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Abstract: Clinical trials for Alzheimer’s disease (AD) face multiple challenges, such as the high screen
failure rate and the even allocation of heterogeneous participants. Artificial intelligence (AI), which
has become a potent tool of modern science with the expansion in the volume, variety, and velocity
of biological data, offers promising potential to address these issues in AD clinical trials. In this
review, we introduce the current status of AD clinical trials and the topic of machine learning. Then,
a comprehensive review is focused on the potential applications of AI in the steps of AD clinical
trials, including the prediction of protein and MRI AD biomarkers in the prescreening process during
eligibility assessment and the likelihood stratification of AD subjects into rapid and slow progressors
in randomization. Finally, this review provides challenges, developments, and the future outlook on
the integration of AI into AD clinical trials.
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1. Introduction

Recent advances in understanding the neurobiology of Alzheimer’s Disease (AD)
revealed that the initiation of disease processes leading to symptomatic and functional
neurodegeneration precedes the onset of dementia by 15–20 years [1,2]. AD is pathologically
characterized by the aggregation of beta-amyloid (Aβ) plaques and hyperphosphorylated
tau proteins in the form of neurofibrillary tangles (NFTs). The amyloid cascade hypothesis
explains that Aβ triggers the following procession, such as the development of NFTs,
cortical atrophy, cognitive impairments, and loss of activities of daily living [3–5]. These
AD biomarkers appear in the predementia stage, including normal cognition (NC) and mild
cognitive impairment (MCI). Thus, previous clinical trials have focused on the development
of Aβ targeting diagnostic and therapeutic methods. There are also growing clinical trials
targeting tau and NFTs, as tau pathology is more closely correlated with cognitive decline
than Aβ [6].

Despite the stagnancy in AD clinical trials for the past 18 years ever since memantine
was launched in 2003, a recent clinical trial of Biogen’s aducanumab has demonstrated
a statistically significant reduction in Aβ plaques [7,8]. The US Food and Drug Admin-
istration has approved aducanumab for AD treatment using the Accelerated Approval
pathway, which is expected to serve as an impetus for global AD clinical trial efforts. AD
clinical trials involve two notable steps: eligibility assessment and randomization. During
eligibility assessment, recruited participants are screened for either enrollment or exclusion,
and, during randomization, selected participants are allocated into intervention and control
groups. However, there are several challenges present in these steps. Principally, AD
clinical trials have a high screen failure rate, which could be attributed to the stringent
screening criteria of AD trials, such as Aβ PET positivity. Secondary and tertiary prevention
trials for AD have average screen failure rates of 88% and 44%, respectively, which would
suggest the need for considerable work to recruit even one eligible subject due to the
expensive and time-consuming nature of screening procedures [9]. Furthermore, given
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the heterogeneous rates of AD progression, it is important to allocate subjects evenly into
intervention and control groups based on their AD trajectories for a reliable observation of
the treatment [10,11].

Artificial Intelligence (AI) refers to “the ability of a digital machine or computer to
accomplish tasks that traditionally required human intelligence.” [12] A convergence of
advanced AI algorithms, data proliferation, tremendous increases in computing power,
and memory storage has propelled AI from hype to reality. ML algorithms could enhance
the ability to detect hidden structures or underlying patterns of the data to improve the
performance over time and learn how to make a prediction rather than explicit instruction.
In this review, we aim to explore the applications of AI for a specific domain in clinical trials
for AD in the steps of eligibility assessment and randomization. Finally, the development of
explainable AI techniques and rigorous external validations cohorts with greater diversity
would substantially benefit AD clinical trials.

2. Databases and Performance Measurements

Before discussing the applications of AI in AD clinical trials, we provide general
information about the databases and performance measurements used by studies in this
review.

2.1. Databases

Most studies tended to develop models based on established AD databases. The three
most widely used databases are covered in Table 1.

Table 1. Summary of Widely Used AD Databases.

Name Subjects Modalities

ADNI

ADNI-1: 200 NC, 400 MCI, 200 mild AD
ADNI-Go: 200 early MCI (eMCI)

ADNI-2: 150 NC, 150 eMCI, 150 late MCI (lMCI), 200 mild AD
ADNI-3: 135–500 NC, 150–515 MCI, 85–185 AD

MRI, PET, CSF, clinical/cognitive
assessments, genetic data,

blood biomarkers

OASIS
OASIS-1: 416 total, including 20 NC and 100 mild/moderate AD

OASIS-2: 72 NC, 64 AD
OASIS 3: 609 NC, 489 AD at various stages

MRI, PET, clinical and cognitive data

ANM
ANM: 266 NC, 247 MCI, 260 AD
DCR: 423 NC, 89 MCI, 153 AD
ART: 104 NC, 61 MCI, 99 AD

Clinical, proteomics, MRI,
gene expression, genotype

DRC, Maudsley BRC Dementia Case Registry at King’s Health Partners cohort; ART, the Alzheimer’s Research
Trust UK cohort.

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multisite, longitudinal study
that aims to develop and validate clinical, cognitive, imaging, genetic, and protein AD
biomarkers (http://adni.loni.usc.edu, accessed on 4 February 2022). Open Access Series
of Imaging Studies (OASIS) is another longitudinal neuroimaging, clinical, and cognitive
biomarker dataset for normal aging and AD (https://www.oasis-brains.org, accessed on
4 February 2022). Lastly, AddNeuroMed (ANM) is a longitudinal European dementia
cohort for AD biomarkers [13].

2.2. Performance Measurements

Many performance metrics were used to evaluate and compare their classification
performance. Some commonly used measurements included Accuracy (ACC), Specificity
(Spec), Sensitivity (Sens), classification error rate, Root mean squared error (RMSE), and
area under the receiver operating characteristic curve (AUROC or AUC).

To evaluate AI-based synthetic PET images, several measurements were suggested.
Maximum mean discrepancy (MMD) measures the distance between real and synthetic PET
data distribution [14]. Structural similarity metric (SSIM) assesses the diversity of generated
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results by finding similarities within pixels of real and synthetic images [15]. Peak signal
to noise ratio (PSNR) compares real and synthetic images using the ratio between the
maximum possible intensity value and the mean squared error [16].

3. Eligibility Assessment

Screening is an important process in AD clinical trials to ascertain that selected
participants are only those with AD pathology. Clinical diagnosis of AD follows the
1984 NINCDS-ADRDA Work Group criteria [17] or the 2011 NIA-AA guidelines [18]. Re-
cent studies have shown that 15–25% of clinically diagnosed AD patients showed in-
compatible amyloid positron emission tomography (PET) or cerebrospinal fluid (CSF)
findings [19,20]. Additionally, the increasing tendency of AD clinical trials to target preclin-
ical stages, where cognition and functionality are normal, has underscored the importance
of biomarker-guided screening. However, AD clinical trials have a high screen failure rate
and corresponding low recruitment rate, as only one-third of asymptomatic older adults
are Aβ+ [21]. Therefore, prescreening algorithms using AI could help reduce screen failure
rate by classifying the recruited population into high and low likelihood groups, with
the former undergoing screening procedures for validation and the latter being excluded
from the clinical trials (Figure 1). This consideration applies to clinical trials for both
disease-modifying therapies (DMTs) and symptomatic treatments.

Life 2022, 12, x 3 of 20 
 

 

To evaluate AI-based synthetic PET images, several measurements were suggested. 
Maximum mean discrepancy (MMD) measures the distance between real and synthetic 
PET data distribution [14]. Structural similarity metric (SSIM) assesses the diversity of 
generated results by finding similarities within pixels of real and synthetic images [15]. 
Peak signal to noise ratio (PSNR) compares real and synthetic images using the ratio be-
tween the maximum possible intensity value and the mean squared error [16]. 

3. Eligibility Assessment 
Screening is an important process in AD clinical trials to ascertain that selected par-

ticipants are only those with AD pathology. Clinical diagnosis of AD follows the 1984 
NINCDS-ADRDA Work Group criteria [17] or the 2011 NIA-AA guidelines [18]. Recent 
studies have shown that 15–25% of clinically diagnosed AD patients showed incompatible 
amyloid positron emission tomography (PET) or cerebrospinal fluid (CSF) findings 
[19,20]. Additionally, the increasing tendency of AD clinical trials to target preclinical 
stages, where cognition and functionality are normal, has underscored the importance of 
biomarker-guided screening. However, AD clinical trials have a high screen failure rate 
and corresponding low recruitment rate, as only one-third of asymptomatic older adults 
are Aβ+ [21]. Therefore, prescreening algorithms using AI could help reduce screen failure 
rate by classifying the recruited population into high and low likelihood groups, with the 
former undergoing screening procedures for validation and the latter being excluded 
from the clinical trials (Figure 1). This consideration applies to clinical trials for both dis-
ease-modifying therapies (DMTs) and symptomatic treatments. 

 
Figure 1. Diagram of eligibility assessment in AD clinical trials. AI-applications in eligibility assess-
ment would prescreen the recruited subjects to identify the high likelihood and low likelihood 
groups. AI algorithms would be used to classify individuals based on predicted protein (Aβ and 
tau) biomarkers and/or MRI biomarkers. The high likelihood group would be selected for further 
screening, and the low likelihood group would be excluded, thereby leading to lower screen failure. 

3.1. Protein Biomarkers for AD 
Although causal mechanisms remain unclear, Aβ and tau proteinopathies are defin-

ing features of AD as a unique disease [22]. AI prescreening algorithms can reduce chal-
lenges of PET and CSF, such as high costs and participants’ fear of radiation exposure, by 
selecting a subset of individuals who are likely to be Aβ or tau positive. Therefore, in AI 
research for AD clinical trials, many aimed to predict amyloidosis in subjects with MCI 
[23–25], while others focused on preclinical stages before neurodegeneration is too sub-
stantial [26,27] (Table 2). 

Studies have suggested neuroimaging modalities as good predictors for Aβ+ status. 
One group proposed the least absolute shrinkage selection (LASSO) regression method to 

Figure 1. Diagram of eligibility assessment in AD clinical trials. AI-applications in eligibility as-
sessment would prescreen the recruited subjects to identify the high likelihood and low likelihood
groups. AI algorithms would be used to classify individuals based on predicted protein (Aβ and
tau) biomarkers and/or MRI biomarkers. The high likelihood group would be selected for further
screening, and the low likelihood group would be excluded, thereby leading to lower screen failure.

3.1. Protein Biomarkers for AD

Although causal mechanisms remain unclear, Aβ and tau proteinopathies are defining
features of AD as a unique disease [22]. AI prescreening algorithms can reduce challenges
of PET and CSF, such as high costs and participants’ fear of radiation exposure, by selecting
a subset of individuals who are likely to be Aβ or tau positive. Therefore, in AI research for
AD clinical trials, many aimed to predict amyloidosis in subjects with MCI [23–25], while
others focused on preclinical stages before neurodegeneration is too substantial [26,27]
(Table 2).

Studies have suggested neuroimaging modalities as good predictors for Aβ+ status.
One group proposed the least absolute shrinkage selection (LASSO) regression method
to predict Aβ+ in 440 aMCI subjects [28]. Radiomics features were extracted from MRI
images with hippocampus and precuneus as regions of interest (ROIs) and were used alone
or in combination with baseline non-imaging predictors. Combining the T1 and T2 features
(AUC: 0.75) improved the prediction from models only using either T1 (AUC: 0.71) or T2
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(AUC: 0.74). A recent study classified a heterogeneous cohort of 337 NC, 375 MCI, and
98 AD using a support vector machine (SVM) [29]. The model was trained jointly using
demographic information, neuropsychological (NP) test scores, APOE ε4 genotype, and
MRI measures. For NC, an accuracy of 0.68 was achieved (Sens: 0.61; Spec: 0.71), MCI
0.75 (Sens: 0.71; Spec: 0.77), and whole sample 0.77 (Sens: 0.75; Spec: 0.79). Another study
applied an ML classifier called longitudinal voxel-based classifier on the Jacobian determi-
nant maps to detect abnormal Aβ levels in NC subjects [30]. In tensor-based morphometry,
a Jacobian determinant map encodes the local volume difference between a reference and a
target image [31]. Thus, the classifier (AUC: 0.87) relied on the local tissue change between
Aβ+ and Aβ− NC subjects for classification. While MRI is the most popular modality,
some studies have used other modalities, such as diffusion tensor imaging (DTI), which
assesses the structural integrity of white matter tracts, could complement MRI to measure
brain atrophy [32]. A multiple kernels SVM (MK-SVM) provided an accuracy of 66–68%
for discrimination in identifying MCI Aβ+ vs. MCI Aβ− and 67–74% for MCI Aβ+ vs. NC.

Another research focus is on assessing Aβ status with non-imaging variables, which
could reduce cost and save time. One group developed step-wise hierarchical regression
models to investigate the relationship between the individual cognitive measure and Aβ in
41 aMCI subjects [33]. Story recall was highly accurate in predicting the Aβ burden (AUC:
0.86) and accounted for variance effects of age, education, hippocampal volume, and global
cognition. A recent study evaluated the positive predictive value (PPV) of demographic,
APOE, and cognitive information in the prediction of amyloid pathology in older NC
subjects [34]. The random forest (RF) model estimated a PPV of 0.65, which would reduce
the number of subjects undergoing biomarker screening from 2451 to 1539 in a clinical trial
aimed at recruiting 1000 Aβ+ subjects. Another study developed the Preclinical Amyloid
Sensitive Composite (PASC) to detect the cognitive differences between Aβ+ and Aβ−
NC subjects [35]. The Multiple Indicator Multiple Cause (MIMIC) model was used to
compare the latent means in the cognitive domains of two groups, and the multivariate
analysis of covariance (MANCOVA) was performed to see the score differences of NP tests
pertaining to episodic memory and executive functions. The PASC scores were calculated
using principal component analysis (PCA) to obtain the weight for each test score and
achieved an AUC of 0.764 when applied with demographic measures.

A global effort is underway to establish various trial-ready registries like the Brain
Health Registry (www.brainhealthregistry.org, accessed on 4 February 2022) to facilitate
AD trial recruitment. Therefore, there are many algorithms that aim to evaluate online in-
formation for prescreening [36,37]. For instance, Extreme Gradient Boosting (XGBoost) [38]
is a tree-based ML technique that gives larger weights to misclassified data points at each
iteration. An XGBoost model achieved an AUC of 0.60 to 0.74, depending on the various
combinations of feature vectors, such as demographics, APOE genotype, cognitive and
functional measures from the Trial-Ready Cohort in Preclinical/Prodromal Alzheimer’s
Disease (TRC-PAD) [39].

Many AI-guided diagnostic efforts focused on Aβ, given the evidence in support of the
amyloid cascade hypothesis [3] and countless clinical trials for anti-amyloid agents [40–42].
However, recent findings suggested that tau pathology has more intimate links with AD-
related cognitive impairment than Aβ pathology, suggesting the tantalizing potential for
clinical trials targeting tau [43,44]. A study classified 64 prodromal AD patients through
GBM and RF algorithms [45]. A combination of demographic variables, MCI diagnosis
information, NP test scores, APOE genotype, and cortical thickness resulted in the highest
performance for GBM (AUC: 0.86) and RF (AUC: 0.82). The relative feature importance,
calculated through MDA or Gini index, showed that the most important features to classify
tau positivity were the cortical thickness of parietal and occipital lobes and delayed word
recall test score. Another study used a multi-class convolutional neural network (MC-CNN)
to predict A/T/N staging of 2000+ ADNI cases with known A/T/N status based on
structural MRI alone [46]. It predicted “A” at an overall accuracy of 88%, “T” at 89%, and

www.brainhealthregistry.org
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“N” at 95%. The performance of the MC-CNN model could be potentially improved by
including demographics and clinical measures.

AI algorithms help clinical trials address the challenge of missing PET imaging data
by predicting the abnormal protein aggregation in the scan. However, one group designed
a 3-dimensional CNN architecture to complete missing PET patterns with MRI data from
ADNI [47]. Deep CNNs are a type of multi-layer model capable of capturing nonlinear map-
ping between inputs and outputs [48]. The proposed architecture achieved AUC of 0.69 for
MCI vs. NC, 0.68 progressive MCI (pMCI, MCI subjects who progress to AD) vs. stable
MCI (sMCI, MCI subjects who remains stable), and 0.89 AD vs. NC, outperforming other
missing estimation methods, such as KNN and Zero methods. Interestingly, the predictive
performance improved when PET and MRI data were used together (MCI vs. NC: 0.76;
pMCI vs. SMCI: 0.68; AD vs. NC: 0.93).

Efforts to reconstruct AI-based synthetic images especially focused on the generative
adversarial network (GAN). In the adversarial training process of the GAN, the Generator
generates fake images, and the Discriminator distinguishes real images from fake images
until the Generator produces images that the Discriminator can no longer distinguish [49].
One study reconstructed plausible PET images from a gaussian noise distribution (2048-
dimensional noise), reporting MMD of 1.78 and SSIM of 0.53 [50]. Another study created
synthetic PET images of patients in NC, MCI, and AD stages using deep convolutional
GAN (DCGAN) [16]. DCGAN improves on the first GAN by ensuring a more stable
training stage through measures, such as learnable upsampling and downsampling [51].
It achieved a PSNR of 32.83 and a mean SSIM of 77.48. Moreover, a 2D-CNN model
using the axial, coronal, and sagittal slices of synthesized PET images classified NC and
AD with an overall accuracy of 71.45%. Additionally, the cycle-consistent GAN (cGAN)
to learn bi-directional mappings between PET and MRI scans [52]. Then a Landmark-
based Multi-model Multi-Instance Learning (LM3IL) network was developed to learn and
fuse discriminative features of MRI and PET for AD diagnosis. The mean PSNR value
of synthetic PET images from the 3D-cGAN model was 24.49, and the LM3IL method
achieved an accuracy of 92.50% (Sens: 89.94%; Spec: 94.53%) for AD vs. NC and 79.06%
(Sens: 55.26%; Spec: 82.85%) for pMCI and sMCI, which had a superior performance than a
single-model variant of the proposed LM3IL method that only used MRI.

Limitations of PET and CSF as general population-screening tools have prompted the
search for alternative ways to predict disease progression from more accessible tissues,
such as blood. From the Australian Imaging, Biomarkers and Lifestyle (AIBL) cohort,
176 blood analytes and two ratios (Innogenetics Aβ1–40/Aβ1–42 and Mehta Aβ1–40/Aβ1–42)
were considered along with age, gender, APOE genotype, and years of education in variable
selection and model generation to predict continuous standardized uptake value ratios
(SUVR) values through RF analysis [53]. The model achieved an AUC of 0.88 (Sens: 0.80;
Spec: 0.82). Meanwhile, blood metabolites have also garnered considerable interest as a
potential molecular fingerprint of disease progression [54,55]. Deep Learning (DL) and
XGBoost algorithms were trained with metabolite data derived from 242 NC and 115 AD
subjects and produced AUC of 0.85 and 0.88, respectively. By comparison, CSF measures of
amyloid, p-tau, and t-tau using XGBoost achieved AUC of 0.78, 0.83, and 0.87, respectively,
which highlights the potential of blood-based biomarkers.
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Table 2. Summary of AI Algorithms for Protein Biomarkers.

Reference Application Method Subjects Performance

[26] 2012 Aβ+ vs. Aβ− NC LR; demographic, family history,
cognitive performance, APOE 483 NC AUC: 0.62–0.70

[33] 2013 Aβ+ vs. Aβ− MCI

Step-wise hierarchical regression;
cognitive measures,
hippocampal atrophy, white
matter hyperintensities (WMH)

41 aMCI AUC: 0.86 (story recall)

[53] 2014 Aβ prediction RF; blood and plasma analytes 169 NC, 55 MCI, 49 AD AUC: 0.88; Sens: 80%;
Spec: 82%

[47] 2014 PET image synthesis 3D-CNN; using MRI data 198 AD, 167 pMCI,
236 sMCI, 229 NC

AUC: 0.69 (MCI vs. NC),
0.68 (pMCI vs. sMCI),
0.89 (AD vs. NC)

[32] 2015 MCI Aβ+ vs. MCI
Aβ−, MCI Aβ+ vs. NC

SVM; DTI and volumetric MRI
data

25 NC, 35 Aβ− MCI,
35 Aβ+ MCI

Acc: 66–68%
(MCI Aβ+ vs. MCI Aβ−),
67–74% (MCI Aβ+ vs. NC)

[23] 2015 Aβ+ vs. Aβ− MCI
Partial least squares (PLS);
use anatomical shape variations
from MRI

46 NC, 62 MCI
AUC: 0.70 (MRI),
0.81 (APOE),
0.88 (APOE + MRI)

[34] 2016 Aβ prediction RF; demographics, APOE,
cognitive rates 206 Aβ+, 125 Aβ− PPV: 0.65

[52] 2018
PET image synthesis;
AD vs. NC,
pMCI vs. sMCI

3D-cGAN (using MRI);
LM3IL for diagnosis ADNI-1, ADNI-2

PSNR: 24.49; AD vs. NC:
92.50% (Acc), 89.94% (Sens),
94.53% (Spec); pMCI vs.
sMCI: 79.06% (Acc), 55.26%
(Sens), 82.85% (Spec)

[29] 2018 Aβ prediction
SVM; subcortical volumes,
cortical thickness, and surface
area

337 NC, 375 MCI,
98 AD

NC: 0.68 (Acc), 0.61 (Sens),
0.7 (Spec); MCI: 0.75 (Acc),
0.71 (Sens), 0.77 (Spec);
whole: 0.77 (Acc),
0.75 (Sens), 0.79 (Spec)

[24] 2018 Aβ prediction
in MCIAD

Multivariate stepwise LR;
information commonly
obtained in memory clinics

107 MCI, 69 AD AUC: 0.873

[27] 2019 Aβ prediction in
NC/MCI

RF; cognitive, genetic, and
socio-demographic features

ADNI-MCI (596),
ADNI-NC (318);
INSIGHT (318)

AUC: 82.4% (ADNI-MCI),
69.1% (ADNI-NC),
67.5% (INSIGHT)

[30] 2019 Aβ prediction in NC
Longitudinal voxel-based
classifier; Jacobian
determinant maps

79 NC, 50 preclinical
AD (PreAD), 274
MC/AD

AUC: 0.87

[46] 2019 A/T/N staging
prediction MC-CNN; sMRI 5000+ ADNI cases with

known A/T/N staging
Acc: 88% (“A”), 89% (“T”),
95% (N)

[16] 2020
PET image synthesis;
NC vs. AD
classification

DCGAN; 2D-CNN using MRI
and synthetic PET

98 AD, 105 NC,
208 MCI

PSNR: 32.83; SSIM: 77.48;
Acc: 71.45% (NC vs. AD)

[50] 2020 PET image synthesis
GAN; gaussian noise
distribution
(2048-dimensional noise)

A subset of ADNI-1
with labled PET images MMD: 1.78; SSIM: 0.53

[35] 2020 Aβ+ vs. Aβ− NC PASC score using MIMIC and
MANCOVA; NP scores

348 Aβ− NC,
75 Aβ+ NC

AUC: 0.764 (with
demographic measures)

[36] 2020 Aβ prediction LR; self-report information
from BHR

70,992 subjects
from BHR

Cross-validated AUC
(cAUC): 0.62–0.66
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Table 2. Cont.

Reference Application Method Subjects Performance

[45] 2021 Tau prediction in
prodromal AD

GBM and RF; combinations
of clinical and NP data,
cortical thickness

64 Aβ+ prodromal AD AUC: 0.86 (GBM), 0.82 (RF)

[28] 2021 Aβ+ vs. Aβ− MCI
LASSO regression; using
radiomics features extracted
from T1 and T2 MRI

182 Aβ− MCI,
166 Aβ+ MCI

AUC: 0.75 (T1+T2),
0.71 (T1), 0.74 (T2)

[37] 2021 Aβ prediction
RF, SVM; combination of
objective and subjective
data from BHR

664 subjects from BHR AUC: 0.519–0.624 (RF),
0.486–0.603 (SVM)

[55] 2021 AD vs. NC DL, XGBoost; blood metabolites 242 NC, 115 AD AUC: 0.85 (DL),
0.88 (XGBoost)

3.2. MRI Biomarkers

Within the A/T/N framework, neurodegeneration reflects downstream effects of
molecular AD pathology, closely correlating with cognitive and functional decline [56,57].
Among many neuroimaging modalities, structural MRI (sMRI) is widely used as a surrogate
marker for neurodegeneration due to its relative availability, low costs, and good diagnostic
accuracy [58–61]. Therefore, many have used AI to capture the spatial patterns of atrophy
in MRI data to enhance the linkage between neurodegeneration and AD-related changes,
which are shown in Table 3. MRI can reveal the anatomical differences between AD and NC
to classify subjects into different stages of AD [62–64]. It can also detect MCI subjects who
will convert to AD based on the temporal link between MRI abnormalities and the onset of
cognitive impairment [65–67]. MCI subjects who convert to AD during the duration of the
study are often categorized as pMCI, while those who remain in MCI or revert to NC are
categorized as sMCI.

The hippocampus, one of the earliest areas to degenerate structurally, is a good
indicator for detecting AD progression in stages before initial clinical expression [68,69].
One study modeled the shape of the hippocampus using spherical harmonics (SPHARM)
coefficients, which were later used as features in a Radial Basis Functions kernels SVM
(RBF-SVM) classifier [70]. It discriminated 25 elderly NC controls from 23 AD subjects
with 94% accuracy (Sens: 96%; Spec 92%) and from 23 aMCI subjects with 83% accuracy
(Sens: 83%; Spec: 84%). Another study proposed a fully automatic segmentation method of
the hippocampus using anatomical and probabilistic information [71]. KNN algorithm was
used to assign 605 ADNI subjects to the group whose mean was closest to the hippocampal
volume of the participant; 76% of AD subjects and 71% of MCI subjects were correctly
classified with respect to NC controls. One group compared the classification performance
of SVM, artificial neural network (ANN), and Naïve Bayes (NB) classifiers [72]. Naïve
Bayes classifiers are Bayes’ theorem-based classifiers robust to irrelevant attributes and
with strong independence assumptions [73]. The hippocampus was segmented into seven
subfields using an atlas-based automatic algorithm based on Markov random fields in
FreeSurfer. They showed that the classification performances of hippocampal subfields
volumes across three classifiers (SVM: 0.71; ANN: 0.73; NB: 0.69) were more accurate
than the classification performances of whole hippocampal volume (SVM: 0.66; ANN: 0.67;
NB: 0.65) in the individual classification of pMCI and sMCI.

Considerable research has also focused on the relationship between in vivo cortical
thickness measurements and AD neuropathology in asymptomatic subjects [74]. A study
identified specific patterns of cortical atrophy at four time periods to subdivide the pMCI
subjects based on “time to conversion” [75]. It built four stratified linear discriminant
analysis (LDA) classifiers and increased classification performance by avoiding double
dipping. When compared to sMCI, 80.9% accuracy was achieved with the pMCI6 classifier
(converted to AD in 6 months), 74.5% with pMCI12, 73.0% with pMCI24, and 77.3% with
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pMCI36. Another study developed a spatial frequency representation of cortical thickness
data for classification based on incremental learning [76]. Cortical thickness data were
mapped onto a spatial frequency domain with the manifold harmonic transform from
the surface of the cortex. The PCA-LDA classifier discriminated NC from AD (Sens: 82%;
Spec: 93%) and pMCI to sMCI (Sens: 63%; Spec: 76%). A group improved their classifica-
tion based on cortical thickness features by combining SVM and AdaBoost [77]. AdaBoost
iteratively increases the weights of misclassified samples and decreases the weights of
correctly classified ones to combine multiple “weak classifiers” into a single “strong classi-
fier.” The proposed method discriminated AD and NC with 84.38% accuracy, 4–10% higher
than classical methods, such as SVM, LDA, and Gaussian mixture model (GMM). Beyond
regional analysis, inter-regional covariation of cortical thickness has also been suggested
for prognostic applications [78].

Other research focused on merging different biomarkers. Manual hippocampal volume
measurement and automated global and regional volume measures were combined for the
orthogonal partial least squares to latent structures (OPLS) analysis [79]. The combination
of volume measures for AD vs. NC (Sens: 90%, Spec: 94%) resulted in higher sensitivity and
specificity than hippocampal volume alone (Sens: 87%, Spec: 90%). NC vs. AD classification
could also be performed through simultaneous patched-based segmentation [80]. The
study segmented and graded the anatomical structures of the hippocampus and entorhinal
cortex and used hippocampal and entorhinal volumes and grades (similarity of the patch
surrounding the vortex), as well as their combinations, to find atrophic patterns. With
LDA and quadratic discriminant analysis (QDA) as classifiers, hippocampal measures had
more discriminating power than entorhinal measures, and 90% accuracy was achieved
(which increased to 93% after adding the ages of subjects). Another study employed a
greedy score-based feature selection technique to select important feature vectors (cortical
thickness, surface area, folding indices, curvature indices, and volume) [81]. A regularized
extreme learning machine (RELM) classifier, a type of learning algorithm implemented
without iteratively tuning the artificial hidden nodes, achieved an accuracy of 57.56–61.20%
for multi-class (AD, MCI, and NC) differentiation, higher than SVM (52.63–57.40%) and
import vector machine (IVM) (54.90–55.50%).

Conventional ML, such as SVM, relies on laborious brain segmentation that requires
complex image preprocessing techniques [82]. This challenge is addressed by DL ap-
proaches [83], which discover intricate structures in data without requiring prior feature
selection or data preprocessing. A study developed 3D-CNNs whose first layer used filters
learned with autoencoders [84]. The 3D-CNNs outperformed their 2D counterparts in
3-way (AD, MCI, and NC) and binary classifications (4–10%). Another study employed
GoogLeNet [85] and Residual Network (ResNet) [86], the winners of ILSVRC in 2014 and
2015, respectively, for 4-way classification of AD, MCI, late MCI (lMCI), and NC [87].
Both GoogLeNet (99%) and ResNet (98%) achieved high accuracy. A recent study also
proposed a deeply supervised adapTable 3 D-CNN (DSA-3D-CNN), with transfer learning
for AD diagnosis [88]. The proposed classifier was built by stacking pre-trained 3D convo-
lutional autoencoding layers followed by fully connected layers, which are fine-tuned for
task-specific classification. It achieved accuracies from 94.2% to 100% in target domains
(AD vs. MCI vs. NC, AD + MCI vs. NC, AD vs. NC, AD vs. MCI, and MCI vs. NC).

Ensemble-based classifiers [89] integrate individual decisions of multiple models to
classify a new sample based on voting. A framework that ensembles three deep CNNs, each
with slightly different configurations, was provided using the OASIS database [90]. Con-
trary to many existing approaches focusing on binary classification, the ensemble system
classifies individuals into NC, very mild, mild, and moderate AD with an average precision
of 94%. An ensemble of 3D densely connected convolutional networks (3D-DenseNets)
was also proposed for AD and MCI diagnosis [91]. Dense connections were introduced
to maximize information flow and improve feature utilization; with a dense connection
mechanism, fewer feature increments are added to each layer, which reduces the number
of parameters. It reached an accuracy of 0.9477 for NC vs. MCI vs. AD.
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Most DL research uses CNNs, which effectively find highly layered features and
tune hyperparameters [92]. Nevertheless, an early work in this area used a deep belief
network (DBN) [93] for AD vs. NC classification [94]. Manifold learning was performed
to reduce the dimensionality of 3D MRI images from ADNI by discovering patterns of
similarity and variability. Another work proposed THS-GAN, i.e., Tensor-train decompo-
sition, Higher-order pooling, and Semi-supervised learning were employed in the GAN
model to assess MCI and AD using the ADNI data [95]. The tensor train decomposition is
applied to all layers in the Generator and the Discriminator, which reduces the number of
parameters. The higher-order pooling, compared to the first-order pooling, leverages the
second-order statistics of the holistic MRI images, which effectively captures long-range
dependencies between slices of different directions. Moreover, the model is designed in
a semi-supervised manner to take advantage of both labeled and unlabeled MR images.
With optimal hypermeter settings, THS-GAN reached accuracies of 95.92% (AD vs. NC),
89.29% (MCI vs. NC), and 85.71% (AD vs. MCI). While MRI is widely used as a surrogate
marker for neurodegeneration, multimodal approaches combining various modalities,
such as computer tomography (CT) and single-photon emission computerized tomography
(SPECT), if available, can improve predictive performance [96].

Table 3. Summary of AI Algorithms for MRI Biomarkers.

Reference Application Method Subjects Performance

[71] 2009 NC vs. MCI vs. AD

KNN; segmented
hippocampus using
anatomical and
probabilistic priors

166 NC, 294 MCI,
145 AD

Classification rate: 76% (AD),
71% (MCI) with respect to NC

[70] 2009 NC vs. MCI vs. AD
RBF-SVM; model the shape
of the hippocampus using
SPHARM

25 NC, 23 aMCI,
23 AD

AD vs. NC: 94% (Acc), 96% (Sens),
92% (Spec); MCI vs. NC: 83% (Acc),
83%(Sens), 84% (Spec)

[79] 2011
AD vs. NC,
AD vs. MCI,
MCI vs. NC

OPLS analysis; hippocampal
volume, regional and global
volume measures

112 NC, 122 MCI,
117 AD

AD vs. NC: 90% (Sens), 94% (Spec)
AD vs. MCI: 75% (Sens), 73% (Spec)
MCI vs. NC: 66% (Sens), 73% (Spec)

[65] 2011 NC vs. AD; prediction
of MCI to AD

SVM; 3D hippocampal
morphology

88 NC, 103 MCI,
71 AD

AD vs. NC: 85% (Acc)
MCI to AD: 80% (Acc), 77% (Sens),
80% (Spec)

[76] 2012 NC vs. AD;
pMCI vs. sMCI

PCA-LDA; used manifold
harmonic transform to
represent cortical
thickness data

160 NC, 131 sMCI,
72 pMCI, 128 AD

AD vs. NC: 82 (Sens), 93% (Spec)
sMCI vs. pMCI: 63% (Sens), 76% (Spec)

[80] 2012 NC vs. AD
QDA and LDA; atrophic
patterns of hippocampus and
entorhinal cortex

60 NC, 60 AD 90% (Acc), 88% (Sens), 94% (Spec)

[75] 2013 pMCI vs. sMCI,
NC vs. AD

LDA; ROI-wise patterns of
cortical thinning

226 NC, 134 sMCI,
340 pMCI,
194 AD

Acc: 84.5% (AD vs. NC), 75.8% (sMCI
vs. pMCI6), 72.9% (sMCI vs. pMCI12),
66.7% (sMCI vs. pMCI24),
69.9% (sMCI vs. pMCI36)

[77] 2013 NC vs. AD SVM-based Adaboost;
cortical thickness features 60 NC, 40 AD Acc: 94.38%

[66] 2014 NC vs. AD; MCI to AD
prediction

RF; combining cortical
thickness and volumetric
measures

225 NC, 165 MCI,
185 AD

AD vs. NC: 86.7% (Acc), 90.7% (Sens),
82.9% (Spec); MCI to AD: 78.0% (Acc)
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Table 3. Cont.

Reference Application Method Subjects Performance

[62] 2014 NC vs. AD

Ensemble of SVM, multi-layer
perceptron (MLP), and
decision tree (DT); volume of
gray matter (GM), white
matter (WM), CSF, and
hippocampus area

NC: 48, AD: 37 93.75% (Acc), 100% (Spec), 87.5% (Sens)

[78] 2015

NC vs. AD,
NC vs. pMCI,
NC vs. MCI,
pMCI vs. sMCI

Variational Bayes probabilistic
multiple kernel learning
(VBpMKL); inter-regional
covariation of cortical
thickness

159 NC, 56 pMCI,
130 sMCI, 136 AD

AUC: 0.92 (NC vs. AD),
0.83 (NC vs. pMCI),
0.75 (NC vs. MCI),
0.68 (pMCI vs. sMCI)

[84] 2015

NC vs. MCI vs. AD;
NC vs. AD,
MCI vs. AD,
NC vs. MCI

3D-CNN combined with
sparse autoencoders

755 subjects from
ADNI; 2,265 scans

Acc: 89.47% (3-way),
95.39% (AD vs. NC),
86.84% (AD vs. MCI),
92.11% (NC vs. MCI)

[63] 2015
NC vs. AD;
NC vs. MCI;
AD vs. MCI

SVM; used circular harmonic
functions on the hippocampus
and posterior cingulate cortex

162 NC, 210 MCI,
137 AD

AD vs. NC: 83.77% (Acc), 88.2% (Spec),
79.09% (Sens); NC vs. MCI: 69.45%
(Acc), 74.8% (Spec), 62.52% (Sens);
AD vs. MCI: 62.07% (Acc),
75.15% (Spec), 49.02% (Sens)

[72] 2016 pMCI vs. sMCI SVM, ANN, NB; hippocampal
subfield atrophies

47 NC, 89 sMCI,
32 pMCI, 55 AD

SVM: 0.66 (Acc), 0.64 (Sens), 0.72 (Spec);
ANN: 0.67 (Acc), 0.65 (Sens),
0.72 (Spec); NB: 0.65 (Acc), 0.63 (Sens),
0.72 (Spec)

[64] 2017

AD vs. NC,
AD vs. eMCI,
AD vs. lMCI,
lMCI vs. NC,
lMCI vs. eMCI,
eMCI vs. NC

voxCNN, ResNet 61 NC, 77 eMCI,
43 lMCI, 50 AD

AD vs. NC AUC: 0.88 (VoxCNN),
0.87 (ResNet); AD vs. eMCI:
0.66 (VoxcNN), 0.67 (ResNet);
AD vs. lMCI: 0.61 (VoxCNN),
0.62 (ResNet); lMCI vs. NC: 0.67 (Vox
CNN), 0.65 (ResNet); lMCI vs. eMCI:
0.47 (VoxCNN), 0.52 (ResNet); eMCI
vs. NC: 0.57 (VoxCNN), 0.58 (ResNet)

[87] 2017 NC vs. MCI vs. lMCI
vs. AD

CNN-based architecture for
GoogLeNet and ResNet

45 NC, 49 MCI,
22 lMCI, 33 AD
(355 MRI
volumes)

Overall Acc: 98.88% (GoogLeNet),
98.01% (ResNet-18),
98.14% (ResNet-152)

[81] 2017 NC vs. MCI vs. AD
SVM, IVM, RELM; using a
greedy score-based feature
selection

70 NC, 74 MCI,
70 AD

SVM Acc: 52.63–57.40%;
IVM Acc: 54.90–55.50%;
RELM Acc: 57.56–61.20%

[88] 2018

AD vs. MCI vs. NC,
AD + MCI vs. NC,
AD vs. NC,
AD vs. MCI,
MCI vs. NC

DSA-3D-CNN with transfer
learning; modified for different
domain

70 NC, 70 MCI,
70 AD
(2265 scans total)

AD vs. NC Acc: 99.3; AD + MCI vs.
NC Acc: 95.73; AD vs. MCI Acc: 100;
and MCI vs. NC Acc: 94.22,
AD vs. MCI vs. NC Acc: 94.8

[90] 2018
NC vs. very mild
AD vs. mild AD vs.
moderate AD

Ensemble of three 3D-CNNs OASIS-1 Average precision: 0.94

[91] 2019 NC vs. MCI vs. AD Ensemble of 3D-DenseNets
833 T1-weights
MRIs from
624 ADNI subjects

Acc: 0.9477

[95] 2020 NC vs. AD, MCI vs.
NC, AD vs. MCI THS-GAN

221 AD, 297 MCI,
315 NC T1-MRI
images

Acc: 95.92% (AD vs. NC), 89.29%
(MCI vs. NC), 85.71% (AD vs. MCI)
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4. Randomization

Primary outcomes of AD clinical trials are often the absence of clinical progression
(measured by scales, such as the Clinical Dementia Rating (CDR)) or cognitive deterioration
(measured by NP test scores). However, many longitudinal studies have identified fast
and slow AD progressors characterized by heterogeneous rates of cognitive and functional
decline [97–100]. Randomization in clinical trials does not always allocate an equal pro-
portion of rapid and slow progressors into control and intervention groups [101,102]. As
Figure 2 shows, if rapid progressors are mainly selected for the intervention group and slow
progressors for the control group, the reported treatment effect would seem as though the
treatment had no significant impact, even if the treatment was, in fact, clinically efficacious.
On the other hand, if slow progressors were mainly selected for the intervention and rapid
progressors for the control group, the reported treatment would have overestimated the
clinical efficacy. Therefore, an even allocation of rapid and slow decliners into intervention
and control groups is desirable to reduce bias in treatment assignment and avoid the two
aforementioned extreme scenarios that could explain the failures [103] and successes [104]
of AD clinical trials in the last two decades.
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For a reliable observation of the intervention impact, many have focused on predicting
rapid progression using multimodal biomarkers (Table 4). A recent study performed a
multivariable LR analysis to classify 124 Aβ+ MCI subjects, with rapid progressors defined
as those who converted to AD status in 3 years of follow-up [105]. Univariate logistic
analysis of rapid and slow progressors showed no significant differences in demographic
measures, but the biomarker characteristics between the two differed significantly. Two
separate analyses were conducted for CSF p-tau and CSF t-tau due to the multicollinearity
between the variables, and the models achieved AUC of 0.901 and 0.907, respectively. LR
models suggested that MCI status, APOE4 status, corrected hippocampal volume (HV),
[F18] fluorodeoxyglucose (FDG) PET SUVR, and CSF t-tau/p-tau were associated with
fast AD progression, which was then used to construct nomograms where a specific point
corresponds to each variable based on the beta coefficients of the regression analyses.

Another study used a DL model to differentiate rapid vs. slow progression in
321 ADNI subjects with baseline AT(N) biomarkers [106]. Rapid and slow progressors
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were first identified by applying an unsupervised time-series technique based on dynamic
time-warping (DWT) [107] with Ward’s linkage-based agglomerative clustering [108],
which allows for shape-based clustering of dynamic time-varying observations. These
progression phenotypes were used to train Parameter-efficient Network Model (PENet)
with baseline biomarkers for A (CSF Aβ 1–42), T (CSF p-tau 181), and N (MRI images and
FDG-PET). PENet took a combination of AT(N) biomarkers to predict cognitive decline
status, with a comprehensive AT(N) model (accuracy: 0.710) outperforming biomarker
pairs (A(N): 0.683; T(N): 0.702) and individual biomarkers (A: 0.597; T: 0.567; N: 0.685),
which suggested a synergistic relationship between these biomarkers.

Clustering algorithms are also a popular approach to identify homogeneous clusters
of rapid and slow progressors. A multi-layer clustering (MLC) algorithm was proposed in a
study to identify clusters of rapid and slow progressors among 562 ADNI MCI subjects [109].
The MLC model consisted of two steps: (1) example similarity tables were computed for
each data layer, and (2) an agglomerative bottom-up procedure used these tables to find the
optimal clustering solution. The subgroup discovery technique identified the best classifiers
(clinical test cut-offs on Alzheimer’s Disease Assessment Scale (ADAS), MMSE, and Rey’s
Auditory Verbal Learning Test (RAVLT)), and the classifiers achieved high sensitivity
(75.0–98.4%) and specificity (70.0–90.0%). Findings showed that fast progressors had two-
fold greater brain atrophy and converted to AD five times the rate of slow progressors. A
hierarchical agglomerative clustering method was applied to MRI of a cohort of 751 MCI,
282 AD, and 428 NC [110]. The group preprocessed MRIs to gray matter density maps and
regressed out age, gender, and years of education to render the maps comparable. The
hierarchical clustering of MRIs discovered clusters of rapid and slow MCI progressors based
on striking heterogeneities in brain atrophy patterns. Rapid progressors showed a higher
degree of atrophy in the medial temporal lobe and cerebellum, while slow progressors
manifested more atrophy in the frontal cortex.

Some groups have developed predictive algorithms without the use of PET and
CSF. A ML classifier [76] trained with incremental learning was adopted to distinguish
rapid and slow progressors in a longitudinal AD cohort [111]. The study used PCA for
dimension reduction of the 27 high-resolution 3T brain MRIs and found coordinate axes
that maximally separated the groups with LDA. It demonstrated that slow progressors
showed discriminative patterns defined around the prefrontal and temporal cortices, while
rapid progressors showed patterns in most of the prefrontal, inferior parietal, and temporal
cortices. Another study used ADAS-Cog and MMSE, laboratory tests, and demographic
information to train a Conditional Restricted Boltzmann Machine (CRBM) to forecast
individual AD progression [112]. A CRBM [113] is a probabilistic neural network that
learns from a joint probability distribution of features. Differences between rapid and slow
progressors quantified using the absolute value of Cohen’s d-statistic showed that, while
the majority of baseline features were not associated with rapid AD progression, strong
associations were found with cognitive tests based on recall and word recognition. For
instance, subjects with poor performance on the ADAS word recall tended to progress more
rapidly. One group also reported using an unsupervised separation algorithm based on the
genetic algorithm technique to uncover two distinct rates of AD progression characterized
by the functional assessment staging (FAST) procedure [114].

Most research has investigated the heterogeneous progression based on clinical and
functional measures, which are the primary outcomes in clinical trials. However, there are
certain advantages of predicting rapid vs. slow biomarker progression. Firstly, AD clinical
trials utilize biomarkers as secondary outcomes. Secondly, the knowledge of rapid and slow
biomarker progression is important to correctly estimate the true effect size of anti-amyloid
and other AD treatments. An uneven allocation of rapid and slow Aβ progressors could
either dilute or exaggerate the clinical efficacy of the treatment. One group combined the
baseline clinical, genetic, and imaging features from 610 unique ADNI subjects to identify
those at the highest risk of rapid Aβ deposition [115]. They used a CNN based on the
ResNet architecture [116] to identify important baseline amyloid PET image features, which
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were combined with eight clinical, demographic, and genetic markers to predict future
SURVR values using a gradient-boosted decision tree (GBDT) algorithm. The combined
model achieved a RMSE of 0.0339, which outperformed multivariate linear regression
(0.0382) and GBDT without imaging features (0.0355). Moreover, the highest percentage of
fastest Aβ progressors was predicted with the proposed method (37.7%), superior to other
selection methods, such as Aβ+ cases with at least one APOE ε4 allele (15.7%).

Table 4. Summary of AI Algorithms for Rapid vs. Slow Progressor Prediction.

Reference Application Method Subjects Performance

[114] 2012 Rapid vs. slow AD
disease courses

Separation algorithm
based on genetic algorithm
technique; FAST
stage duration

Longitudinal course
of 648 AD patients

FAST mean stage duration:
4: 1.60 (rapid), 3.17 (slow);
5: 0.71 (rapid), 2.26 (slow);
6: 1.69 (rapid), 3.30 (slow);
7: 5.24 (rapid), 6.73 (slow)

[109] 2017 Rapid vs. slow MCI MLC; baseline and
prognostic characteristics

562 MCI from ADNI-1
and ADNI-2

Sens: 75.0–98.4%,
Spec: 70.0–90.0%

[111] 2018 Rapid vs. slow
cognitive decline

PCA-LDA; cortical atrophy
pattern 869 NC, 473 AD

p = 0.029 (significant different
between rapid and slow
progressors)

[105] 2019 Rapid vs. slow MCI LR; CSF, FDG-PET, 18F-AV45
PET, hippocampal volume

186 MCI (74 rapid
progressors, 112 slow
progressors)

AUC: CSF p-tau model: 0.091;
CSF t-tau model: 0.907

[112] 2019 Patient trajectory
prediction

CRBM; using ADAS-Cog
and MMSE, laboratory tests,
and demographic
information

1,909 subjects with MCI
or AD

LR analysis: real and synthetic
data were statistically
indistinguishable

[110] 2020 Rapid vs. slow MCI Hierarchical clustering;
GM density maps

428 NC, 751 MCI,
282 AD

95% confidence intervals do
not overlap

[115] 2021 Rapid vs. slow Aβ
accumulation

GBDT; 18F-AV45 PET,
clinical, demographic,
and genetic markers

610 subjects with
1136 follow-up scans

RMSE: 0.0339; percentage of
fastest Aβ progressors predicted
(37.7%)

[106] 2022 Rapid vs. slow
progression

PENet; using progression
phenotype based on DWT 321 ADNI subjects

Acc: AT(N): 0.710; A(N): 0.683;
T(N): 0.702; A: 0.597; T: 0.567;
N: 0.675

5. Challenges and Future Directions

AI systems with large-scale data have facilitated the development of disease prediction
that can potentially reduce the screen failure rate of clinical trials [39]. Furthermore, identi-
fying suitable participants in trial recruitment contributes to reducing associated expenses
and accelerates drug developments [117]. However, it is important to acknowledge several
challenges for its applications in clinical trials.

Advanced AI models derived from high-quality databases often showed good predic-
tive performance; additional information from explainable and transparent AI technology
might further the understanding of biomedical data and improve their applications in
clinical trials. A common form of a visible machine learning algorithm, such as a graphical
neural network might provide structural connections between different medical entities
(e.g., diseases, drugs, and proteins). For example, GNNexplainer identifies a small set of
important variables and genetic pathways that contribute to human disease [118]. Identifi-
cation of disease mechanisms through the multiscale interactome has facilitated efficacious
and safe therapeutic development. In addition, earlier access to the drug candidates could
help improve the time and expenditure of prescreening process in clinical trials. Thus,
developing an explainable and transparent AI system would substantially benefit both the
speed and efficiency of clinical trials and drug discovery.
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Another challenge is the limited generalizability that arises from the lack of external
validations, which reduces the confidence in the predictive power of AI algorithms. External
and internal validations are crucial for the development of a reliable algorithm. Internal
validation methods, such as bootstrap and cross-validation quantify the algorithm optimism
and provide information about the degree of overfitting, whereas external validation uses
independently derived data to ensure generalizability. Review studies, however, have
demonstrated that a substantial number of studies did not perform any validation or
performed either external or internal validation [119]. Internal validation methods could
be limited by small sample size. A minimum of 300 subjects is generally recommended
for internal validation, but categorical data in AD clinical trials, such as brain imaging
measurements, could be limited due to the associated costs and time [120]. For external
validation, over-reliance on one cohort population and unavailability of similar but the
difference in cohort populations remains a challenge. These shortcomings limit the clinical
relevance of AI despite its promising computational results.

Further studies need to focus on improving the efficiency and effectiveness of AI
techniques for AD clinical trials. Firstly, AI technologies, such as visible neural networks,
could incorporate the inner workings of AI models into complex and hierarchical biological
systems [117,121]. AI models can be enriched with biological knowledge, which includes
multilevel interactions composed of sequences, protein complexes, cells, tissues, organs,
and organisms. Compared to the current deep learning schemes to model the entire
system at once, this approach models how various AD-related entities interact with each
other at different levels to develop the multiscale interactome for AD drug candidates.
Moreover, these models could leverage genetic and genomic data to identify genetic
determinants of AD to guide therapies with individuals’ genomic profiles, which allows
for precision medicine and personalized treatment. Secondly, rigorous external validations
in other populations with greater diversity are necessary to assess generalizability and
reproducibility. Finally, given that the ML efficiency increases as the quantity and quality
of data increases, the integration of genomics, proteomics, and other omics data in the
AD clinical research could help investigate molecular pathways of AD, with potential
implications for novel diagnostic biomarkers and precision medicine [122].

6. Conclusions

Clinical trials for AD face challenges of high screen failure and even allocation of the
heterogeneous subject population. Many recent works have investigated the potential
applications of AI to address these challenges in clinical trials, particularly in the steps
of eligibility assessment and randomization. The prediction of protein and MRI AD
biomarkers in the prescreening process could drastically reduce the high screen failure
rate. Additionally, the AI-based stratification of the AD subject population into rapid
and slow progressors can guide the even allocation of the heterogeneous AD population
into intervention and control groups during randomization. AI algorithms have not been
integrated into AD clinical trials due to the lack of explainability and poor external and
internal validations. However, integrating biological knowledge to develop the multiscale
interactome and rigorous external validations for generalizability and reproducibility could
result in novel diagnostic biomarkers and precision medicine.
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