1) V = Σ` is the set of vertices (nodes) representing all possible `-letter words over Σ;
(2) E is the set of edges where (c, c′) ∈ E if and only if c, c′ ∈ V and c differs from c′ in exactly

one position;
(3) The function w : E → P assigns to every edge (c, c′) ∈ E a weight p{N,N′}

i by

w((c, c′)) = p{N,N′}
i if and only if c differs from c′ in position i ∈ {1, . . . , `} and

ci = N, c′i = N′.

If for all i ∈ {1, · · · , l} the weights p{N,N′}
i are independent of the choice of N, N′ we will

simply denote the weights p{N,N′}
i by pi.

According to Definition 1 the graph G is weighted, undirected, and regular. Note

that the weights are symmetric, i.e., p(N,N′)
i = p(N′ ,N)

i . Given Σ = B = {A, C, G, T(U)} the
graph G has a biological interpretation: The set of edges E represents all possible single
point mutations, which can occur between codons in protein-coding sequences. Such
point mutations appear quite often and might lead to fatal changes in translated proteins
(see [14]). The weights pi can be considered, if standardized, as the probabilities with which
a point mutation occurs at position i. This definition also takes into account that these
mutation probabilities may depend not only on the position in the codon, but also on the
base pairs. For example, it is likely that the mutation U→ G in the third position of a codon
occurs more frequently than the mutation U→ A [15]. Figure 1 depicts an example of a
graph that satisfies Definition 1.

Figure 1. The graph G for Σ = B = {A, C, G, U}, ` = 2 and all weights p{N,N′}
i = 1. For simplicity,

tuples of length 2 are used instead of codons (` = 3)—which leads to only 16 instead of 64 nodes.
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Given this definition, we might ask how the set of all available codons (`-tuples in
general) could be partitioned into disjoint subsets where each subset represents an amino
acid to be encoded and where the influence of single point mutations is minimal. This can
be achieved by solving a graph clustering problem.

Let Ck be a partition of nodes of the graph G into a fixed number 1 < k ≤ (2n)` of
disjoint non-empty subsets Ck:

Ck = {S1, S2, . . . , Sk : Si ∩ Sj = ∅, S1 ∪ S2 ∪ . . . ∪ Sk = V}.

Each subset Si in this partition is supposed to contain codons that encode the same
amino acid. According to [13] the “quality” of such a partition can be measured by means
of a so-called conductance. We first define the conductance for a single subset S of V [16]
and adapt then the definition from [13] to weighted graphs:

Definition 2. For a given weighted graph G = G(V, E, w) let S be a subset of V = Σl . We define
the set-conductance of S as:

φ(S) =
w(E(S, S))
∑

c∈S,(c,c′)∈E
w((c, c′))

where w(E(S, S̄)) is the sum of the weights of edges of G crossing from S to its complement S̄:

E(S, S̄) := {(c, c′) ∈ E : |{c, c′} ∩ S| = 1}.

We set w(E(S, S̄)) := 0 if E(S, S̄) = ∅. As an extension, the set-robustness ρ(·) is addition-
ally defined as

ρ(S) := 1− φ(S).

Figure 2 shows an example for Definition 2. In a biological context, φ(S) has a useful
meaning. If all codons of S encode the same amino acid or the stop signal, then φ(S) is the ratio
of the number of non-synonymous single nucleotide substitutions to all possible nucleotide
substitutions. Analogously, ρ(S) = 1− φ(S) represents synonymous mutations and thus the
robustness of a cluster of codons against point mutations. An ideal code, in this context, would
have a conductance φ(S) = 0 or, equivalently, a robustness ρ(S) = 1. Note that some greater

weight p{N,N′}
i of one edge in E(S, S̄) (see Definition 1) means more robustness against point

mutations in the sense that p{N,N′}
i increases w(E(S, S̄)) in the numerator of φ(S). Hence φ(S)

will increase as the sum off all weights in the denominator contains w(E(S, S̄)) + w(E(S, S))
whereas the weights in w(E(S, S)) remain the same.

The conductance for a partition was proposed in [17], adopted in [13,18] and is defined
as the conductance of the “weakest link in the chain”:

Definition 3. For a given weighted graph G = G(V, E, w) the conductance of a partition Ck of
V = Σl is defined as

Φ(Ck) = max
S∈Ck

φ(S).

Φ gives a characterization of the quality of a partition Ck as the set conductance of
the worst l-letter group in this partition. However, there might be a problem: If an amino
acid-like Methionine is encoded by exactly one codon (like in the standard genetic code)
we always have Φ(Ck) = 1 no matter how good the other set-conductances are. This can
be mitigated by the definition of average conductance.
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Definition 4. The average conductance of a partition Ck is defined as

Φ̄(Ck) =
1
k ∑

S∈Ck

φ(S).

In addition to the average conductance, there is also the average robustness.

Definition 5. The average robustness of a partition Ck is defined as

P̄(Ck) = 1− Φ̄(Ck)

or equally

P̄(Ck) =
1
k ∑

S∈Ck

ρ(S).

Figure 2. The graph of S = {ACU, ACC, ACA, ACG} inside the graph G for Σ = B. The set-
conductance is φ(S) = 24/56'0.43.

The average conductance for the SGC with all weights set to 1 is Φ̄(CSGC)'0.81 [19].
It can be decreased to Φ̄(CSGC; PM)'0.54 when the weights are set according to Table 1
which was proven in [12] (Table 1). However, it is an open question whether these weights
are already optimal.

In this paper, we search for optimal weights that minimize the average conductance
Φ̄. We also look for a genetic code table that minimizes the average conductance while the
weights in Table 1 are fixed.



Life 2021, 11, 1338 5 of 17

Table 1. Weight distribution PM as introduced in [12]. Each table shows the weights according to
base position 1 to 3 within a codon (see number in upper left corner). In accordance with Definition 1

the values are p{N,N′}
1 = p{N,N′}

2 = 1 for all N, N′ ∈ B with N 6= N′, p{U,G}
3 = p{A,C}

3 = 2 and

p{U,C}
3 = p{A,G}

3 = 4.

1 U C A G

U 0 1 1 1
C 1 0 1 1
A 1 1 0 1
G 1 1 1 0

2 U C A G

U 0 1 1 1
C 1 0 1 1
A 1 1 0 1
G 1 1 1 0

3 U C A G

U 0 4 2 2
C 4 0 2 2
A 2 2 0 4
G 2 2 4 0

2. Materials and Methods

This section introduces the methods for the optimization of the conductance according
to Definition 1. We show three possible ways to approach this topic.

(1) The first problem is the optimal adjustment of the weights to minimize the con-
ductance of the SGC (this task is abbreviated as and later referred to EA weights).
In Section 2.1 we describe the optimization algorithm used to achieve these objectives.

(2) The second attempt is to find a genetic code table with 21 classes such that the
average conductance is optimal with respect to the weighting of the graph according
to (a) Table 1 and (b) the optimal weights found in (1) (task EA code table).

(3) Finally, we discuss if both the weights and the structure of genetic code, are opti-
mized.

Subsequently, in Sections 2.2 and 2.3 the adjustments of the EA for the three methods
are outlined. Concluding, Sections 3.1–3.3 and 4 discuss the results obtained.

2.1. Evolutionary Algorithm

We choose an evolutionary algorithm (EA; also genetic algorithm) to solve the opti-
mization problem [20,21]. EAs are algorithms suitable for discrete optimization problems
inspired by Darwin’s theory of evolution. In the simplified model of Darwin’s theory used
in EAs, a population evolves through mating and mutation to adapt to the environment.
This process consists of crossing over the individuals in the population followed by a cer-
tain number of mutations within the population and a final selection of the fittest member
(see Figure 3).

The EA only provides a framework for optimization. The number of individuals
that are mated or mutated is parameterized and can be set according to the application.
Additionally, a factor can be set to control the survival rate after each iteration. The algo-
rithm also demands the definitions of the crossover and mutation functions and a function
to obtain a numerical fitness value. The ∆ parameter controls the termination condition.
It is defined in such a way that if the change of the fitness of the best individual in the
population in the last optimization step is smaller than ∆ then the condition is fulfilled and
the EA is terminated. Our implementation is based on the R package GA (short for: genetic
algorithm) [22].
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Figure 3. Simplified flow chart of a evolutionary algorithm (EA).

2.2. Optimal Weights

In order to optimize the weights (task EA weights), they must first be put into a suitable

form. Table 1 illustrates the weights as an example. A weight p{N,N′}
i at an edge repre-

senting a mutation is specified by the position of the mutation and the type of mutation.
The position i of the mutation indicates which matrix must be used to select the weight.
This can be identified by the position index in the upper left corner of the matrix. The type
of the mutation {N, N′} ∈ B gives the row and the column and therefore the actual weight.
While the regular base N is specified by the row index, the mutated base N′ is specified by
the column index. From Definition 1 it follows that elements on the diagonal are undefined
and we set them to 0. Since the graph is undirected it follows that the values in the matrix
are symmetric.

The matrix row-column indexes for every base position according to Table 1 are
transformed into a linear list in order to implement the crossover function. The three
matrices and the list share the same data and can be used alternately. The used mapping is
outlined in Table 2.

Table 2. The index transformation from the row-column system to a linear indexing system. (a) All
non-zero columns are mapped to a linear index ranging from 1 to 18. (b) List with values of Table 1.

(a) Indices
Base position U↔ C U↔ A U↔ G C↔ A C↔ G A↔ G

1 1 2 3 4 5 6
2 7 8 9 10 11 12
3 13 14 15 16 17 18

(b) Values
Base position U↔ C U↔ A U↔ G C↔ A C↔ G A↔ G

1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 4 2 2 2 2 4

For each pair of parents to be mated, a crossover point between one and 18 is randomly
selected. The offspring is generated by exchanging the weights of the parents with each
other until the crossover point is reached. This procedure relies on the linear index system
from Table 2.

The algorithm mutates a randomly chosen position in one of the three matrices.
The mutation is represented by the multiplication of a randomly chosen weight and its
symmetric element. The factor is a uniform random number between 1

1.2 and 1.2 which
reflects a mutation rate of ±20%.
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This fitness for the weight matrices P represents the robustness of the genetic code
(see Definition 5) with respect to the weight matrix P:

f (P) = P̄(CSGC; P)

The optimization is started with a population of 150 random weight tables. The cross-
over rate is 60% and the mutation rate 40%. The optimization is terminated if the increase
of the fitness is less than a given threshold of ∆ = 10−6. According to Definition 1 the
weights have to be positive real numbers. It should be noted that some weights could go
to infinity and others to zero without further restrictions to the EA, though this did not
happen in our optimizations.

Finally, after an optimization process the weights are normalized as the assignment of
weights is not unique which is an intrinsic property of the conductance (see Definition 2).
The weights can be scaled by any factor. As the 3 matrices contain 36 non-zero values
(where actually only 18 can be different) we impose the constraint that the sum of all
weights is 36. This is equivalent to a graph where all edges have a weight of 1. We show
that this constraint is valid. Let P be the weights and S any partition.

s = ∑
p{N,N′}

i ∈P

p{N,N′}
i

P′ = {p{N,N′}
i · 36

s
: p{N,N′}

i ∈ P}

Then the conductance φ(S) is the same with P or P′ which is clear if we look at a
simplified equation of φ(S). Let x, y ∈ R be the numerator and denominator of φ(S) = x

y
with respect of the weight matrices P. Then one can simplify the equation φ(S) with respect
to the new weight matrices P′ as:

φ(S) =
x · 36

s

y · 36
s

.

Yet, now the following holds:

∑
p{N,N′}

i ∈P′

p{N,N′}
i = 36. (1)

2.3. Optimal Genetic Code Table

In a reverse approach, we want to optimize the partitioning using given weight
matrices (task EA code table). More precisely, this method searches for a code table that
maximizes the robustness while the weight matrices related to the SGC are fixed. The only
constraint we impose is that we decompose the 64 codons of this table always into 21 classes.
Note that the number of classes must be fixed and cannot be left to the algorithm as a
further variable to be optimized. This constraint results from the fact that a code with a
degeneracy of one would always be the optimum and thus the result would always be the
same and without significance.

As introduced above we use an EA for this task. Yet, the crossover and mutation
operators must be adapted to the additional condition that a partition requires 21 classes.
Hence, we have decided that the crossover function, as well as the mutation function, will
ensure that the code tables will consist of 21 classes. To ensure that the crossover operator
meets the requirements, only one offspring per mating is produced instead of two. This
offspring is the result of a simple random mating of the parents. The randomness is only
affected by the assurance that the offspring has 21 classes. The implementation of the
crossover operator is introduced in the pseudo-code listed in Algorithm 1.



Life 2021, 11, 1338 8 of 17

Algorithm 1 Crossover operator for partitions

function CROSSOVERPARTITIONS(C1, C2) . C1 and C2 are partitions
Cnew ← copy(C1) . copy first partion
for idx ∈ 1 . . . 64 do

Let r be a uniform random number between 0 and 1
if r ≥ 0.5 then

Cnew[idx]← C2[idx] . assign class from second partition
if Cnew has not 21 classes then

Cnew[idx]← C1[idx] . undo assignment
end if

end if
end for
return Cnew

end function

A mutation replaces for a randomly selected codon its associated class with the class
of another random codon. To ensure that the code table still has 21 classes, care is taken
when selecting the random codon: its class must not occur only once because then the
replacement would remove this class permanently.

The fitness function calculates the robustness of the optimized table C under the
influence of the given weight matrices P:

f (C) = P̄(C; P)

The optimizer is initialized with 100 individuals (random code tables). The cross-over
rate is 60% and the mutation rate is 40%. Like before, the process is terminated if the
increase of the fitness function value drops below a threshold of ∆ = 10−6.

2.4. Single Nucleotide Variants

The weights of the graph indicate how severe a point mutation would be. We would
like to compare the weights to the number of single nucleotide variants (SNV) that can be
found in biological coding sequences (CDS). Mutations in non-coding DNA regions cannot
be considered as the translation of codons into amino acids is optimized in our analysis.
Nevertheless, it can be expected that the distribution of point mutations in non-coding
sequences will be different and that there are patterns in non-coding DNA [23]. The coding
sequences were taken from mouse (Mus musculus) chromosome 1 and 2 and downloaded
from Ensemble’s biomart (http://www.ensembl.org/biomart/martview; accessed on 3
November 2021) [24].

The data base Mouse Short Variants (SNPs and indels excluding flagged variants) (GRCm39)
was chosen. In particular, the biomart attributes

• Variant alleles (e.g., C/U which represents a mutation C→ U)
• Variant start in CDS (bp)
• Variant end in CDS (bp)

enable us to determine the frequency of mutations per base position within a codon. Rows
where (1) the variant start or end is not a number (nan) or (2) rows with no point mutations
were removed.

The base position i ∈ {1, 2, 3} for a codon can be calculated from the attribute Variant
start in CDS (bp), denoted as s ∈ N, s ≥ 1:

i = ((s− 1) mod 3) + 1

Given the frequencies of mutations per position one can easily create transition ma-
trices for each position (see Table 4). Typically, the transitions represent probabilities or
relative frequencies. Our transition matrices are scaled such that the sum of all values
equals 36 according to Equation (1).

http://www.ensembl.org/biomart/martview
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3. Results

This section elaborates on the results. We begin with the optimal weights (task EA
weights, Tables 3 and 4) that were found by the genetic algorithm and then present optimal
genetic code tables (EA code table).

3.1. Optimal Weights

Table 3a shows the weights of Table 1 as used in [12] where the matrices were nor-
malized to have a sum of 36. This will be done for all matrices in the following sections.
The conductance for these weights is about Φ̄(CSGC; PM) = 0.54 (rounded to 2 digits) which
is better than the conductance of the unweighted graph Φ̄(CSGC) = 0.81 [19]. The matrices
in Table 3b list the optimal weights of the SGC found by the optimization. The average
conductance of the SGC with this weight distribution table is Φ̄(CSGC; Popt) = 0.12. The con-
ductance (or the robustness) could be considerably improved.

Table 3. Optimized weights of the conductance graphs. The values are normalized such that the sum
equals 36. (a) Weights from Table 1 in normalized form. These weights were used in [12]. (b) The
optimal weights as found by the evolutionary algorithm. Important figures which are discussed in
the text are shown in bold.

(a) Normalized weights PM of Table 1

1 U C A G

U 0 0.6 0.6 0.6
C 0.6 0 0.6 0.6
A 0.6 0.6 0 0.6
G 0.6 0.6 0.6 0

2 U C A G

U 0 0.6 0.6 0.6
C 0.6 0 0.6 0.6
A 0.6 0.6 0 0.6
G 0.6 0.6 0.6 0

3 U C A G

U 0 2.6 1.3 1.3
C 2.6 0 1.3 1.3
A 1.3 1.3 0 2.6
G 1.3 1.3 2.6 0

(b) Optimal weights Popt found by evolutionary algorithm

1 U C A G

U 0 0.006 0.002 0.003
C 0.006 0 0.003 0.003
A 0.002 0.003 0 0.005
G 0.003 0.003 0.005 0

2 U C A G

U 0 0.002 0.002 0.003
C 0.002 0 0.003 0.004
A 0.002 0.003 0 0.005
G 0.003 0.004 0.005 0

3 U C A G

U 0 15.925 0.018 0.007
C 15.925 0 0.021 0.012
A 0.018 0.021 0 1.977
G 0.007 0.012 1.977 0
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Table 4. Point mutation frequencies. The values are normalized such that the sum equals 36. (a) Normal-
ized point mutations per base position of SNV measured in mouse chromosome 1 and 2. The transitions
were normalized which makes the comparison with the weights matrix simpler. (b) The normalized
mutation matrices of (a) were made symmetrical as the conductance weights are symmetrical, too.
The average value of two corresponding cells is calculated. Important figures which are discussed in the
text are shown in bold.

(a) Point mutations in mouse CDS

1 U C A G

U 0 0.9 0.2 0.3
C 1.5 0 0.4 0.3
A 0.2 0.3 0 0.9
G 0.4 0.3 1.4 0

2 U C A G

U 0 0.7 0.2 0.2
C 1.1 0 0.2 0.2
A 0.2 0.2 0 0.7
G 0.2 0.2 1.1 0

3 U C A G

U 0 3.3 0.5 0.6
C 5.7 0 0.8 0.7
A 0.5 0.6 0 3.5
G 0.8 0.6 6 0

(b) Symmetrical point mutations in mouse CDS

1 U C A G

U 0 1.2 0.2 0.3
C 1.2 0 0.4 0.3
A 0.2 0.4 0 1.1
G 0.3 0.3 1.1 0

2 U C A G

U 0 0.9 0.2 0.2
C 0.9 0 0.2 0.2
A 0.2 0.2 0 0.9
G 0.2 0.2 0.9 0

3 U C A G

U 0 4.5 0.5 0.7
C 4.5 0 0.7 0.7
A 0.5 0.7 0 4.8
G 0.7 0.7 4.8 0

It is remarkable that the value p{U,C}
3 (or mutation U↔ G in the third position) in

Table 3b is the highest and the second-highest is p{A,G}
3 (or A↔ G). These values show

wonderfully the influence of the wobble effect on the structure of the SGC which is reflected
by this conductance measure. These results also suggest that the codon position can be
classified according to its vulnerability to any point mutations or mistranslation at the
ribosome: The weights in the matrix for position 2 are the smallest (average of 0.0033),
followed by position 1 (average of 0.0037) and the highest values can be found at position 3
(average of about 3).

This order is the same when we look at point mutations found in coding sequences
which confirms the results of our model. Figure 4 shows the relative frequencies of point
mutations in coding sequences according to their position in a codon in mouse chromosome
1 and 2. Clearly, most of these mutations occur at position 3 which supports the findings of
the conductance weights in Table 3a,b. Moreover, the ratio of the number of synonymous
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(silent) mutations to the number of all point mutations is by far greatest at position 3 (about
90%). At position 1 about 10% of the point mutations are synonymous and position 2
has the smallest value of only 1%. We conclude that the wobble effect in position 3—as
pointed out by the weights—promoted mutations but those which do not affect the protein
sequence. Mutations at position 1 or in particular 2 will more likely lead to mutations that
change the amino acid. As a consequence, those mutations are very rare.

Figure 4. Relative frequencies of point mutations in coding sequences in mouse chromosome 1 and
2 according to their position in the codon. Each bar is divided into non-synonymous (red) and
synonymous (or silent; in gray) mutations.

Three transition matrices for the point mutations of the coding sequences were calcu-
lated for each base position in the next step (see Table 4a). The relative transitions were
(again) normalized such that the sum of all transitions equals 36 in order to be compati-
ble with Table 3a,b. Table 4b shows the same transitions with a symmetrical matrix. This
formatting has no influence on the calculation of the conductance and is helpful because
the conductance weights are also symmetrical. Though the exact numbers differ from the
conductance weights, the tendency is clearly the same. The two highest transitions by far
are reached at base position 3 for the transitions G↔ A with a value of 4.8 (or in the directed
form G→ A with value 6 and its reverse A→ G with value 3.5) as well as for C↔ U with
a value of 4.5 (or C → U with 5.7 and its reverse U → C with 3.3). This is qualitatively
consistent with the optimal weights (Popt) where these two transitions also have the highest
values. These results are also in line with the well-known fact that point mutations are
dependent on their environment in a sequence (e.g., CpG islands) and that as a consequence
the transitions U↔ C and A↔ G mutations occur more frequently [15]. Transversions like
G↔ C or G↔ U are less frequent. Jiang and coworkers analyzed single point mutations
(SNPs) in chimpanzees [25]. They found for exons that the mutation C→U has a relative
frequency of 28.3% and U→C 11.3%. Similarly, the mutation G→A has a relative frequency
of 27.3% and A→G 11.7%. All other point mutations have a relative frequency less than
4.2%. These results, again, support our findings.

The evolutionary algorithm found an optimal set of weights that led to an average
conductance of about Φ̄(CSGC; Popt) = 0.12. In the following proposition we show that the
lower bound of the average conductance is 0.0953.

Proposition 1. Let CSGC be the partitioning of the SGC and 0 ≤ p ≤ ∞ for all p ∈ P. Then the
lower bounds of the average conductance is Φ̄(CSGC) > 0.0953.

Proof. It can be shown that the average conductance of the SGC cannot be lower than
Φ̄(CSGC) > 0.0953. This is due to three reasons. Firstly, that Methionine and Trypto-
phan appear as a partition of size one. Secondly, that the Isoleucine partition of size
three disjoints AUA and AUG. Finally, the stop signal which separates UGA and AUG.
Hence, we can conclude that the conductance of Methionine and Tryptophan (Try) is
one and the conductance of Isoleucine (Ile) and the stop signal is greater than zero,
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i.e., x = φ(STry) + φ(SIle) > 0. This is because all weights are p{N,N′}
i > 0 by definition

and it implies that Φ̄(CSGC) = (1 + 1 + x)/21 > 0.0953.

This boundary does not seem to be sharp as the results of the optimization process miss
the boundary by about 0.025. It suggests that the SGC is not solely optimized according
to the conductance measurement. However, the fact that the results are still very good
suggests that the influence of the adaption theory on evolution is not negligible.

3.2. Optimal Genetic Code Table

This section shows the results of the partitioning optimizations and Table 5 gives an
overview. Any code table will always contain 21 classes or labels: 20 for the amino acids
and 1 for stop codons.

Table 5. Optimized code tables with 21 classes. (a) shows the optimal genetic code table as published in [13] where all
weights are set to 1. (b) is the optimization result if one takes the weights from Table 1. (c) is the optimization result if one
takes the weights Popt from Table 3b. Amino acids are displayed when they match the SGC.

(a) Optimal partition table C21 when all weights are set to 1; Φ̄(C21)'0.77

U C A G

U

UUU UCU UAU UGU U
UUC 1 UCC 7 UAC 12 UGC 17 C
UUA UCA UAA UGA A

UUG 2 UCG 8 UAG 13 UGG 18
(Trp/W) G

C

CUU CCU CAU CGU U
CUC 3 CCC 9 CAC 14 CGC 19 C
CUA CCA CAA CGA A
CUG 2 CCG 8 CAG 13 CGG 18 G

A

AUU ACU AAU AGU U
AUC 4 (Ile/I) ACC 10 AAC 15 AGC 20 C
AUA ACA AAA AGA A

AUG 2
(Met/M) ACG 8 AAG 13 AGG 18 G

G

GUU GCU GAU GGU U
GUC 5 GCC 11 GAC 16 GGC 21 C
GUA GCA GAA GGA A
GUG 6 GCG 6 GAG 6 GGG 6 G

(b) Optimal partition table CM for weights PM (see Table 3a); Φ̄(CM; PM)'0.56

U C A G

U

UUU UCU UAU UGU U
UUC 1 (Pha/F) UCC UAC 10 (Tyr/Y) UGC C
UUA UCA UAA UGA A
UUG 2 (Leu/L) UCG

6 (Ser/S)

UAG 11 (Stop) UGG

17

G

C

CUU CCU CAU CGU U
CUC CCC CAC 12 (His/H) CGC C
CUA CCA CAA CGA A
CUG

3 (Leu/L)

CCG

7 (Pro/P)

CAG 13 (Gln/Q) CGG

18 (Arg/R)

G

A

AUU ACU AAU AGU U
AUC ACC AAC AGC 19 (Ser/S) C
AUA ACA AAA AGA A
AUG

4

ACG

8 (Thr/T)

AAG

14

AGG 20 (Arg/R) G

G

GUU GCU GAU GGU U
GUC GCC GAC 15 (Asp/D) GGC C
GUA GCA GAA GGA A
GUG

5 (Val/V)

GCG

9 (Ala/a)

GAG 16 (Glu/E) GGG

21 (Gly/G)

G
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Table 5. Cont.

(c) Optimal partition table Copt for weights Popt (see Table 3b); Φ̄(Copt; Popt)'7.7× 10−3

U C A G

U

UUU UCU UAU UGU U
UUC 1 (Pha/F) UCC UAC 10 (Tyr/Y) UGC C
UUA UCA UAA UGA A
UUG 2 (Leu/L) UCG

6 (Ser/S)

UAG 11 (Stop) UGG

17

G

C

CUU CCU CAU CGU U
CUC CCC CAC CGC C
CUA CCA CAA CGA A
CUG

3 (Leu/L)

CCG

7 (Pro/P)

CAG

12

CGG

18 (Arg/R)

G

A

AUU ACU AAU AGU U
AUC ACC AAC 13 (Asn/N) AGC 19 (Ser/S) C
AUA ACA AAA AGA A
AUG

4

ACG

8 (Thr/T)

AAG 14 (Lys/K) AGG 20 (Arg/R) G

G

GUU GCU GAU GGU U
GUC GCC GAC 15 (Asp/D) GGC C
GUA GCA GAA GGA A
GUG

5 (Val/V)

GCG

9 (Ala/a)

GAG 16 (Glu/E) GGG

21 (Gly/G)

G

Before we continue with the optimization results, let us recall the optimal code table
for a graph where all weights were set to 1. Such an optimal code table (denoted as C21)
was developed in [13] and consists of 1 fourfold degenerated group of codons (label 6
in Table 5a) and 20 groups of threefold degenerated codons. Table 5a depicts a minor
modification of this code table. The classes labeled as 2, 8, 12, and 18 are the bottom
of their blocks of four codons whereas the table in [13] shows these labels at the top
of each block. i.e., codon UUG with label 2 would be UUU in the original table. Both
tables, the original one and the one shown here, have the same average conductance of
Φ̄(C21) = 146/189'0.77. The modification makes the original code table more compatible
to the SGC with respect to potential mappings to amino acids. Nevertheless, the codons of
this table can only poorly be mapped to corresponding amino acids. Exceptions are the
block AU* with the start codon AUG, which are Methionine and AUU, AUC, and AUA,
which can be assigned to Isoleucine, and UUG which encodes for Tryptophan.

Let us move on to the optimization results. Table 5b lists the optimal table where the
weights were set according to Tables 1 and 5c the optimal table which is based on optimal
weights according to Table 3b. Interestingly, both code tables are divided into eleven classes
of degeneration size four and ten classes of size two. Each table has three classes that
cannot be assigned to amino acids in the SGC. These are in Table 5b the classes 4, 14, and
17 and in Table 5c 4, 12, and 17. Yet, the amino acids Leucine, Serine, and Arginine are each
represented in two classes in the result tables.

Apparently, a graph with weights that reflect the wobble effect naturally leads to a
genetic code table which is quite similar to the SGC. Moreover, the average conductance for
the partition CM is Φ̄(CM; PM) = 0.56 (rounded to two digits) and the best, i.e., minimal,
set-conductance is 0.43. Given the weights PM, the conductance could further be improved
from 0.77 to 0.56. The average conductance for partition Copt is Φ̄(Copt; Popt) = 7.7× 10−3

and the minimal set-conductance is 1.9× 10−3. These values are even smaller. However,
this is mainly caused by the optimized and thus better weights. It does not imply that the
structure of the code table is better. Indeed, the tables for CM and Copt are more or less
identical as mentioned above.

It should be noted that the partition CM is only one of many possible optimization
results. The EA described in the sections above, using the weights PM, found also alternative
results with the same robustness. These are tables with the same structure, i.e., tables which
are permutations of the 16 row blocks which contain either one class of degeneration of
size four or two classes of degeneration of size two. Consequently, the table shown is only
one of many results of the EA. Yet, other results would have less in common with the SGC.
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The one presented here was chosen because it is one of the best results in terms of the SGC.
The result in Copt, however, is the only optimum. Any permutation would lead to smaller
robustness. We would like to recall that this statement is true only if we use the weights
Popt (see Table 3b). In conclusion we can observe that even if the tables for CM and Copt
are more or less identical, yet, the weights Popt reflect the SGC more accurate since PM is
too ambiguous.

3.3. Results of Optimizing Both: Weights and Structure

In this section, we show that the simultaneous optimization of weights Popt and
partition Copt leads to a trivial result. Specifically, it will be shown below that, under some
assumptions on the structure of the partition C, the (positive) weights can be chosen such
that Φ̄(Copt; Popt) tends to zero. Let us first formulate an almost obvious observation:

Proposition 2. Let GP
l (V, E, w) be a given weighted graph as in Definition 1, C be a partition

with at least two classes and P a weight matrix with p{N,N′}
i > 0 for all weights p{N,N′}

i ∈ P,
N 6= N′. Then the following must be true:

Φ̄(C; P) > 0

Proof. Let us assume that Φ̄(C; P) = 0. In that case φ(S) = 0 for all S ∈ C. This means
that for each S ∈ C E(S, S̄) = ∅ holds. This implies |C| = 1. This is a contradiction to the
assumption |C| ≥ 2.

The following two observations point the way to the construction of an optimal
partition that can have an arbitrarily small average conductance if the weights are cho-
sen appropriately:

Observation 1. Let GP
l (V, E, w) be a given weighted graph as in Definition 1 with the weight

matrix P, C be a partition of V with at least two classes. Let us further define

E(p) ⊂ E

as a set of all edges in E assigned with the weight p ∈ P. If each (c, c′) ∈ E(p) connects only
codons which both belong to the same class c, c′ ∈ S, thus

E(S, S̄) ∩ E(p) = ∅ for all S ∈ C,

then the weight value p never increases the numerator in φ(S). Hence, if such a weight p goes
towards infinity φ(S) converges toward 0.

Observation 2. Let GP
l (V, E, w), P and C be defined as above. We also adopt the definition of

E(p{N,N′}
i ) as a subset of E where i ∈ {1, 2, 3} and N, N′ ∈ Σ. If each cluster Sj ∈ C contains at

least one edge e ∈ E(p{N,N′}
i )

E(Sj, Sj) ∩ E(p{N,N′}
i ) 6= ∅

and (see Observation 1)
E(Sj, S̄j) ∩ E(p{N,N′}

i ) = ∅

then the average conductance Φ̄(C; P) can be made arbitrarily small under the condition that all
other weights in P except p{N,N′}

i are chosen small enough.

In conclusion, we can say that Φ̄(Copt; Popt) must tend to zero if Copt and Popt are
simultaneously optimized. Hence, the results would be meaningless. Next we present an
example to illustrate this fact.
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Example 2. Let us now show that it is possible to choose the appropriate edge sets that satisfy
the conditions of observations 1 and 2 for code tables in Table 5b,c, and the Vertebrate Mitochon-
drial Code.

In all three cases one can observe that if E(p) = E(p{C,U}
3 ) ∪ E(p{G,A}

3 ) then (c, c′) ∈ E(p)
only connect codons which both belong to the same class c, c′ ∈ Si and each class Si has at least one
edge e ∈ E(p). Thus, if all weights p{N,N′}

i ∈ P that are unequal to p{C,U}
3 or p{G,A}

3 are small

enough and p{C,U}
3 , p{G,A}

3 are chosen large enough, Φ̄(C; P) can be made arbitrarily small.

4. Discussion

In this work, it was shown how the measure of conductance in relation to the codon–
amino acid assignment can be used to comprehend the robustness of the genetic code with
wobble-like effects. To be more precise, all possible point mutations of the genetic code
were represented in the form of a weighted graph so that the weights are understood as
probabilities of individual point mutations. Optimal weights could be found by means
of computer optimizations and they confirm the importance of the wobble effect in the
context of the SGC. Furthermore, when wobbling is allowed the robustness of the code
could be improved. Our analysis of the weights and the mutations in coding sequences
(Tables 3b and 4b) underlines the importance of the second position within a codon: al-
though the absolute number of point mutations is smallest there, they more often lead to
serious changes in the process of translation compared to point mutations in other posi-
tions. The next position is the first and the third base position is most robust against point
mutations and thus most important for error minimization. These results coincide with the
2-1-3 model by Massey [26], which was—in a similar way—first expressed by Taylor [27]
or Dragovich [28] and extended in [29]. This hypothesis claims that the evolution of the
codons in the genetic code started with the middle base (position 2) in a codon [30]. In a
next step, the first base (position 1) was added to the evolutionary process. Now the dis-
tance of two codons could be greater than one point mutation (e.g., AAN and UUN differ
in two bases). This, according to Massey, led to some sort of error minimization. Eventually,
the third base was added and again, more error minimization was possible. Intriguingly,
the only constraint for including new amino acids in new tuples (codons) according to this
model is that new amino acids have to be chemically similar to existing amino acids and
their cognate codons. It could be shown by simulations that more than 20% of randomly
generated code tables that met these constraints have better error minimization properties
than the SGC.

If the optimal weights were fixed and the structure is optimized, code tables emerge
that are quite similar to the SGC. This is not possible when the wobble effect is not taken
into account. We speculate that the SGC has been optimized during evolution to minimize
the negative effects of point mutations, however, only to a certain extent. Most likely, it is
not the only driving force, which can be seen, among other things, from the fact that the
conductance measure of the SGC cannot be 0.

Assuming that the evolution of the SGC is driven only by robustness against point
mutations and disregarding the main idea of the frozen accident theory that it is very
difficult to change the SGC, one consequence could be that optimization is still ongoing.
This hypothesis is even more compatible with the Vertebrate Mitochondrial Code, since this
code, with exception of the groups of sixfold degenerated codons, is already very similar
to the optimal code in Table 3b. However, if one includes other hypotheses in the theory of
evolution, the SGC performs very well. For instance, in [31] by Seligmann and Pollock the
assignment of the stop signals in the SGC is explained. Although their argumentation was
primarily not intended to explain the codon assignment to stop signals, it follows that the
three codons have to be at this position in the code table, i.e., the block structure has to be
contained. Additionally, the authors Wong et al. argue in [32] that the codon assignments
to Methionine and Tryptophan indicate that they are late arrivals supplied by biosynthesis.
The arguments presented support the hypothesis that the optimization of the robustness of
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the genetic code with respect to point mutations can be considered as a driving force in the
evolution of SGC, especially when wobble-like effects are included.

Let us briefly summarize the results. Firstly, we quantitatively support the known
fact that the block structure of the SGC favors the wobble effect. Secondly, we show that
the transitions U↔C and G↔A are more likely to be detected by the error correction
mechanisms compared to the transversions G↔U and C↔G. Finally, we show that the
optimized probabilities of single synonymous point mutations derived from the structure
of the genetic code mirror the frequencies of single point mutations found in mouse
coding sequences.
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