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Abstract: Visual perception is an important part of human life. In the context of facial recognition,
it allows us to distinguish between emotions and important facial features that distinguish one
person from another. However, subjects suffering from memory loss face significant facial processing
problems. If the perception of facial features is affected by memory impairment, then it is possible to
classify visual stimuli using brain activity data from the visual processing regions of the brain. This
study differentiates the aspects of familiarity and emotion by the inversion effect of the face and uses
convolutional neural network (CNN) models (EEGNet, EEGNet SSVEP (steady-state visual evoked
potentials), and DeepConvNet) to learn discriminative features from raw electroencephalography
(EEG) signals. Due to the limited number of available EEG data samples, Generative Adversarial
Networks (GAN) and Variational Autoencoders (VAE) are introduced to generate synthetic EEG
signals. The generated data are used to pretrain the models, and the learned weights are initialized
to train them on the real EEG data. We investigate minor facial characteristics in brain signals and
the ability of deep CNN models to learn them. The effect of face inversion was studied, and it was
observed that the N170 component has a considerable and sustained delay. As a result, emotional and
familiarity stimuli were divided into two categories based on the posture of the face. The categories
of upright and inverted stimuli have the smallest incidences of confusion. The model’s ability to
learn the face-inversion effect is demonstrated once more.

Keywords: Alzheimer’s disease; electroencephalogram; SSVEP; visual stimuli classification; face
inversion; generative adversarial networks; data augmentation; deep learning

1. Introduction

Visual perception helps people understand their surroundings. However, with age,
visual processing becomes more challenging. Although Alzheimer’s disease (AD) usually
starts with memory impairment, it is also thought to affect vision processes. Patients
with AD have been found to often experience reading difficulties and spatial disorienta-
tion [1]. This becomes even more difficult when they cannot recognize familiar faces or
even themselves [2]. Because deficiencies in both memory and gnostic processes can be a
consequence of AD, it is possible to determine which area is not so severely affected and
whether targeted rehabilitation or other supportive applications would be possible.

Brain–computer interface (BCI) systems are known to help people with motor dis-
abilities. They have even been adapted for faster image annotation in computer vision
tasks [3]. Without any physical activity in humans, only by understanding the intentions of
a person using brain signals, the system converts them into actions or commands [4,5]. BCI
is generally based on the analysis of noninvasive electroencephalography (EEG) signals [6].
Due to the low cost [6] and high temporal resolution [7], EEG has been an area of interest for
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many researchers, such as the evaluation of psychological status [8], sports informatics [9],
and biometrics [10,11]. A device consisting of electrodes measures the electrical potential of
the scalp [12]. It can show brain activity in certain regions that are responsible for various
tasks, such as (Figure 1):

• Frontal lobe (F)—responsible for language, problem solving, decision making, and
memory [12].

• Temporal (T) lobe—mainly responsible for auditory information and verbal memory
of information, as well as certain aspects of visual perception [12].

• Parietal (P) lobe—responsible for sensory information interpretation [12], texture,
weight, and object recognition [13].

• Occipital (O) lobe—responsible for early visual perception [12].

Figure 1. (a) The 10-10 electrode placement system. (b) Cerebral lobes and central area [14]. Label “z”
indicates midline area. Odd numbers—the left hemisphere; even numbers—the right hemisphere.

Many studies suggest that EEG can accurately predict some brain diseases, such as
epilepsy [15], Alzheimer’s disease, and autism [16]. However, the analysis of EEG signals
is a very difficult task because they are high dimensional and nonstationary [6] and have a
poor signal-to-noise ratio [7,14]. Most importantly, experiments with EEG signals usually
have relatively few data, and brain impulses are specific to each user, so BCI systems must
be calibrated [17]. Despite the shortcomings of EEG, there is a potential for BCI systems to
be adapted for patients with memory impairment: to provide the necessary information
about visual stimuli, the relationship status with a visible person, and more.

Different stimuli cause different brain reactions. The path of visual perception begins
in the retina and extends to the occipital lobe [16]. From the early visual cortex, visual
processing spreads to the lateral occipital lobe during the first few milliseconds (about
200 ms) [18]. Electrical activity causing visual perception is observed throughout the path-
way with different response patterns depending on the visual stimulus [14]. Signal changes
can occur in different channels at different times and with different amplitudes. Neural
oscillations evoked by stimuli constitute event-related potential (ERP). If the stimulus
presented is visual, it may also be referred to as visual event-related potential (VEP) [19].
Additionally, if the ERP is averaged over the same stimuli, then it is called the Grand
Average ERP [19] and is analyzed by peak amplitude (P—positive; N—negative) and the
timing of the peak in milliseconds [20].

The visual processing of a human face is very complex. One can glean information
such as a person’s identity and emotional state from faces [18]. The face-inversion effect is
noticeable more quickly than emotions, as it flips the entire face instead of focusing on facial
features. The most reliable facial marker in EEG studies is the N170 component, a face-
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sensitive ERP component with a negative wave amplitude deflection that occurs around
170 ms after the presentation of a face [21]. In this component, the face-inversion effect
(FIE) has a significant and consistent delay (about 10 ms) [22], as has been demonstrated
in many studies [23]. Only after the position of the face is defined does the brain analyze
features such as emotions. The emotional effect in the EEG signal occurs 310–1000 ms after
the stimulus onset. On the other hand, the N250 component is more prominent in familiar
faces than in unknown faces. N250 has been shown to increase when a face becomes more
familiar in terms of face individuation [24]. Inverted face information was also found to
take longer to encode compared to an upright face [17]. Meanwhile, a study analyzing emo-
tional expressions found that fearful faces caused significantly higher and longer-lasting
negative activity in the signal compared to neutral faces [25]. This emotional effect begins
approximately 316 ms from the stimulus onset and remains for another 684 ms [25]. Accord-
ing to [18], the temporal stimulus encoding was divided into three phases: 1. configuration
(140–160 ms); 2. face individualization (180–300 ms); and 3. changeable aspects of faces
such as emotion (310–1000 ms). In addition, other studies also found that the sensitivity for
familiar faces is present at about 250 ms [18], and the 320–480 ms time window achieves
the best performance for visual stimulus classification [23]. This suggests that the key areas
of the brain for visual classification are related to higher-level cognitive processes rather
than visual processing only.

In recent years, deep neural networks (DNNs) have received increasing attention from
researchers for a variety of classification tasks by using EEG data: alcoholism detection [26],
predicting early stages of schizophrenia [27], classifying motor imagery to assist brain–
computer interfaces [6,28], determining the stage of AD [29], and even the stages of visual
processing [30]. The growing interest in visual perception may open up more opportunities
to adapt BCI systems to visually impaired people [30]. However, because small training
sets are usually available for BCI design, shallow networks are the only ones that have been
identified as useful and promising [17]. They have fewer parameters and fewer hidden
layers; therefore, they are not as prone to overfitting as the richer deep models [13,31]. Deep
learning methods have also been shown to reduce the need for feature engineering, as the
use of raw EEG data achieves impressive results [15,32]. Finally, we have a problem in that
artefacts in EEG present a difficulty in BCI, as it is often used to decipher motor preparation
and imagination. To combat this, Mammone et al. suggest using maps embedded in a
volume and using this as input to a deep convolutional neural network CNN [33].

Artificial reconstruction with high sampling rates and sensitivity is difficult due to
the nature of EEG signals. The link between EEG data associated with emotions, a coarse
label, and a facial expression image was established in the study [34] using a conditional
generative adversarial network (cGAN). The authors of [35] recommend using a Generative
Adversarial Network with Wasserstein Distance and Temporal-Spatial-Frequency Loss to
reconstruct EEG signals. Luo et al. developed a Conditional Wasserstein GAN (CWGAN)
framework for EEG data augmentation to improve EEG-based emotion recognition in order
to overcome the shortage of data when assessing emotions [36]. Bhat et al. suggest adding
nine descriptive features extracted from the original data to the GAN implementation [37].
A key goal in the related Alzheimer’s research is to determine how it affects the ability
to process contextual information and regulate threat responses, addressing the fact that
structural and physiological changes in the prefrontal cortex and medial temporal lobe
determine cognitive changes in advanced aging, which can eventually lead to the patterns
of cognitive dysfunctions seen in patients with AD/MCI [38] with a very complex patho-
physiological basis, dependent on different biomarkers affecting the cognitive decline [39].
The classification of visual information is a daily human function; however, can we auto-
matically identify visual stimuli based on brain signals? Additionally, how does automatic
classification respond to Alzheimer’s patient data?

The purpose of this study is to investigate whether the visual stimuli of a patient
with AD can be detected in the same way as in a control (healthy) group. We also want to
determine whether a trained CNN can learn the key components that encode facial-related
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information, even though some areas of the brain of the AD patient may be damaged.
However, assuming that memory rather than visual processes is the consequence of the
disease, the model is expected to understand visual perception in a very similar way. The
task of classifying visual stimuli is challenging even with data from a group of healthy
young people, but this study covers the older group. To the best of our knowledge, such a
study to examine the visual perception of the elderly, including a patient with AD, has not
been done before.

The following objectives were set accordingly:

1. Investigate whether a trained CNN model can detect categories related to emo-
tions and facial inversion: fear/upright, fear/upside-down, neutral/upright, and
neutral/upside-down.

2. Investigate whether a trained CNN model can detect categories related to familiarity
and facial inversion: famous/upright, famous/upside-down, unfamous/upright, and
unfamous/upside-down.

3. Investigate how pretrained model weights with augmented data affect model performance.

The structure of the paper is as follows: Section 2 describes the classification tasks
for visual stimuli performed for different stimuli. In Section 3, we provide information
on classification methods using convolutional neural networks. Section 4 presents an
experimental design with information about participants and data. Section 5 provides
detailed information on preprocessing, training, improvements to the original model, and
evaluation. Finally, we present the discussion and summary results in Section 6.

2. Related Work

In recent years, the challenge of visual classification has been increasingly addressed.
In the visual context, the most popular visual stimuli are movement imagery data because
they can be directly applied to individuals with motor disorders in BCI systems [38–42].
However, the application of visual stimuli can also be applied in many areas: to perform
faster image annotation tasks [3], to understand the processes of visual perception in
the brain, and to help those with visual impairments. The medio-frontal negativity, a
component of the event-related brain potential generated in the ACC/mPFC, tracks the
timing of salient events and reports an error signal when the aversive outcome is delayed
or predicted from an expected time, according to the study [40].

Because visual encoding is a complex task, many studies rely on the classification
of binary data [43–45]. Even then, performance is not always excellent, as magnetoen-
cephalography (MEG) recordings provide 64% accuracy in predicting the face compared
to a scrambled face [46], and another study using EEG data has less than 65% accuracy
in detecting upright versus inverse facial stimuli [47]. Nevertheless, the effect of facial
inversion has been extensively studied, showing that the face-sensitive N170 component
is higher in amplitude for faces [48] and the prediction of facial inversion increases from
125 ms to 375 ms after stimulus onset [47]. However, there is evidence that N170 is also
sensitive to differences in facial category: identity and emotion [48]. In terms of emotion
prediction, more research has been carried out to determine the emotion that a subject
experiences when seeing the various images presented [49,50]. Unfortunately, no studies
have attempted to predict a person’s ability to correctly identify other person’s emotions,
although the effect of emotion stimuli has been observed in the past [25]. In addition, re-
search on familiarity aspects has shown that the successful acquisition of long-term memory
information is necessary to recognize a familiar face [51]. The visual memorability of the
media content was examined to determine how easily the image could be memorized [52].
Research related to memory processes is important in advertising, education, treatment
of memory-related diseases, and other areas. The related work is summarized in Table 1.
The highest accuracy in predicting visual stimuli, approximately 83%, was achieved with
the RNN model in a study with 40 classes of visual stimuli, but the model was developed
using both image data and EEG signals. Therefore, if a single data source is not available, a
classification model cannot be used [53]. Another study, also using an RNN model, which
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can capture long-term dependencies over time, achieved an accuracy of 61.74%, while
DeepConvNet achieved 64.82% [5]. The authors of the article state that this is due to the
complex structure of DeepConvNet and the larger number of parameters [5].

Table 1. Classification of visual stimuli in other articles.

Article Method Visual Stimulus Types Accuracy

Yang et al. [5] RNN with data augmentation
by randomly averaging

contraction/expansion/rotation/
translation

73.72%,
61.74% (without
augmentation)

Mishra and Bhavsar [7] Siamese network Object/Digits/Characters 77.9%/76.2%/74.8%

Cudlenco et al. [13] Gabor filtering with Ridge
Regression

Flowers/Airplanes/Cars/Park/
Seaside/Old town 66.76%

Bagchi and Bathula [14] EEG-ConvTranformer network Human face/other 11 classes 78.37%

Spampinato et al. [53] Recurrent Neural Networks
(RNN) 40 objects from ImageNet 83%

List et al. [47] Multivariate pattern
classification analysis Inverted/upright face Less than 65%

Gunawan et al. [50] DenseNet Valence/arousal emotion types 60.55%

3. Methods
3.1. Raw EEG Classification Methods

The EEGNet, DeepConvNet and EEGNet SSVEP deep neural network models have
been shown to be effective and useful in a variety of classification tasks [54]. Further,
EEGNet SSVEP is specifically designed to classify visual potential signals [31]. Therefore, it
is valuable to start analyzing EEG data with these methods to obtain benchmark results.

3.1.1. EEGNet Architecture

EEGNet is a compact CNN than can be used for a variety of EEG signal classification
tasks, including event-related potentials (ERP). The EEGNet model can effectively extract
different types of properties from the signal data [54]. The performance of cross-subject
classification for ERP data is as good as using the DeepConvNet architecture. An archi-
tecture structure consists of only three convolutional layers: 2D temporal convolution,
depth-wise convolution and pointwise convolution [54]. All layers use a nonlinear acti-
vation function—the exponential linear unit (ELU). The model’s input is raw EEG data,
including the number of channels and time samples. The detailed structure is shown in
Table 2.

The original paper experimented with the EEG data taken at 127 Hz with initial
parameters such as: F1 = 8, F2 = 16, D = 2 [54].

To limit the number of trainable parameters, the EEGNet architectural structure em-
ploys depth-wise and separable convolutions. The initial combination of 2D convolution
and depth-wise convolution allows each temporal filter to learn spatial filters [55]. Mean-
while, the number of spatial filters learned from each feature map is controlled by a depth
parameter [56]. After each convolution, batch normalization is performed to achieve model
stability. Additionally, dropout layers are used to significantly reduce overfitting [26]. The
final multi-class classification layer uses the SoftMax function [57].
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Table 2. EEGNet standard architecture. C—number of channels; T—number of time points; F1—
number of temporal filters; F2—number of pointwise filters; D—number of spatial filters; Fs—
sampling rate; N—number of classes.

Layer Type Filters Size Pad Activation Options

Input input = (C, T)

1
Conv2D F1 (1, T/2) same none

Batch Normalization

2

DepthwiseConv2D (C, 1) valid ELU bias = False, depth multiplier = D,
depth wise constraint = max norm (1.)

Batch Normalization
AveragePooling2D (1, 4) valid

Dropout rate = 0.5

3

SeparableConv2D F2 (1, 16) same ELU bias = False
Batch Normalization
AveragePooling2D (1, 8) valid

Dropout rate = 0.5

4 Flatten

Classifier Dense N SoftMax kernel constraint = max norm (0.25)

3.1.2. DeepConvNet Architecture

The DeepConvNet architecture is designed to be general purpose. It consists of five
convolutional layers: 2D temporal convolution with an increasing number of filters and
ELU activation functions, and the last layer is a dense Softmax classification. This method
is better than the standard filter bank Common Spatial Models (FBCSP) algorithm, but
its main advantage is that the features do not have to be predefined and the method can
be applied to general cases. Additionally, DeepConvNet can learn to use spectral power
modulations in different frequency bands. The length of temporal convolution should be
(1, 10) for data sampled at 250 Hz [50]. The architectural structure is shown in Table 3.

3.1.3. EEGNet SSVEP Architecture

The EEGNet SSVEP architecture utilizes Compact-CNN to be specifically adapted for
steady-state visual evoked potentials (SSVEPs). These are events only from the visual cortex
electrodes (parietal and occipital) when the visual stimulus is observed. This approach can
be used to train even small data sets. The main difference between EEGNet and EEGNet
SSVEP is that the kernel length of the first convolutional layer is equal to the time samples
(instead of the half of the time samples), and no maximum norm weight limit is used for
the final dense layer [31].

The EEGNet SSVEP network also distinguishes between phase and amplitude features.
As previously stated, the first convolutional layer simulates a bandpass frequency filter by
performing a temporal convolution. In the meantime, the depth-wise spatial convolutions
are supposed to operate as spatial filters, reducing the data’s dimensionality. Additionally,
the ELU activation function is also employed because it has been shown to perform better
for EEG classification. The authors used the following initial parameters: dropout rate = 0.5,
F1 = 96, F2 = 96, and D = 1 [58].
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Table 3. DeepConvNet standard architecture. C—number of channels; T—number of time points;
TC—length of temporal convolution; N—number of classes.

Layer Type Filters Size Pad Activation Options

Input input = (C, T)

1

Conv2D 25 TC valid none kernel constraint = max norm (2)
Conv2D 25 (C, 1) valid ELU kernel constraint = max norm (2)

Batch Normalization epsilon = 1e-05
momentum = 0.1

MaxPooling2D (1, 2) valid Strides = (1, 2)
Dropout

2

Conv2D 50 TC valid ELU kernel constraint = max norm (2)

Batch Normalization epsilon = 1e-05
momentum = 0.1

MaxPooling2D (1, 2) valid strides = (1, 2)
Dropout rate = 0.5

3

Conv2D 100 TC valid ELU kernel constraint = max norm (2)

Batch Normalization epsilon = 1e-05
momentum = 0.1

MaxPooling2D (1, 2) valid strides = (1, 2)
Dropout rate = 0.5

4

Conv2D 200 TC valid ELU kernel constraint = max norm (2)

Batch Normalization epsilon = 1e-05
momentum = 0.1

MaxPooling2D (1, 2) valid strides = (1, 2)
Dropout rate = 0.5

5 Flatten

Classifier Dense N SoftMax kernel constraint = max norm (0.5)

3.2. Artificial EEG Data Generation Using the VAE

The size of the training data set has a direct impact on the performance of the deep
learning model [59]. The classifier may be overfitting or have poor generalization skills
in the absence of reliable data. However, since large-scale EEG datasets are difficult to
obtain in real life, artificial data augmentation methods have been proposed to address this
issue [60].

In this paper, Generative Adversarial Networks (GAN) and Variational Autoencoders
(VAE) were used. It was discovered that training a classifier using a pretrained model
on synthetic data, rather than mixing actual and generated data, resulted in the biggest
increase in classification accuracy. The accuracy of generalization ability achieved by
training the classifier in one subject and testing it in another using VAE data improved by
up to 37% [57].

VAE is an improved variant of the Autoencoder (AE) [60]. VAE differs in that it
assures that the encoder output has a certain learnt data distribution [59]. A Convolutional
Variational Autoencoder built from 1D convolutions can be utilized to produce synthetic
EEG data (see Figure 2) [57]. Here, the input data are compressed by the encoder, and the
data with important features are restored by the decoder [59].

Figure 2. The Variational Autoencoder for generating reconstructed data [47].
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The VAE loss function

L = Eq(z|x)[log(p(x|z))]− KL(q(z
∣∣∣x)∣∣∣∣∣∣p(z)) (1)

The encoder is trained to learn the mean µ and variance σ of the latent space. From
here, the vector z is sampled using a Gaussian distribution z = N(µ, σ). The decoder is then
trained to recreate a realistic output. The custom loss function is defined in Equation (1),
where KL is the Kullback–Leibler distance.

4. Materials
4.1. Participants and Data Source

The EEG data were taken from the Figshare website and are publicly available [61].
The experiments were conducted in 2017–2018 and involved a total of nine women, includ-
ing one patient with AD. All women were between the ages of 63 and 70. One patient was a
67-year-old right-handed woman with facial recognition problems identified by the initials
“MCG” [2]. Although the dataset has few subjects, the statistical analysis performed in [2]
using the repeated measures ANOVA test and nonparametric bootstrapping showed statis-
tically significant differences between the EEG data (N170, N250 and N400 components) of
the healthy participants and the AD subject at a statistical threshold of 0.05.

There was a total of 576 stimuli trials per subject. After the artifacted epochs were
removed, approximately 477 trials remained for each of the control subjects, 467 trials for
the oldest subject, and 426 trials for an Alzheimer’s patient. Therefore, a total of 4234 EEG
signal segments were used in experiment no. 2. Accordingly, for experiment no. 3 around
567 trials were employed for each of the control subjects, 554 trials for the oldest subject,
and 430 trials for Alzheimer’s disease patient. Consequently, a total of 4955 data segments
were used. For control subjects, the overall experiment duration ranged from 34 to 43 min
(Experiment 2) and from 38 to 49 min (Experiment 3). Meanwhile, for an Alzheimer’s
patient, trials lasted 88 min (Experiment 2) and 94 min (Experiment 3). Note that the
numbering of experiments follows the numbering scheme set in [61].

4.2. Experiment Design

The minimizing of noise, such as head and eye movements, was ensured in all ex-
periments. In three separate trials, different stimuli were investigated. Participants in
experiments 2 and 3 (the numbering according to the dataset reported in [2] was used) had
to determine whether the stimulus was upright or inverted. The effect of facial emotion
(neutral or fearful expression) was studied in experiment 2. Additionally, experiment 3
looked at the influence of familiarity: whether the faces were famous or not. All studies
were carried out on different days for the Alzheimer’s patient [2]. Examples of visual
presentations are given in Table 4. There is also another important detail in that the images
in the second experiment are in color, and the images in the third are grey.

The visual stimulus was presented for 300 ms. After a 1000 ms pause, subjects pressed
two different keys to identify face position, and then the next trial was presented. The EEG
electrode positions were composed according to the 10-10 international system, and four
additional electrodes were also used to monitor blinking and eye movements [2]. The data
provided consist of 64 electrodes and signals with a sampling frequency of 250 Hz.
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Table 4. Visual stimulus types.

Experiment 2 Experiment 3

Neutral Fearful Famous Not famous

4.3. User Responses

During the experiments, all participants were asked to differentiate between facial
position (inverted or upright) according to different color scales, and emotional and famil-
iarity aspects. By analyzing the experimental data, the percentages of correct and incorrect
responses in the AD patient were calculated (see Figure 3).

Figure 3. Responses of the AD patient to face inversion in different visual stimuli.
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A patient with AD detects the facial position poorly in the familiarity photos provided,
with a total of 31% inaccurate responses. However, since the photos are black and white,
the properties of the dark hair merge in with the environment and this can cause more
difficulties for an AD patient. Meanwhile, with an average of 20% incorrect answers, the
recognition of face position by presenting stimuli in colorful images with different facial
emotions is slightly better. Looking at Figure 3 alone, familiarity or emotion aspects do not
appear to have a strong influence on the responses of MCG patients. The distribution of
correct answers between these categories is almost the same. However, color can have a
greater effect.

5. Experiment

The experiment consists of the following steps (Figure 4), which are explained in more
detail in the following subsections.

Figure 4. Framework of the experimental approach.

5.1. EEG Data Preprocessing

Raw multichannel EEG data were first filtered using an FIR bandpass filter using the
4 Hz and 40 Hz limits. Theta waves (4–8 Hz) and alpha waves (8–12 Hz) have been shown
to be the most active in visual tasks [62]. However, beta (15–31 Hz) and gamma (32–70 Hz)
bands provide information about cognitive processes related to visual perception [19].
Many studies use different frequency windows: 14–71 Hz [19], 9–30 Hz [41], 12–65 Hz [5],
1–40 Hz [2], and 4–40 Hz [4]. The frequency filtering step also helps prevent physical
artifacts such as head movement, blinking, or device-to-head connectivity problems [12].

Then, epochs were extracted with a time window from 200 ms before the stimulus to
800 ms after, and the baseline correction was applied using the prestimulus interval. In this
way, 1 s-long epochs remain around the induced visual stimulus, which includes early and
late image processing features. Epochs were rejected if the peak-to-peak signal value was
greater than 150 µV (Figure 5). Finally, data were normalized between −1 and 1 due to the
deep learning sensitivity to scaling, as mentioned in [63].

Figure 5. Rejected epochs due to artifacts. The percentage of dropped epochs for each participant:
(a) Experiment No. 1 and (b) Eexperiment No. 2.
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5.2. Channel Selection/Selection of Electrodes

Reducing the number of channels can lead to better accuracy. Using the knowledge of
previous studies, we know that the most important areas of the brain for image classification
are those outside the visual cortex [13,53]. It was discovered that the use of channels from
the frontal cortex or the somatosensory cortex alone or in combination (Fp, F, T, C) greatly
reduced the quality of recognition [64]. Although some sources claim that channels F, Fp,
and FC give better accuracy [13,53], these areas are adjacent to the eye and can capture
different eye movements in response to various visual stimuli. Because the visual cortex
(O) and recognition cortex (P) channels improve visual stimuli prediction accuracy but
are not the only significant areas, a larger spectrum of channels is required [13,53]. For
example, channels in the temporal (T) lobe may also contain information regarding visual
perception [12]. This channel selection chooses all channels with the letters O, PO, P, TP, T,
CP, and C. Out of a total of 64 channels, this selection left 35 channels (see Figure 6).

Figure 6. Sensor positions. Selected channels are black and bad channels are red.

5.3. Data Augmentation Using VAE

The Variational Autoencoder model was trained using EEG signals. The VAE encoder
was developed using 2D convolution, the LeakyReLU activation function and batch nor-
malization. The dimensions were then flattened, and dense layers were employed to obtain
the mean and standard deviation of the Gaussian distribution. These statistic metrics were
used to calculate the loss function. The aim was to train the NN to gain the knowledge
of the VAE about influential features. In this case, the network weights are not initiated
randomly, and have more information about possible data distributions. According to
sources, the use of synthetic data improves the performance of the classifier, as it also
performs the noise removal function, as the study [57] demonstrated that training with
synthetic data improves model performance by up to 16% and removes subject-specific
features from EEG signals, making the calibration step unnecessary.

In the next step, the decoder took the encoder’s output and replicated the same size
output as the encoder input using a dense layer, deconvolution, and batch normalization.
In Table 5, the predefined model hyperparameters are listed. Each sample with 32 channels
and 250 time points passed through the encoder and decoder while the model learned to
reduce the loss function. Training was carried out independently for each class, with a
validation and test ratio of 20%. Table 6 lists the performance metrics.

Randomly generated data from 0 to 1 value were provided to the model when the
VAE learned to replicate the input distribution. The VAE model recreated the pattern for
each individual class, resulting in 500 samples for each. Figures 7 and 8 demonstrate an
example of how the VAE model works for a single event from the validation dataset and a
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randomly generated dataset, respectively. Y axis is in microvolts normalized from 0 to 1; X
axis displays time points in 1 s intervals, sampled at 250 Hz.

Table 5. VAE model training hyperparameters and model parameters.

Hyperparameter Value Model Parameter Value

Epochs 1000 Kernel Size 5
Batch Size 32 Filters 16

Learning Rate 0.0001 Latent Dimension 2
Early Stopping Epochs 25 Optimizer Adam

Table 6. VAE performance for each stimulus and class.

Dataset
Name Class Name Training

Time (s)
Validation

Loss Test Loss Train
Size Val Size Test Size

Emotion &
view

fear/upright 1692.661 121.497 121.501

534 134 168
fear/upsidedown 2405.592 114.304 116.231
neutral/upright 2442.686 114.250 115.465

neutral/upsidedown 2727.987 116.240 115.464

Familiarity &
view

famous/upright 2156.230 117.403 121.848

633 159 199
famous/upsidedown 1541.902 116.805 121.415

unfamous/upright 2129.097 114.976 118.807
unfamous/upsidedown 3177.764 112.945 117.052

Figure 7. Raw EEG signal from validation dataset compared to artificially created data. The sample
was taken from a model that had been trained using famous/upright class inputs.

Figure 8. Randomly generated data compared to synthetic augmented data. The sample was taken
from a model that had been trained using famous/upright class inputs.
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The developed synthetic data samples are used in the pretraining stage because
they have been shown to give better results than mixing augmented and raw data. The
pretraining section is described later in the study.

5.4. Training Setup

Python programming language was used with tensorflow-gpu version 2.4 (Google
Brain, Mountain View, CA, USA). Models were trained on an NVIDIA-SMI 495.44 GPU
with CUDA (Compute Unified Device Architecture) version 11.2 (NVidia Corporation,
Santa Clara, CA, USA).

Classification methods were trained on control data and tested on the AD patient data.
However, one control subject (the oldest) was left out of the training data set to confirm the
predictor of a healthy person’s stimulus using the unseen individual brain signals. In this
way, the possibilities of a user-independent model were tested. For training and validation,
75%/25% ratios were used to split the data. As seen in Figures 9 and 10, class imbalance is
not present in any of the experiments.

Figure 9. Distribution of training and testing samples for emotion- and view-type stimuli.

Figure 10. Distribution of training and testing samples for familiarity- and view-type stimuli.

Labels for the visual stimulus class were one-hot-encoded. The model was trained for
500 iterations using the Adam [65] optimizer, with a batch size of 64 samples. We observed
that the ability of the model to generalize deteriorates with larger batch sizes [66]. Early
stop monitoring was used, so if loss begins to increase in the test dataset, training is stopped
to prevent overfitting. The values of the training hyperparameters are shown in Table 7.
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Table 7. Values of training hyperparameters.

Hyperparameter Value

Epochs 500
Batch Size 64

Learning Rate 0.001
Early Stopping Epochs 20

Other settings Value
Optimizer Adam

5.5. EEGNet SSVEP Model with Regularization

In general, the architecture of an EEG data model architecture should not be compli-
cated, as the number of training samples is often limited [5]. This is extremely important
to prevent overfitting and to maximize generalizability. To improve the best-performing
model EEGNet SSVEP, the L1 and L2 regularization methods were added to the final
fully connected layer with both regularization penalty values equal to 0.001. The addition
of constraints to the model weights has been shown to minimize the complexity of the
model [26]. One study improved the accuracy of identifying motor movements from the
EEG data by 2% using the EEGNet model with regularization [56]. Consequently, tests
were conducted to assess whether the addition of regularization to the model improves
visual stimulus classification using a similar model [67].

5.6. Training

Three established models from prior research were used to train the CNN model:
DeepConvNet, EEGNet, and EEGNet SSVEP, as well as a modified technique, called
EEGNet SSVEP with regularization. The raw signal data were used to train all four models.
The first time, the models were trained using randomly initiated weights, and the second
time, the models were trained with weights that were pretrained using artificially generated
data. The results were evaluated for both types of stimuli, familiarity and emotion.

5.6.1. Pretraining with Augmented Data

The pretraining was conducted with 500 artificially generated samples per class from
the VAE model. The data were divided into training and testing datasets in a 70%/30% ratio
and shuffled. Each model was trained for 300 epochs unless the validation loss stopped
improving during the final 50 epochs. The Adam optimization technique was used with a
batch size of 128 and a learning rate of 0.00001. Almost all models were able to correctly
classify the stimulus types with 100% accuracy (see Table 8).

These pretrained model weights were saved and later used to classify real EEG data
to improve model accuracy.

5.6.2. Familiarity and View Stimuli Classification

The evaluation was performed using a two-fold cross-validation technique 5 times,
meaning that the cross-validation procedure was repeated 5 times, dividing the data into 2
folds. This generates the random data partitions and provides better insights regarding
model generalization. The boxplot diagrams in Figures 11 and 12 summarize the findings.

The presented boxplots show accuracy and area under the curve (AUC) metrics.
Overall, accuracy is an excellent indicator for balanced classes since it reflects the percentage
of correct classifications. If the accuracy is greater than 25%, then the classifier performs
better than the random classifier. Meanwhile, the AUC metric indicates whether a classifier
is more confident than random if it is more than 50%.
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Table 8. Performance of models in training on artificially generated data.

Stimuli Model Run
Time (s)

Test
Acc

Test
Loss Val Acc Val

Loss

Number of
Training

Data

Number of
Testing

Data

Familiarity
& view

DeepConvNet 82.79 1 0.001 1 0 1400 600
EEGNet 203.39 0.985 0.055 0.994 0.053 1400 600

EEGNet SSVEP 756.52 0.995 0.009 1 0.001 1400 600
EEGNet SSVEP regularization 1523.41 1 0.017 1 0.015 1400 600

Emotion &
view

DeepConvNet 38.59 1 0.002 0.938 0.129 1400 600
EEGNet 134.89 1 0.026 0.998 0.028 1400 600

EEGNet SSVEP 869.69 1 0.001 0.998 0.029 1400 600
EEGNet SSVEP regularization 1304.23 1 0.015 1 0.016 1400 600

Figure 11. Boxplot for evaluating the accuracy of familiarity stimulus types.

Figure 12. Boxplot for evaluating the AUC of familiarity stimulus types.

A pretrained EEGNet SSVEP with added L1 and L2 regularization is the best model
for predicting familiarity stimulus types. This model has been demonstrated to be effective
for visually evoked potentials. In the validation dataset, the trained model accurately
identified 43.25% of the stimulus, compared to 30.23% in the control group and 27.72% in
the data of Alzheimer’s patients. As a result, the model for the oldest patient is 5.23% and
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that for the Alzheimer’s patient is 2.72% better than the randomized one. When comparing
all models trained from randomly initiated weights to pretrained weights, the difference is
less significant, yet validation data performance improves by 1.5% on average. The average
performance metrics are given in Table 9.

Table 9. The average training performance results with 5 repeated 2-fold cross validations of familiar-
ity and view stimuli.

Model Validation_Acc Control_Acc Alzheimer_Acc Validation_Auc Control_Auc Alzheimer_Auc

DeepConvNet 0.378101 0.285379 0.275349 0.664231 0.530101 0.522043
EEGNet 0.416943 0.281388 0.272739 0.716867 0.526350 0.524505

EEGNet_SSVEP 0.428111 0.286462 0.263488 0.714708 0.543223 0.521810
EEGNet_SSVEP_regularization 0.434761 0.291155 0.279767 0.720801 0.551422 0.531294

augmented_DeepConvNet 0.414258 0.277798 0.271860 0.709143 0.533561 0.513521
augmented_EEGNet 0.435262 0.267870 0.273721 0.737287 0.513374 0.518509

augmented_EEGNet_SSVEP 0.439497 0.280686 0.279302 0.730503 0.536170 0.525493
augmented_EEGNet_SSVEP_

regularization 0.432493 0.302347 0.277209 0.722147 0.552888 0.522122

Following the identification of the best-performing model, some research was carried
out looking into one of the best training scenarios. Training was terminated after roughly
80 epochs to prevent the model from overfitting, according to the model performance
history (see Figure 13).

Figure 13. A performance history of the pretrained EEGNet SSVEP model with regularization for
familiarity stimulus types.

According to the receiver performance characteristics (ROC) curves (see Figure 14),
there is evidence that the results in the unfamous/upside-down class (number 3) have the
lowest performance, with an AUC of 0.5 for a control group subject and AUC of 0.5 for an
Alzheimer’s patient. The highest AUC of 0.68 was reached for the class famous/upside-
down and is the only class that can be classified as acceptable.

In the confusion matrices (see Figure 15), the second class (unfamous/upright) is the
one that is predicted the most for each true class, resulting in a high false positive rate.
The famous/upside-down and famous/upright have distinguishing characteristics for a
control group individual. Both classes show lower prediction rates for the opposite face
position. That is, the classifier model was able to start learning the facial inversion effect,
but the familiarity signal patterns were more difficult to identify. On the other hand, in
Alzheimer’s patient data, unfamous/upside-down had the lowest score for the opposite
class famous/upright and the same situation occurred with the unfamous/upright class
when famous/upside-down had the lowest prediction score. Although the model was
unsure which class would be the best fit, it was definite that the opposite class would not.
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Figure 14. The ROC curves for a subject from a control group and a patient using the pretrained
EEGNet SSVEP model with regularization trained to distinguish the familiarity stimulus types.

Figure 15. Confusion matrices for a subject from a control group and a patient using the pretrained
EEGNet SSVEP model with regularization trained to distinguish the familiarity stimulus types.

5.6.3. Emotion and View Stimuli Classification

The analysis was carried out in the same way as in the previous section. Boxplots were cre-
ated using a 2-fold cross validation approach. The results are presented in Figures 16 and 17.

When the differences are not significant, it is more difficult to decide which model
performed best. On the other hand, the model with the best validation accuracy was the
same as for the prediction of the type of familiarity stimulus. Validation data were better
learned by pretrained EEGNet SSVEP with the regularization of L1 and L2. However,
when it came to generalization, this model did not perform as well as the non-pre-trained
model on control group subjects. In the validation dataset, the pretrained model in the
augmented data had 50.2% accuracy, 32.75% accuracy in the control subject dataset, and
24.41% accuracy in the Alzheimer’s patient data. The emotion prediction for the oldest
patient is 7.75% better than the random classifier, while it is 0.59% worse for an Alzheimer’s
patient. Meanwhile, comparing the results of the randomly initiated weights and the
pretrained pretrained weights, the weights only benefit by 0.5% on average. Table 10 shows
the values of the average performance metrics.
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Figure 16. Boxplot for evaluating the accuracy of emotion stimulus types.

Figure 17. Boxplot for evaluating the AUC of emotion stimulus types.

Table 10. The average training performance results with 5repeated 2-fold cross validations of emotion
and view stimuli.

Model Validation_Acc Control_Acc Alzheimer_Acc Validation_Auc Control_Auc Alzheimer_Auc

DeepConvNet 0.471126 0.317345 0.243897 0.793737 0.623122 0.499631
EEGNet 0.476327 0.312848 0.253756 0.809606 0.638286 0.510020

EEGNet.SSVEP 0.486617 0.332120 0.244131 0.802357 0.644521 0.503745
EEGNet_SSVEP_regularization 0.498247 0.329336 0.255634 0.806665 0.633405 0.508321

augmented_DeepConvNet 0.472622 0.314347 0.251643 0.793103 0.615264 0.492476
augmented_EEGNet 0.479862 0.311563 0.252582 0.812790 0.627414 0.512293

augmented_EEGNet_SSVEP 0.497408 0.315632 0.239437 0.807479 0.619471 0.496971
augmented_EEGNet_SSVEP_

regularization 0.501958 0.327445 0.244131 0.804156 0.631282 0.501964
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The selected best-performing model (pretrained EEGNet SSVEP with regularization)
was further investigated. The model was trained for more than 80 epochs before the
validation loss began to increase. The gap between training and validation was wider and
the model tended to overfit, although the architecture was designed specifically to avoid
this. The model performance history is shown in Figure 18.

Figure 18. A performance history of the pretrained EEGNet SSVEP model with regularization for
emotion stimulus types.

A clear distinction from a random classifier can be seen in the ROC curve for a
participant in the control group (see Figure 19). The AUC for a fear/upright class is 0.58,
whereas neutral/upside-down has an AUC of 0.75. However, two classes performed worse
than the random classifier for an Alzheimer’s patient. Fear/upright and neutral/upright
are the two classes with the highest false positive rate.

Figure 19. ROC curves for a subject in a control group and a patient using the pretrained EEGNet
SSVEP model with regularization trained to distinguish the types of emotion stimulus.

Figure 20 shows the pattern of model confusion for the emotion and face-inversion
effect stimuli. The model is prone to wrongly classifying two groups, while overlooking
the rest. This pattern may be seen in both the Alzheimer’s patient data and the control
group patient data. However, two classes with the highest AUC values of 0.75 and 0.68
reveal some distinction between the face-inversion effect and yet none for the emotion type.
Face inversion is a higher and more obvious information encoded in the signal than the
emotion that the individual displays.
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Figure 20. Confusion matrices for a subject from a control group and a patient using the pretrained
EEGNet SSVEP model with regularization trained to distinguish the emotion stimulus types.

6. Discussion

To our knowledge, this is the first study to attempt to identify minor facial characteris-
tics using raw EEG signals, such as the identification of facial expression and familiarity,
as seen in the image. Previously, the effect of face inversion was investigated, and a sig-
nificant and persistent delay of the N170 component was discovered. As a result, the
types of emotional and familiarity stimuli were also separated according to the position of
the face presented. Classification experiments were performed with reference models of
EEG signals and a new improvement of the model was tested using the EEGNet SSVEP
model with the regularity parameters L1 and L2. Due to the small data set, the data were
augmented using the VAE model. The artificially generated signals in this way were used
for pretraining, and the trained weights were reused in training on real signal data.

The EEG signal data are highly sensitive to subjects, and each subject produces differ-
ent noise in the brain signals. EEG data are very sensitive to subjects, each person causing
different noise in brain signals. However, due to the small data set, mixed training data
from the seven older women were still used. Meanwhile, data from the oldest woman
and data from a woman with AD were selected for testing to test the generalizability
of the model. The relevance, strength, and valence of emotional input, as well as the
impacted component of motor control of the face, are crucial considerations, according
to Battalia et al. [68]. All of this evidence suggests that understanding how emotion is
integrated into key executive functions such as inhibitory control is crucial not only for
cognitive neuroscience but also for improving neurocognitive models of psychopathology.
The inclusion of a patient with facial recognition impairment was to find out if cognitive
and emotion detection in the brain signal was still encoded in the same manner as in a
healthy individual. The visual processing parts of the brain remain unaffected. This would
mean that parts of the visual processing of the brain of an Alzheimer’s patient are not
affected by the disease. The findings of Borgomaneri et al. back up the idea that emotion
perception prepares the body for action by highlighting the role of the right hemisphere
in implementing a quick and brief facilitatory response to emotionally stimulating inputs
such as emotional facial expressions [69].
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7. Conclusions

The following conclusions were reached based on the results of the experiments:
The types of emotion and facial inversion stimulus were classified with the highest

validation accuracy of 50.2% using the pretrained EEGNet SSVEP with the regularization
model. Meanwhile, the data of the oldest person in the control group were correctly
classified with 32.75% accuracy, and the Alzheimer’s patient data with 24.41% accuracy,
which is poorer than a random classifier. The generalization abilities of the model are not
great, considering the 17.5% gap in accuracy. On the other hand, it was observed that the
trained model was guessing between emotion categories. There was also some evidence
that the model was aware of the inversion effect in the data from the control group subject.
The model does not reveal patterns in differentiating the position of the face or the type of
emotion in a patient with AD.

The same CNN model outperformed the others in terms of familiarity and face-
inversion stimuli. However, the model had a harder time distinguishing cognitive from
emotional features. The accuracy values of the validation were 43.25% and 30.23% in
the control group, and 27.72% in the Alzheimer’s patient data. With the investigation of
confusion matrices, it was found that the least frequent cases of confusion are in the types
of upright and inverted stimuli. This again demonstrates the model’s ability to learn the
face-inversion effect. The improved model, the EEGNet SSVEP with the regularization of L1
and L2 in the final layer, demonstrated that the model’s ability to train was on average 1%
better. As in other studies, an increase of 2% was observed. The effect of using pretrained
weights trained on artificially generated data was almost negligible. However, this strategy
may work better with more distinct classes.

8. Limitations and Future Directions

Summarizing all the findings, the classifier was unable to discriminate between the
types of emotion (angry vs. neutral), nor the familiarity aspect (famous vs. unknown).
Despite this, the model started to recognize the impact of face inversion. Consequently, the
performance of the models needs to be further improved. Alternatively, the face-inversion
characteristic should be removed from the classification of emotion and familiarity aspects,
so as not to interfere with the model’s learning of less evident facial traits.
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