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Abstract: Background: The aim was to evaluate the feasibility of radiomics features based on
diffusion-weighted imaging (DWI) at high b-values for grading bladder cancer and to compare the
possible advantages of high-b-value DWI over the standard b-value DWI. Methods: Seventy-four
participants with bladder cancer were included in this study. DWI sequences using a 3 T MRI with
b-values of 1000, 1700, and 3000 s/mm? were acquired, and the corresponding ADC maps were
generated, followed with feature extraction. Patients were randomly divided into training and
testing cohorts with a ratio of 8:2. The radiomics features acquired from the ADCj99, ADCy7p, and
ADC3g99 maps were compared between low- and high-grade bladder cancers by using the Wilcox
analysis, and only the radiomics features with significant differences were selected. The least absolute
shrinkage and selection operator method and a logistic regression were performed for the feature
selection and establishing the radiomics model. A receiver operating characteristic (ROC) analysis
was conducted to assess the diagnostic performance of the radiomics models. Results: In the training
cohorts, the AUCs of the ADC1gg9, ADC1700, and ADC3g09 model for discriminating between low-
from high-grade bladder cancer were 0.901, 0.920, and 0.901, respectively. In the testing cohorts, the
AUCs of ADCqqgp, ADC1700, and ADCgzg9 were 0.582, 0.745, and 0.745, respectively. Conclusions:
The radiomics features extracted from the ADC;7p9 maps could improve the diagnostic accuracy over
those extracted from the conventional ADCygpp maps.

Keywords: bladder cancer; diffusion-weighted imaging; high b-value; radiomics nomogram; grading

1. Introduction

Bladder cancer (BC) ranks as the sixth most common cancer and the ninth leading
cause of cancer-specific death in males worldwide [1]. In the prognosis and management
strategy of BC, histologic grading has been recognized as a crucial factor to be considered [2].
BC is graded as low- or high-grade depending on the degree of nuclear anaplasia and
architectural abnormalities [3]. Low-grade BC has demonstrated a lower rate of recurrence
and stage progression compared to high-grade BC. The accurate assessment of the degree
of BC tumor cell differentiation is essential not only for selecting the best treatment options,
but also for sparing patients from unnecessary invasive treatment for low-risk non-muscle-
invasive bladder cancer, reducing the likelihood of local recurrence and stage progression
while maintaining the quality of life [4].

Transurethral resection of bladder tumor (TURBT) is considered a standard method
to establish histologic grade [5,6]. However, inaccurate grading occurs in up to 15%
of cases due to sampling errors and the heterogeneous characteristics of tumors [7,8].
Furthermore, due to the high cost and the need for repeat operations of TURBT [9], accurate
and noninvasive techniques are needed to assess the aggressiveness of BC.

Life 2022, 12, 1510. https:/ /doi.org/10.3390/1ife12101510

https:/ /www.mdpi.com/journal/life


https://doi.org/10.3390/life12101510
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0001-8037-4245
https://doi.org/10.3390/life12101510
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life12101510?type=check_update&version=1

Life 2022, 12, 1510

2 0f 10

By using the diffusion of water molecules as a probe, diffusion-weighted imaging
(DWI) can reveal tissue microstructural changes in vivo, particularly in cancer [10,11].
Among many quantitative parameters that DWI can produce, the apparent diffusion
coefficient (ADC) has been investigated most extensively for characterizing cancerous
tissues, including bladder cancer [12-15]. Its routine clinical use, however, has been
hampered by the considerable overlap of ADC values among different tumor grades [16,17].
In clinical practice, ADC maps are typically calculated from DWI with b = 0 and 1000 s/mm?.
The clinical application of high-b-value DWI is limited because of the inferior signal-to-noise
ratio (SNR) in 1.5 T or lower-field-strength MR systems. Recently, the popularization of the
3.0 T MR systems in medical units has enabled for us to acquire high-b-value DWI (e.g.,
b = 3000 s/mm?) with an acceptable SNR within a clinically acceptable data acquisition
time frame. Recently, many studies have indicated that ADC maps obtained from high-b-
value DWI are more effective than those obtained from standard-b-value DWI in several
aspects [18-20].

Radiomics can extract a large number of advanced quantitative features from medical
images and it has been used in the evaluation of tumor staging [21-23], grading [24], and
predicting the recurrence of bladder cancer [25]. To the best of our knowledge, little research
has been done to establish the application of radiomics nomogram based on high-b-value
DWTI in the preoperative evaluation of the grade of BC. Hence, this study aimed to explore
the potential feasibility of radiomics nomogram based on DWI at high b-values (b = 1700
and 3000 s/mm?) for grading bladder cancer and to compare the possible advantage of
high-b-value DWI over the standard-b-value (b = 1000 s/ mm?) DWL

2. Materials and Methods
2.1. Patient Characteristics

This retrospective study was approved by the Institutional Review Board of our
hospital, and informed written consent was waived. Ninety patients with suspected
or confirmed bladder lesions (e.g., by ultrasonography or CT) between July 2014 and
November 2019 were enrolled in this study. The inclusion criteria were (i) the availability
of histopathological confirmation through TURBT or cystectomy and (ii) no treatment
prior to the MR examination. The exclusion criteria consisted of (i) the unavailability of
histopathological confirmation through TURBT or a cystectomy after the MRI examination
(n =2), (ii) confirmed nonbladder cancer (n = 10), (iii) poor image quality due to excessive
motion artifacts (n = 1), or (iv) a diameter of tumor less than 1 cm (n = 3). With these
criteria, a total of 74 patients (63 males, 11 females; median age, 61 £ 10 years; age range,
37-79 years) were finally included in this study. The flowchart of this study population is
shown in Figure 1.

Lack of pathologic results
=2 Eligible patients
(n=90)
Patients with confirmed
nonbladder cancer (n=10)
TLesfom samlliar L Enrolled patients
than 10 mm (n = 3) (n=74)
Poor image quality due Bladder cancers

to excessive motion -«

artifacts (n = 1) (n =74 lesions)

Figure 1. Flowchart of the study population.
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2.2. Image Acquisition

All participants underwent MR examinations on a 3 T scanner (Discovery MR750; GE
Healthcare, Milwaukee, Brookfield, WI, USA) in the supine position with a 32-channel
torso phased-array coil. The imaging protocol included axial fast spin-echo T1-weighted,
axial fast recovery fast spin-echo T2-weighted, sagittal fast spin-echo T2-weighted, and
diffusion-weighted imaging sequences. The acquisition parameters of each nondiffusion
imaging sequence were as follows: (i) axial T1-weighted imaging: repetition time/echo
time = 528/6.8 ms, field of view (FOV) = 340 x 340 mm?, matrix size = 320 x 256, and
echo train length = 4; (ii) axial fast recovery T2-weighted imaging: repetition time/echo
time = 3780/75 ms, FOV = 340 x 340 mm?2, matrix size = 320 x 256, and echo train
length = 16; (iii) sagittal T2-weighted imaging: repetition time/echo time = 5500/75 m:s,
FOV = 240 x 240 mm?, matrix size = 320 x 320, and echo train length = 24. In all se-
quences above, a section thickness of 4 mm with an intersection gap of 1 mm was used
together with 2 averages. A series of axial diffusion-weighted images were obtained using a
single-shot spin-echo echo-planar imaging sequence with 4 b-values, respectively: 01, 10004,
17004, and 3000g s/ mm?, where the subscript denotes the number of averages. A Stejskal-
Tanner diffusion gradient was applied along the three orthogonal directions in order to
acquire trace-weighted images to eliminate the effects of diffusion anisotropy. The acqui-
sition parameters for the DWI sequence were: repetition time/echo time = 2500/84 ms,
FOV =400 x 400 mm?, matrix size = 128 x 160, section thickness = 4 mm, and section
gap = 1 mm.

2.3. Image Segmentation, Preprocessing, and Feature Extraction

For the patients with multifocal lesions, only the lesion with the largest diameter was
accessed in this study. ITK-SNAP software (open source, www.itk-snap.org) was used
for the manual segmentation. The volume of interest (VOI) covering the whole lesion
was placed by delineating along the tumor border layer by layer on the DWI images
(b =1000 s/mm?) by one radiologist (Yanchun.Wang., with 6 years of experience in MRI
diagnosis), and confirmed by another radiologist (Cui Feng, with 11 years of experience in
MRI diagnosis).

The ADC was calculated by employing the monoexponential model. The signal
attenuation S was produced with the following equation:

S = Spexp(—bD) 1)

where S is the signal intensity at a given b-value and Sy is the signal intensity without
diffusion weighting, b is known as the b-value, and D is the diffusion coefficient. The
maps of ADCyggo, ADC1700, and ADCzgpp were obtained by employing equation (1) using
diffusion-weighted images with two different b-values (b = 0 and 1000 s/mm?, b = 0 and
1700 s/mm?, b = 0 and 3000 s/mm?, respectively).

After the tumor segmentation, the texture analysis was conducted by using the LIFEx
package (version 6.00; Inserm, Orsay, France; https:/ /www.lifexsoft.org (accessed on 13
May 2020)). Forty-nine texture features extracted from each VOI were as follows: seven
statistical indexes (mean, minimum, maximum, the 25th percentile, the 50th percentile, the
75th percentile, and standard deviation of gray levels); six first-order histogram features
(skewness, kurtosis, excess kurtosis, entropy_log10, entropy_log2, and energy); thirty-two
higher-order features including the gray-level co-occurrence matrix (GLCM), the neighbor-
hood gray-level different matrix (NGLDM), the gray-level run-length matrix (GLRLM), and
the gray-level zone-length matrix (GLZLM); and four shape indexes (sphericity, compacity,
volume_mL, and volume_voxels) were extracted in this study. A detailed description of
each texture feature is available in the technical appendix of LIFEx software.

Patients were randomly divided into training (80% of the total patients) and testing
cohorts (20% of the total patients) using the “sample” function (with seed set as 120) in
R software.
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PACS

2.4. Feature Selection and Model Building

The feature selection was performed in the training cohort using the following 2-step
procedures: (1) features with obvious significance in differentiating low- and high-grade
bladder cancer were selected by performing a Wilcoxon analysis in which a significant
level of p < 0.1 was set [26] and (2) the least absolute shrinkage and selection operator
(LASSO) method [27] was further applied to reduce the dimensionality of the features. An
optimal LASSO penalty was acquired by minimizing the mean square error with a 10-fold
cross-validation.

The best subset of features was then used to develop the radiomics models. Models
for discriminating low- from high-grade bladder cancer were built by using a logistic
regression. The performance of the built model was assessed using the receiver operating
characteristic curve in the testing cohort. The radiomics workflow in this study is shown in
Figure 2.

First-order histogram
GLCM

NGLDM B *
GLRLM L

GLZLM
Shape indexes -1

Segmentation Feature extraction

(ITK-SNAP) (LIFEx) &

Feature selection

Analysis

Figure 2. The radiomics workflow in this study.

2.5. Statistical Analysis

The dimensionality reduction and model building processes of the radiomics features,
including the intensity histogram, GLCM, and GLRLM of each model, were implemented
in R (Version 3.6.0, https:/ /www.r-project.org/ (accessed on 21 April 2021)).

The Wilcoxon analysis, LASSO regression, and ROC curve analyses were performed
by means of the “caret” and “pROC” packages, respectively. In all tests of differences, a
p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Clinical Characteristics

The patients’ clinical characteristics are summarized in Table 1. Among the 74 patients,
27 underwent radical cystectomy, 4 partial cystectomy, and 43 TURBT. The pathological
T stage was determined according to the 2017 TNM system [28], yielding 41, 20, 3, and
10 stages T1, T2, T3, and T4 patients, respectively. The tumors were classified as low-
grade in 22 patients and high-grade in 52 patients according to the 2016 World Health
Organization classification system [29]. The training cohort consisted of 58 patients (high
grade, 41; low grade, 17) and the testing cohort consisted of 16 patients (high grade, 11; low
grade, 5).
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Table 1. Clinical characteristics.

Variables Characteristics
Age (years) * 61 £ 10 (37-79)
Gender
Male 63 (85)
Female 11 (15)
No. of lesions
Unifocal 56 (76)
Multifocal 18 (24)
Primary or recurrent tumors
Primary 72(97)
Recurrent 23
Tumor size (cm) * 3.1 +1.6(1.0-10.1)
Pathologic stage
T1 41 (55)
T2 20 (27)
T3 3(4)
T4 10 (16)
Histologic grade
Low 22 (30)
High 52 (70)
Lymph node metastasis
Yes 13 (18)
No 61 (82)
Treatment methods
TURBT 43 (58)
Radical cystectomy 27 (36)
Partial cystectomy 4(5)

Note: Numbers in parentheses are percentages except where otherwise indicated. TURBT, transurethral resection
of bladder tumor. * Numbers are means + standard deviations, with ranges in parentheses.

3.2. Feature Selection

In the training cohort, there were significant differences in 31, 26, and 44 features be-
tween the low and high grades of bladder cancer extracted from ADCjg50, ADCyyq9, and
ADCj3099 maps, respectively. The best subset extracted from ADC1gg9, ADC1700, and ADCsgg
maps by using the LASSO model consisted of five, seven, and seven features, respectively
(Figure 3A—C and Table 2). The specific selected features included CONVENTIONAL_#std,
CONVENTIONAL_#Q2, SHAPE_Sphericity (only for 3D ROI (nz > 1), GLRLM_RLNU, and
NGLDM_Busyness for ADC1gp0; CONVENTIONAL_#std, SHAPE_Sphericity (only for 3D
ROI (nz > 1), SHAPE_Compacity only for 3D ROI (nz > 1), GLRLM_HGRE, NGLDM_Busyness,
GLZLM_HGZE and GLZLM_GLNU for ADCy7y; HISTO_Skewness, SHAPE_Sphericity
(only for 3D ROI (nz > 1), SHAPE_Compacity only for 3D ROI (nz > 1), GLCM_Correlation,
GLRLM_LGRE, GLRLM_SRLGE, NGLDM_Contrast for ADC3zq, respectively.

26 26 24 22 23 19 16 18 10 8 5 5 5 2 18 18 19 20 20 17 18 12 10 8 6 4 3 1 26 22 23 25 23 19 18 16 8 7 8 6 5 O

Binomial Deviance
Binomial Deviance

Figure 3. The best subset extracted from the least absolute shrinkage and selection operator (LASSO)
regression method model consisting of 5, 7, and 7 features, corresponding to b—values of 1000 (A),
1700 (B), and 3000 (C) s/mm?, respectively.
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Table 2. Calculation formula for radiomics signature.

Rad-Score Variables Coefficients
ADC1000 Intercept 1.199576464
CONVENTIONAL_#std —0.582534519
CONVENTIONAL_#Q2 —0.615993908
SHAPE_Sphericity (only for 3D ROI (nz > 1) —0.77836837
GLRLM_RLNU 0.340808516
NGLDM_Busyness 0.029560922
ADC1700 Intercept 1.255336302
CONVENTIONAL _#std —0.54250182
SHAPE_Sphericity (only for 3D ROI (nz > 1) —1.110704238
SHAPE_Compacity only for 3D ROI (nz > 1) 0.36442195
GLRLM_HGRE —0.538256985
NGLDM_Busyness 0.050853414
GLZLM_HGZE —0.10091227
GLZLM_GLNU 0.004710521
ADC3000 Intercept 1.234603905
HISTO_Skewness 0.306892167
SHAPE_Sphericity (only for 3D ROI (nz > 1) —0.918088191
SHAPE_Compacity only for 3D ROI (nz > 1) 0.869977739
GLCM_Correlation —0.62276962
GLRLM_LGRE 0.139654102
GLRLM_SRLGE —0.098482715
NGLDM_Contrast —0.076828157

NOTE: GLRLM, the gray-level run-length matrix; NGLDM, the neighborhood gray-level different matrix; GLZLM,

the gray-level zone-length

3.3. Performance of the

matrix; GLCM, gray-level co-occurrence matrix.

Model

The three radiomics models achieved good performance in the training and testing
cohorts. The AUCs of the ADC1yp9p model, ADCq799 model, and ADC3p99 model were 0.901
(95% confidence interval (CI): 0.825-0.977), 0.920 (95%CI: 0.849-0.990), and 0.901 (95%CI:
0.817-0.985) in the training cohorts. The AUCs of the ADC;gp9 model, ADC17p9 model, and
ADC30990 model were 0.582 (95% CI: 0.226-0.937), 0.745 (95%CI: 0.475-1.000), and 0.745
(95%CI: 0.451-1.000) in the testing cohorts. The detailed results are shown in Table 3. The
ROC curves of the three models in the training and test models are shown in Figure 4.

Table 3. Diagnostic performances of the DWI of three b-values interpretation in differentiating high-
from low-grade bladder cancer in the training cohort and the test cohort.

AUC (95%CI) Sensitivity Specitivity
Training cohort (n = 58)
ADC1000 0.901 (0.825-0.977) 0.683 1.000
ADC1700 0.920 (0.849-0.990) 0.854 0.882
ADC3000 0.901 (0.817-0.985) 0.805 0.882
Test cohort (n = 16)
ADC1000 0.582 (0.226-0.937) 0.548 0.800
ADC1700 0.745 (0.475-1.000) 0.909 0.600
ADC3000 0.745 (0.451-1.000) 0.727 0.800
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Figure 4. The ROC curve for the ADC1000 (A), ADC1700 (B) and ADC3000 (C) radiomics models for
the training and testing cohorts.

4. Discussion

An accurate assessment of grade in BC is essential for urologists to develop appropriate
strategies. Our results indicated that the radiomics features extracted from the ADC17q
maps could improve the diagnostic accuracy over that extracted from the conventional
ADCqppp maps. We demonstrated the feasibility and possible superiority of using high-b-
value DWI to assess the grade of bladder cancer.

Previous studies have reported the usefulness of texture analysis (TA) based on DWI
to assess the grade of BC [24,30]. Razik et al. [30] indicated that a TA of DWI had excellent
class separation capacity in differentiating high- from low-grade bladder cancer, which was
consistent with our findings. However, the results of their article had an AUC maximum of
0.897 (b-value of 1500 s/ mm?), which was higher than our AUC for a b-value of 1000 s/ mm?,
but lower than the AUC for a b-value of 1700 s/ mm?, which also illustrated the advantages
of high-b-values. Zhang et al. [24] indicated their maximum AUC value was 0.861 at a
b-value of 1000 s/mm?, which was slightly lower than that of our study (AUC, 0.901). A
possible reason for the discrepancy may be that more texture analysis parameters were
extracted in our study, which was supposed to more accurately reflect the heterogeneity
of bladder cancer in terms of the overall, local, and regional aspects [25]. It may also be
because texture parameters were all extracted from the ADC maps in our study, while in
the study of Zhang et al. [24], the texture parameters were extracted from the DWI and
ADC maps.

Our result indicated that the radiomics parameters of ADC maps generated from
high-b-value DWI (b = 1700 s/mm? and 3000 s/mm?) provided a superior diagnostic per-
formance compared with the standard b-value (b = 1000 s/mm?). Many previous studies
have reported that DWI with a high b-value could enhance the clinical value in tumor
grading and other aspects [18-20,31]. Kang et al. [18] indicated that the fifth percentile of
the cumulative ADC histogram obtained at a high b-value (b = 3000 s/mm?) was the most
promising parameter for differentiating high- from low-grade gliomas. Kwak et al. [18] in-
dicated that the texture features extracted from high-b-value DWI images (b = 2000 s/ mm?)
produced better performance in the automated benign and malignant diagnosis of prostate
lesions. These conclusions were similar to our findings. Intratumoral heterogeneity was
an important consideration in tumor grading and predicting biological aggressiveness.
Previous imaging studies on intratumoral heterogeneity were limited by the achievable
voxel size. The advent of high-b-value DWI demonstrated a great potential for breaking
this barrier and peeking into the voxels and was sensitive to tissue microstructures [11].
Therefore, ADC1799 and ADC 3099 were supposed to reflect the heterogeneity of the tumor
grade better. However, the TA of ADC 3009 maps provided a less inferior diagnostic per-



Life 2022, 12, 1510

8 of 10

References

formance compared to that of ADCy7g9. The reason may be that the signal-to-noise (SNR)
could be substantially reduced due to the increased diffusion-induced signal loss as well as
the T2-induced signal attenuation caused by a longer TE to support the higher b-values.

It has to be declared that the diffusion-attenuated signal is described by the Stejskal-
Tanner equation, assuming that the gradients are uniform. However, it has been indicated
that the gradients are not uniform in almost any clinical or research MRI scanners, and
the generalized Stejskal-Tanner equation has also been derived for nonuniform diffusion
gradients [32]. It has been proven that the Stejskal-Tanner equation is still valid if the
b-matrix can be calculated for each voxel separately, which is supposed to be achieved by
using the b-matrix spatial distribution in DTI (BSD-DTI) technique [33,34].

This study has some limitations. First, the number of participants was moderate, and
the distribution of pathologic grades was uneven with more high-grade than low-grade
tumors. This may bias the statistical analysis and a further study of a larger population
is required. Second, as a single-center retrospective study, the selective bias could not be
avoided. Only one lesion was analyzed for the patients with multiple tumors, which could
also cause a selection bias. Third, the small lesions (the diameter less than 1 cm) were not
included due to the difficulty of drawing VOI, which led to the tumors evaluated in our
study being relatively large. Fifth, systematic errors caused by the inhomogeneity of the
gradients which affect the b-matrix, the eddy current effects, or other background interfer-
ence do exit in the DWI measurements. However, the systematic errors are impossible to
completely eliminate.

5. Conclusions

Our results indicated that the radiomics features extracted from ADC;79 maps could
improve the diagnostic accuracy over those extracted from the conventional ADCjp9 maps.
We demonstrated the feasibility and possible superiority of using high-b-value DWI to
assess the grade of bladder cancer, providing additional information for individualized
treatment planning.
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