

Correction

Correction: Danner et al. It More than Adds Up: Interaction of Antibiotic Mixing and Temperature. *Life* 2021, 11, 1435

Marie-Claire Danner ^{1,2}, Sharon Omonor Azams ¹, Anne Robertson ¹, Daniel Perkins ¹, Volker Behrends ¹ and Julia Reiss ^{1,*}

- School of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, UK; dannermarieclaire@gmail.com (M.-C.D.); azamss@roehampton.ac.uk (S.O.A.); A.Robertson@roehampton.ac.uk (A.R.); daniel.perkins@roehampton.ac.uk (D.P.); Volker.Behrends@roehampton.ac.uk (V.B.)
- ² FRB—CESAB, Institut Bouisson Bertrand, 34070 Montpellier, France
- * Correspondence: Julia.reiss@roehampton.ac.uk

The Authors wish to make the following corrections to this paper [1]:

In the original article, there were mistakes in Figures 1, 3 and 5.

Figure 1: picture was not clear enough

Figure 3: layering was hiding symbols and the legend

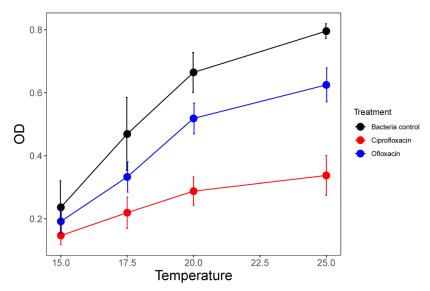
Figure 5: layering was hiding the data points

The mistakes were caused during copy-editing. The caption in Figure 1 "are shown as numbers in cursive print" should be replaced with "are shown in the light grey boxes". The corrected Figures appear below.

Citation: Danner, M.-C.; Azams, S.O.; Robertson, A.; Perkins, D.; Behrends, V.; Reiss, J. Correction: Danner et al. It More than Adds Up: Interaction of Antibiotic Mixing and Temperature. *Life* **2021**, *11*, 1435. *Life* **2022**, *12*, 695. https://doi.org/10.3390/life12050695

Received: 16 February 2022 Accepted: 18 February 2022 Published: 7 May 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

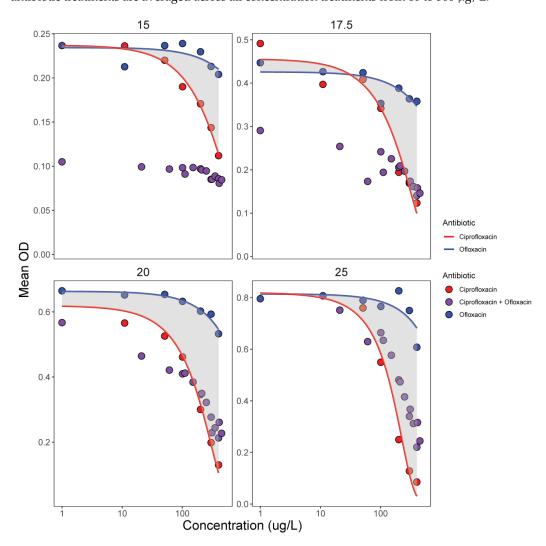

Exp. 3		Ciprofloxacin							
		0	10	50	100	200	300	400	500
Ofloxacin	0	0	10	50	100	200	300	400	500
	10	10	20	60	110	210	310	410	510
	50	50	60	100	150	250	350	450	550
	100	100	110	150	200	300	400	500	600
	200	200	210	250	300	400	500	600	700
	300	300	310	350	400	500	600	700	800
	400	400	410	450	500	600	700	800	900
	500	500	510	550	600	700	800	900	1000

Figure 1. Experimental design used for four temperatures (15–25 $^{\circ}$ C) where ciprofloxacin and ofloxacin were run as single antibiotic treatments (dark grey boxes) and in combination (light grey boxes) to estimate the effect on *P. fluorescens* densities. All numbers are μ g/L and the combined concentrations are shown in the light grey boxes. The control is highlighted in black. There were 64 different antibiotic and concentration combinations (including the bacterial control), replicated 3 times, for four temperatures, resulting in 768 microcosms. This set-up includes 49 antibiotic mixtures where ciprofloxacin and ofloxacin are present in different proportions (33 different proportions).

Life **2022**, 12, 695

Figure 3. Optical density (means \pm SE) at four different temperatures averaged for microcosms with *P. fluorescens* only (control) and those that also contained a single antibiotic. The data shown for the antibiotic treatments are averaged across all concentration treatments from 10 to 500 μ g/L.

Figure 5. Potency of antibiotic mixtures of ciprofloxacin and ofloxacin (in 33 different proportions) compared to the dose–response of the single antibiotics (importantly, concentration range shown

Life **2022**, 12, 695

includes concentrations below MIC and EC50) for four temperatures. If mixtures (in purple) behave in synergy, bacterial growth will be below the integral of the single antibiotic effects, and this is largely the case for the $15\,^\circ\text{C}$ and $17.5\,^\circ\text{C}$ treatments (upper two panels). If mixtures behave in an additive fashion, bacterial growth will be within the integral of the single antibiotic effects, and this is largely the case for the $20\,^\circ\text{C}$ and $25\,^\circ\text{C}$ treatments (lower two panels). All values are means calculated from 3 replicates.

Reference

 Danner, M.-C.; Azams, S.O.; Robertson, A.; Perkins, D.; Behrends, V.; Reiss, J. It More than Adds Up: Interaction of Antibiotic Mixing and Temperature. Life 2021, 11, 1435. [CrossRef] [PubMed]