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Abstract: Transboundary animal diseases, such as foot and mouth disease (FMD) pose a significant
and ongoing threat to global food security. Such diseases can producearge, spatially complex
outbreaks. Mathematical models are often used to understand the spatio-temporal dynamics and
create response plans for possible disease introductions. Model assumptions regarding transmission
behavior of premises and movement patterns ofivestock directly impact our understanding of the
ecological drivers of outbreaks and how to best control them. Here, we investigate the impact
that these assumptions have on model predictions of FMD outbreaks in the U.S. using models
ofivestock shipment networks and disease spread. We explore the impact of changing assumptions
about premises transmission behavior, both by including within-herd dynamics, and by accounting
for premises type and increasing the accuracy of shipment predictions. We find that the impact
these assumptions have on outbreak predictions isess than the impact of the underlyingivestock
demography, but that they are important for investigating some response objectives, such as the
impact on trade. These results suggest that demography is a key ecological driver of outbreaks
and is critical for making robust predictions but that understanding management objectives is also
important when making choices about model assumptions.

Keywords: foot and mouth disease;ivestock demography; model assumptions; cattle shipment
networks; outbreak simulation

1. Introduction

Transboundary animal diseases (TAD) can significantly impact economies and food
security worldwide, and require regional or international efforts to contain [1]. They are
economically costly via direct animaloss,oss of animal production, market shocks and
drop in consumer demand, export trade restrictions, prevention and control costs, impacts
on human health for zoonoses or spillover to other species, and disruption of the food
supply [1]. TAD examples include African swine fever, classical swine fever, foot-and-
mouth disease, several strains of avian influenza, and others [2]. Global dynamics of
these pathogens will continue to change as a result of globalization, changing agricultural
ecosystems, ecosystem incursion, and climate change [3,4].

One TAD of particular interest globally is foot-and-mouth disease (FMD), a highly
transmissible viral infection primarily affecting divided hoofed animals, including cattle,
pigs, sheep, and goats. The disease is generally not fatal in adult animals but causes
productionoss, andingering infection may cause further outbreaksater on [5]. Outbreaks
have cost countries billions of dollars in direct and indirectosses, and the most severe
outbreak in the United States (U.S.), in 1929, spread to 22 states and over 172,000ivestock
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animals were culled [5–7]. Given the cost of an outbreak, FMD cases trigger the highestevel
of restrictions on international trade of all TADs [1].

The U.S. is currently FMD free, and theivestock population remains entirely susceptible
[5]. Theargestivestock industry susceptible to FMD in the U.S. is the cattle industry. The
U.S. cattle industry isarge and has specific spatial structuring due to the infrastructure,
production practices and resources [8–10]. The cattle industry is connected across the entire
continental U.S. by a highly connected shipment network [8,11]. Shipments are important
in outbreaks of FMD because they can move infection into areas that were not previously
infected [12,13]. Because of the scale of the U.S.ivestock industry, a potential FMD outbreak
could have serious economic implications and there is a need for robust preparedness and
response plans.

Many countries that are currently FMD free rely on model simulations of FMD out-
breaks to evaluate control measures and factors affecting disease spread in order to inform
preparedness and planning. A number of FMD simulation models are reviewed in Webb
et al. [14]. These models fall roughly into two types of approaches to capture the spatio-
temporal patterns of pathogen spread. First, some models utilize specific and detailed
pathways of transmission. These models are useful for investigating specific scenarios but
can be difficult to scale up toarge spatial scales due to the increased computational burden
inherentin tracking many detailed contacts. Second, other models use phenomenological
spatial kernels that represent a mixture of specific transmission pathways and thus are
more computationally efficient and can make inference atarge spatial scales. Some models
include a combination of these approaches. These two approaches represent different
conceptualizations of the detailed ecological transmission mechanisms of FMD and utilize
different practical solutions to the tradeoff between capturing transmission accurately
enough and computational efficiency. However, all disease models must make assumptions
and choices in what aspects of the ecological reality are captured, resulting in caveats or un-
certainty in model structure. In this study, our goal is to understand the impact of capturing
three drivers, commonly thought to be important, in order better understand how uncer-
tainty in these drivers affects our general understanding of the system and decision support
for FMD preparedness and planning [14]. For instance, assumptions about within-herd
transmission may scale up to impact broader spatial scale transmission dynamics. Within a
modeling framework, evaluating the importance of within-herd transmission may mean
quantifying of outbreak behavior when herds become infected over time (hereafter referred
to as partial transition of disease states), rather than an assumption that 100 percent of the
herd was infected simultaneously. We are also interested heterogeneity in transmission be-
havior, for example among different premises types (e.g., farms, markets, feedlots). Finally,
variation inong distance transmission events is also of interest. Long distance transmission
is associated withivestock movement, so from the modeling perspective the accuracy with
whichivestock movements are implemented may be important.

To explore these questions about how modeling assumptions impact predictions of
FMD outbreaks, we focus on the U.S. cattle industry. Thearge range in premises sizes, the
spatial structuring, and the importance of the shipment network in connecting the industry
make this an ideal system to explore the impact of ecological drivers of FMD. The United
States Disease Outbreak Simulation (USDOS) is a stochastic simulation model that includes
bothocal and shipment-based disease transmission [10,15]. Becauseivestock shipments in
the U.S. are not tracked unless they cross a stateine, the shipment-based transmission in
USDOS is predicted by the United States Animal Movement Model (USAMM). USAMM
estimates the full U.S. cattle shipment network based on partially observed data [11,16].
In this study, we add additional detail to these two models in order to asses the impact of
structural uncertainty while preserving the ability to simulate FMD at the U.S. national
scale. In USDOS we expand the model to allow for partial transition of disease states and
explore the impact of transmission behavior ofivestock markets. In USAMM we explore the
impact of adding industry covariates on predictions of theivestock shipment network and
on predictions of disease spread by USDOS. We compared model results predicted with
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and without the structural expansions to understand the impact on predicted outbreak
metrics because changes to outbreak size, duration and transmission behavior can impact
the decisions made about an outbreak. The results of this study will inform FMD and
TAD modeling efforts by highlighting the importance of understanding how modeling
assumptions about the ecological drivers in the system can impact the predicted results
and will help researchers support decision makers by tailoring the model assumptions to
the management objectives.

2. Methods
2.1. USDOS Version 2.1

USDOS is a national model for predicting disease spread through bothocal andong-
distance shipment-based transmission. Local spread consists of aerosol, fence-line contact,
or fomite spread between premises and is captured by a spatial kernel, whileong-distance
spread occurs during shipments between premises in any two counties in the contiguous
U.S. [10,15]. At the beginning of a simulation, each premises in the contiguous U.S. is given
a disease status, which is tracked throughout the outbreak. Premises disease statuses are
susceptible to infection, exposed and pre-infectious, infectious, or immune (e.g., due to
recovery or vaccination). Here, we introduce USDOSv2.1, which incorporates more detail
in premises partial transition of disease states, heterogeneous transmission behavior of
premises, andivestock movements.

2.2. Premises Location and Size

There are three types of premises in the demography: general cattle premises, that are
further separated into beef or dairy; feedlots; and markets. Because U.S. cattle premisesoca-
tions are not publicly accessible, premises data for the general cattle premises and feedlots
were generated by the Farm Location and Agricultural Production Simulator (FLAPS)
[17,18]. FLAPS generates predicted premisesocations and number of cattle per premises in
the U.S. The number of premises and the sizes of those premises in each county are based
on the totals in the National Agriculture Statistics Survey (NASS) 2012 census data and
the NASS cattle inventory survey from July of 2017 [10,17,19]. Theocations of premises
in counties are estimated by FLAPS based on environmental factors important for the
presence ofivestock [18]. The data sets to independently validate FLAPS simulations do
not exist, therefore, Burdett et al. [18] performed verification analyses that showed good
predictive performance by the model. We used 10 FLAPS realizations of cattle demographic
data to reflect the uncertainty in the FLAPS estimates [10].

Aist of cattle marketocations was generated by Carroll and Bansal [20] from several
publicly available sources; specifically USDA APHIS Federally Approved Market List,
USDA GIPSA, USDA Agricultural Marketing Service (AMS), and Livestock Market Associ-
ation (LMA) [20? –22]. We updated and consolidated theist to remove duplicate entries
and geocoded theocation information to the countyevel. Further refinements of theist and
theocations of the markets were identified by investigating cases where the consolidation
assignments on theist did not match up with the geocoded county information (i.e., cases
where entries on theist were previously assigned to be the same market were geocoded to
different counties, or cases where entries assigned to be different markets were geocoded to
the same county). AMS provides data on annual cattle sales totals for some of the markets
on theist. We used these data to inform a spatial model that estimated the county-level
values for total cattle sales in each county containing a market. These estimates were used
to inform the market sizes. The marketocations and sizes were combined with each of the
10 FLAPS realizations to create the cattle demography data used here.

2.3. Local Disease Transmission Kernel

Local disease transmission encompasses all transmission events that are not shipments
of infected cattle. Here we use a distance-dependent transmission kernel to describeocal
transmission. This type of kernel provides an accurate fit to FMD outbreak data [12,24–26]
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and is a commonly used method for capturingocal transmission in FMD models [27]. Here,
the probability of disease transmission from infectious premises i to susceptible premises j
on a given day is described as in Tsao et al. [10]

1 − exp(−achibchjK(di,j)), (1)

where hi and hj represent the size of infectious and susceptible herds, ac is the cattle
transmissibility parameter, and bc is the cattle susceptibility parameter. K is the distance-
dependent kernel function where di,j is the shortestinear distance between i and j, defined
as

K(di,j) =
k1

1 + (
di,j
k2
)k3

, (2)

where k2 is the scale parameter and k3 is the shape parameter. The k1 parameter is the
normalizing constant that scales the function so that∫ ∞

0
2πrK(r)dr = 1, (3)

where r is a dummy variable for di,j, the distance between premises i and j. At a small
distance, transmission is consistently high and decays as the distance increases. The power-
law kernel function (Equation (2)) has been fit to several FMD outbreak data sets and used in
previously published versions of the USDOS model and other FMD models [10,12,15,28,29].

Theocal transmission parameters (Table S2) were fit using a maximumikelihood ap-
proach to the first 30 days after the official recognition of 2001 UK outbreak data, which
is a time period where the outbreak was growing and control was consistent [10]. The
parameters were fit in meters to match with the units of distance used in USDOS. The best
fit parameters give mean outbreak sizes of approximately 1600 infected premises (95%
confidence interval: 1000–2800 infected premises, compared with 2026 infected premises
in the UK outbreak [12]) [10]. Because there has not been a recent FMD outbreak in the
U.S., we ran a sensitivity analysis on theocal transmission kernels that encompassed wide
range of parameter values [10]. The results of this sensitivity analysis, presented in Tsao
et al. [10] show that USDOS outbreak metrics areess sensitive to these parameters than to
other aspects of the system.

2.4. Partial Transition of Disease States

In USDOSv2.0 [10], premises are classified as either susceptible, exposed, infectious or
immune. When within-herd dynamics are not considered (as in USDOS2.0, [10]), the rate
at which an infectious premises i infects a susceptible premises j is given by,

rate(i,j) = ([N
pbee f
(bee f ,j)]Sbee f + [N

pdairy
(dairy,j)]Sdairy)× ([N

qbee f
(bee f ,i)]Tbee f + [N

qdairy
(dairy,i)]Tdairy)× K(dij) (4)

where N(b,i) is the number of individuals of species b on premises i, Sb and Tb are the
susceptibility and transmissibility measures for premises of type b and pb, qb are poweraw
parameters accounting for a non-linear increase in susceptibility and transmissibility as
animal numbers on a premises increase. Infection spreads between premises via the
transmission kernel K according to the distance between premises i and j, d(i,j).

For USDOSv2.1, we extended the USDOSv2.0 framework outlined above to incorpo-
rate within-herd dynamics such that infectiousness is dependent upon how many animals
on the premises are infectious at time t. Therefore, instead of using a fixed premises size
N(bee f ,i) as in USDOSv2.0, we used the number of infectious animals at time t, I(t)(bee f ,i).
The relevant equations and technical details are given in Supplementary Section S1.1. In
order to determine the best fit parameters for the partial transition function I(t), we mini-
mized the sum of the squared difference between “data" (mean of 1000 simulations from an
FMD within-herd model [30]) and the predicted values from the partial transition function
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(Table 1). The partial transition function describes how many animals are infectious at time
t after infection has entered the premises and theatency period has passed. With some
mathematical manipulation, the partial transition function can be expressed as a function
of time, t, describing the proportion of the premises’ population that is infectious after t
days such that, regardless of premises size, the proportion will always be the same for each
value of t and can be pre-calculated in USDOSv2.1 (Figure S2, details in Supplementary
Section S1.1). An important issue is howong the within-herd model dynamics should be
considered before it is practically the same as assuming 100 percent of the herd is infected.
We considered an infectious period cutoff of 15 days, 20 days, and 30 days to examine
computing time and how much of the infection each period captured. For additional details
on the partial transition function, fits, and parameters, see Supplementary Section S1.1.

Table 1. FMD partial transition parameters.

Parameter Description Value

tσ Final day on which there are only susceptible or exposed animals 0 days
tS=0 Time at which all animals are infectious 4 days
γ Recovery rate of animals per day 0.44
r Rate of increase of number of infecteds r0 = 0.05, r1 =0.006

2.5. Accuracy of Livestock Movement

Livestock shipment data is not routinely collected in the U.S., and consequently
veryittle official data is available to utilize in aivestock disease simulation. Therefore,
animal movements in USDOS are dynamically simulated during the outbreak using the
United States Animal Movement Model (USAMM). Cattle shipped interstate in the U.S.
are required to be accompanied by a certificate of veterinary inspection (ICVI) to ensure
that the animals are healthy prior to being shipped. Paper records of the ICVIs are kept by
the origin and destination state authorities, and among other things, these recordsists the
shipment date as well as the origin and destination counties of the shipment. In an effort to
provide a first detailed picture of the U.S. cattle trade network, the authors of Buhnerkempe
et al. [8] collected a 10% sample of the 2009 export ICVIs of each state of the conterminous
U.S., excluding New Jersey, and compiled it into an electronic data set of interstate beef
and dairy movements. This data set remains the most geographically comprehensive cattle
shipment data set available, and USAMM has been constructed specifically to scale up
thisimited sample of inter-state shipment data to complete nation-wide cattle movement
networks consisting of both inter- and intra-state shipments. Two versions of USAMM have
been published previously—USAMMv1.0 [11] and and USAMMv2.0 [16]. In USAMMv1.0,
shipments are modeled using a state-level distance dependence together with state-level
covariates consisting of historical inflow data, and county-level weights scalinginearly
with the total number of premises in the county. USAMMv2.0 improves on the first
version in several ways and is described briefly below. Here we introduce an extension
of USAMMv2.0, which we refer to as USAMMv2.1, that includes the effect of county-
level covariates related to the cattle industry, as well as premises type-specific county-
level weights based on non-linear herd-size dependent scaling of the farms, feedlots and
markets in the county. In order to evaluate the effect of cattle related infrastructure on the
transmission of FMD we simulate the shipments within USDOS with both USAMMv2.0 and
USAMMv2.1 and analyze the relative importance and the improvement in fit using a model
selection framework. We briefly describe these developments in the following sections but
additional details of the USAMMv2.1 development, testing, and implementation can be
found in Supplementary Sections S1.2–S1.8.

2.5.1. USAMM Version 2.0

In USAMMv2.1, we built on the earlier USAMMv2.0 movement model of Brommesson
et al. [16] to improve the previous statistical model for the probability of observing a set of
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interstate cattle shipments given by the 2009 ICVI data. In this section, we describe this
previous model, and in the next section outline the changes that were made to it in the
present work. Briefly, it was assumed in USAMMv2.0 that within each state shipments
arose from each single premises as a Poisson process with the premises-level shipment
rate λ∗

u. Given this assumption, the collective rate with which shipments arose from each
origin county was simply the number of premises in the county multiplied by λ∗

u(ω). The
shipments that arose from an origin county were then distributed among all possible desti-
nation counties, i.e., all other counties in the U.S. Thisast step was achieved by assigning
each destination county a weight based on an attraction parameter of the destination state,
as well as a function of the distance between the origin and destination counties and two
origin state-level parameters. To determine the destination county weight, each state was
associated with a parameter controlling the propensity for a single premises in the state
to attract shipments. When scaled up by the number of premises in a county, this gave a
total measure of the entire county’s capacity to attract shipments based on the size of its
population of premises. The two origin state-level parameters occur because each state was
associated with a monotonically decreasing distance kernel function which gave a distance
dependence component to the county–to–county shipment probability. The spatial kernel
is plateau-shaped at short distances and has a fat tail describing the probability ofong
distance shipments. USAMMv2.0 included a component of seasonality with parameters
being defined for each quarter of the year. A full mathematical description and details on
parameter estimation are given in Supplementary Section S1.2.

2.5.2. USAMM Version 2.1

In USAMMv2.0, each premises is given equal weight and county-level shipping differs
simply due to the number of premises in the respective county. Analyses of other systems
have however revealed that both the number of incoming and outgoing shipments vary
with the type and herd size of the premises [31]. In USAMMv2.1, we therefore relaxed
the assumption that all premises send and receive the same number of shipments and
modeled the contribution of each individual premises as a function of its herd size (i.e.,
number of animals) and type (i.e., farm, feedlot, or market). For markets, we used the
total yearly volume (measured in head) as herd size. We also decoupled the probability
that a premises sends a shipment from the probability that it receives a shipment within
a county. We assumed that the relationships between herd size and shipment probability
can be nonlinear and model them in the form of a set of poweraws with parameters
specific to premises type, quarter, and direction. In addition to the differentiation between
premises types and premises of different size, we introduced two county-level weighting
parameters that independently impact the probability of sending a shipment and the
probability of receiving a shipment. These weights depend upon county-levelivestock
industry covariates, specifically the NASS categories Operations with Sales, Total Sales
(in head) [32] as well as a metric describing the closeness to slaughter capacity, Slaughter
Connectivity. These particular categories were chosen based preliminary correlational
analysis with the number of incoming and outgoing ICVI shipments per county. Despite
the new additions, theikelihood function of USAMMv2.1 is equivalent to that defined for
USAMMv2.0 with redefinition of some parameters so that the new model allows for the
inclusion of county and premisesevel heterogeneities. However it is also possible for the
model to disregard one or both of them for certain parameter values. Theatter is equivalent
to the base model in Brommesson et al. [16] which can be viewed as a special case of
USAMMv2.1 where each county has an effect of industry covariates equal to one (i.e., no
effect of covariates), and where every premises has equal weight regardless of size and
type. A full mathematical description and details on parameter estimation are given in
Supplementary Section S1.3.



Life 2022, 12, 1604 7 of 18

2.5.3. USAMM Model Selection

To determine if including industry covariates and information about premises type
and size provides better fit to data, we compared USAMMv2.1 to a simpler version where
all parameters modeling the effect of industry covariates and premises characteristics were
fixed at a value that indicated no effect. We refer to this simplified version as “simple"
and the full USAMMv2.1 model presented above as “refined." We used Widely Applicable
Information Criterion (WAIC) [33] to indicate which model was the most parsimonious
for the focal data. WAIC is derived from estimating the out-of-sample predictive accuracy
using within-sample data and adjusting the introduced overestimation by a penalty term
estimating the number of effective parameters [34]. WAIC usesog pointwise posterior
predictive density as a measure of fit and (as proposed in Gelman et al. [34]) the posterior
sample variance of theog predictive density as penalty term. This pointwise approach is
more fully Bayesian and captures the posterior uncertainty better than other information
criteria [34], which makes WAIC the preferred choice.

2.6. USDOS Model Scenarios

We explored the effects of modeling assumptions by performing a structural sensitivity
analysis with USDOS. The structural sensitivity analysis was done by running USDOS
model scenarios that systematically included and excluded model components that corre-
sponded to partial transition of disease states, and the accuracy ofivestock movements. The
changes in USDOS model predictions observed between the different structural sensitivity
scenarios were measured using outbreak metrics, which are described in the following
section. The scenarios began with all premises and counties in the contiguous U.S. suscep-
tible except for one randomly selected exposed premisesocated in the seed county. Each
of the 3049 contiguous counties were seeded 100 times (10 times per FLAPS realization),
and within the county a random seed premises was selected each time. Simulations con-
tinued until the outbreak died out (zero exposed or infected premises) or 365 days had
passed, whichever happened first. A complete national-scale run of each scenario results in
304,900 simulations of USDOSv2.1 in order to estimate the characteristics of FMD outbreaks
beginning in any county in the contiguous U.S. [10].

The scenarios used to explore structural sensitivity to partial transition of disease
states were:

• Base scenario (no control measures in place) without partial transition of disease states;
• Base scenario with partial transition of disease states, and an infectious period cut-off

of 15 days;
• Base scenario with partial transition of disease states, and an infectious period cut-off

of 20 days;
• Base scenario with partial transition of disease states, and an infectious period cut-off

of 30 days.

All partial transition scenarios were run with the refined USAMM model as that was
the preferred model in USAMM model selection. We compared base runs (no control
measures) with an infectious period cutoff of 15 days, 20 days, and 30 days to examine
computing time and the effect of cutoff time on capturing disease dynamics (see Supple-
mentary Section S1.1). We also compared the results of our partial transition base run with
20-day cutoff to our base run without partial transition. We used the 20 day cutoff for
this comparison because it wasong enough to capture the infection dynamics but short
enough to keep computational time down (see Supplementary Section S2.1 for additional
details). Using a base run demonstrates the effect of partial transition on outbreaks without
introducing confounding effects from control measures. The default infectious period for a
base run without partial transition is seven days.

The scenarios exploring the accuracy ofivestock movements were:

• Base scenario: no control measures in place.
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• Infected premises (IP) cull and 3 km ring vaccination scenario: infected and reported
premises (IP) culling and ring vaccination, which is a solid circle centered on the
IP, with a radius of 3 km. Animal shipment is banned at the state-level with 75%
effectiveness.

• IP cull and 10 km ring vaccination scenario: IP culling and ring vaccination with a
radius of 10 km. Animal shipment is banned at the state-level with 75% effectiveness.

• IP cull and dangerous contact (DC) vaccination: IP culling and vaccination of DCs,
which are premises with an epidemiologicalink to an IP. Animal shipment is banned
at the state-level with 75% effectiveness.

All base and control scenarios were run with the simple and refined USAMM model,
without partial transition. We compared the results of our base runs without partial
transition with the simple and refined USAMM models to see what, if any, effect the
accuracy ofivestock shipments had on our simulations without any possible confounding
effects from the within-herd dynamics or control measures. The control scenarios chosen
for our analysis were based on strategies analyzed as potential alternative controls for
previous FMD outbreaks [12,35–37], and in Tsao et al. [10]. Additionally, the preferred
control scenarios in the U.S. are strategies that include vaccination [38], so all the control
scenarios used here include vaccination; however, these scenarios should not be considered
policy. Comparing the differences between control scenarios run with simple and refined
USAMM models allowed us to explore whether predictions about outbreak control shifted
in response to changes inivestock shipment accuracy. Shipment bans are implemented after
the first infected premises is reported within a state and represent state-wide prohibition
on cattle shipments. We simulated this ban as being 75% effective. Tsao et al. [10] includes
additional information on the control parameters used in this model.

2.7. Outbreak Metrics

All metrics were calculated in post-processing of simulation runs using R versions
3.6.3–4.1.1 [39]. We chose the following six metrics to evaluate the results of our simulated
outbreaks:

1. Number of premises infected: the total number of infected and reported premises.
2. Number of infected counties: the total number of counties that infection spreads to

when infection is seeded in that county.
3. Outbreak duration: the number of days between the initial seed infection until there

are no more infected premises or 365 days, whichever occurs first.
4. Outbreak take-off (sensitivity analysis only): the probability that over 5000 premises

will become infected during the outbreak [10].
5. Outbreak fade-out (sensitivity analysis only): the probability that between one and

5000 premises will become infected during the outbreak, and that duration will be
shorter than 365 days [10].

6. Proportionocal transmission: the proportion of non-shipment transmission within
each county compared to total transmission (shipment andocal) within the county.

These outbreak metrics provide a thorough understanding of the outbreak size and
characteristics, and include metrics that are commonly used to quantify both observed
and model predicted FMD outbreaks [10,12,35,36,40,41]. For each outbreak metric we
calculated both the median and upper 97.5th percentile value for each county aggregated
across all simulations within a scenario. We interpret the median as our usual expectation of
what might happen if infection was introduced, but we generally see that the median was
veryow. However, veryarge outbreaks can occur, so we used the upper 97.5th percentile
to captureowerikelihood, but high risk, scenarios. The results we present represent what
we expect to see from each county across all simulations in order to give a more robust
understanding of the outbreak patterns.
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2.8. Sensitivity Analysis

The sensitivity analysis allowed us to examine which parameters are important for
driving the outcomes of our simulations distinct from the disease dynamics. For the sake
of computational time, the sensitivity analysis was run on a subset of 78 counties selected
using stratified random sampling based on countyevel characteristics: total in shipments,
total out shipments, premises clustering quantified by Ripley’s K, premises density, and
number ofarge premises. Eight additional counties were included to enhance geographic
range or drawn from aist of six counties important to the cattle industry (see Tsao et al. [10]
for details). We also recorded the seed premises size. This variation in county- and premises-
level characteristics helped us to understand if our results are dependent on where in the
country the outbreak begins.

We used Latin hypercube (LHC) sampling to generate values for two parameters:
shipment scale and market within scale. Shipment scale adjusts the number of shipments
USAMM predicts, which is a different type of test of how the accuracy ofivestock move-
ments impacts inference because it allows for over- and under-prediction. Market within
scale adjusts the amount of transmission occurring at markets, which allows us to test
how differences in transmission between farms/feedlots and markets impact inference.
We generated 100 combinations of the two parameters. We chose not to include disease
parameters in the sensitivity analysis as we have previously found that outbreak metrics
are more sensitive to demography than disease parameters [10]. Hence, we focused on
the variation contributed by our county set, seed premises size, and two parameters that
impact the accuracy ofivestock movements and transmission differences among premises
types. Each of the 100 parameter combinations were simulated 100 times for a total of
10,000 simulations for each of the 86 counties. All simulations included partial transition
and the refined version of USAMM.

Because our model results were monotonic but notinear, we first used a partial-rank
correlation coefficients (PRCC) analysis to estimate the relative importance of each covariate
to the outbreak metrics [42]. We then used ainear regression model which provides greater
accuracy [43] and allows us to explore two-way interactions between covariates [10,15].
Understanding the effect of interactions between covariates is important because many
of the covariates in this system are not independent of each other and some, such as
the demographic characteristics, have uncertainty in them. Understanding how multiple
attributes of the system interact in terms of disease outbreaks can help identify counties
with higher risk. Regression has a stricter assumption than PRCC, in that the relationship
between outbreak metrics and covariates isinear. However, regression is fairly robust to
this assumption. In order to assess the appropriateness of using regression to understand
interaction, we first performedinear regression with no interaction and compared the
results to those of the PRCC analysis. Based on the similarity between these results, we felt
comfortable proceeding with the full two-way interaction regression model, despite the
violation ofinearity within our data [10,15].

3. Results
3.1. Partial Transition

We found that a partial transition maximum infectious period cut-off of 15 days was
too short to fully capture the outbreak dynamics anded to outbreak predictions that were
substantially different to those predicted by scenarios run with a cut-offs of 20 and 30 days
(Figures S4, S5 & S6). The 20 and 30 day cut-off scenarios predicted similar results. The
addition of partial transition more than doubled the computing time for USDOS, withonger
maximum infectious period cut-offseading toonger run times (Table S3). Because the 20
day maximum infectious period cut-off accurately captured the outbreak dynamics and
reduces computational time compared with the 30 day cut-off, assigned 20 days as the
default maximum infectious periodength in USDOS (additional details in Supplementary
Section S2.1). The following results that include partial transition all use this default value.
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We compared the outbreak metrics from the base scenario without partial transition
with those from the base scenario with partial transition. Duration was the outbreak metric
most affected by including partial transition in the model. Including partial transition in
USDOS increases theength of time premises are infectious whicheads to an increase in
the total duration of an outbreak. Comparing the median and upper 97.5th percentile of
outbreaks, we see that duration isonger for the scenario with partial transition by 5 days for
the median and 100 days for the upper 97.5th percentile (Table S4). The increase in duration
can be clearly seen by comparing the distributions of the 97.th percentile of outbreaks,
where far more outbreaks reach the 365 day maximum duration with the partial transition
scenario (Figure 1). Spatially, we see theargest effect of duration on the median outbreaks,
with an increase in spatial variation in outbreakength and an overall increase in predicted
duration (Figure S7). The dominate spatial patterns predicted with and without partial
transition for theargest outbreaks (upper 97.5th percentile) are the same but including
partial transition increases the amount of area predicted to have theongest outbreaks
(Figure S7).

Figure 1. Duration of outbreak simulations with partial transition off (orange,eft) and on (pink, right)
for outbreaksastingonger than 100 days.

We also observed that for the upper 97.5th percentile of outbreaks, the base scenario
with partial transition predictedarger outbreaks measured by the of number of premises
and counties infected than the base scenario without partial transition (Table S4). However,
the predicted median behavior of the scenarios with and without partial transition for
number of premises and counties infected were the same (Table S4). In comparing the
spatial patterns of the upper 97.th percentile of outbreaks we see that outbreaks seeded in
counties in Idaho, Montana, Nevada, Arizona, Minnesota, Iowa, and New York resulted
inarger outbreaks with partial transition than without partial transition (Figures 2 and
S9). However, the geographic pattern remained consistent with and without partial transi-
tion;arge outbreaks were still produced when disease was seeded along the west coast and
a corridor along the mountain west and central plains down into Texas. The Midwest, East
Coast, and Southeast generally produced smaller outbreaks with exceptions for New York
state and central Florida. The predicted spatial patterns of the median outbreak patterns are
much more similar for the metrics of outbreak size, with only a few counties in California,
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South Dakota and Nebraska having higher predicted outbreak size for the scenario with
partial transition (Figures S8 and S9).

(a) Without Partial Transition (b) With Partial Transition

Figure 2. Counties colored by the number of premises infected for the upper 97.5th percentile of runs
without partial transition (a), and with partial transition (b). It is an aggregation across all simulations
of the total number of premises infected when the outbreak is seeded in that county.

3.2. USAMM Simple and Refined Versions for Disease Transmission Type

Model selection with WAIC between simple and refined USAMM showed scores
strongly in favor of the refined models for both beef (∆WAIC = 21,895) and dairy (∆WAIC =
3195) shipments (Table 2). This indicated that the additional components of the refined
version added informative value and promoted a better description of the data. Further,
posterior estimates indicated a pronounced effect of premises size and type as well as
industry covariates (Figure S10). The effect of including the additional parameters of
the refined model was evident in a more pronounced differentiation between counties
with high andow degree. This effect was true for both commodities and for both in- and
out-degree and is illustrated in Figures S11 and S12.

Table 2. WAIC, and effective sample size values for beef and dairy for models including and excluding
covariate data, respectively. As a measure of effective sample size, the number of independent draws
from the posterior (IDD) for the parameter with theowest value for the given model is shown.

Commodity Data WAIC Min. IDD

Beef Including covariates 323,344 1822.0

Excluding covariates 345,239 1192.1

Dairy Including covariates 64,525 6542.9

Excluding covariates 67,720 7592.4

When comparing the outbreak metrics from the USDOS scenarios run with US-
AMMv2.1 simple and refined the greatest difference was observed in the proportion
ofocal transmission. The proportion ofocal transmission was generally higher across the
country for scenarios run with USAMMv2.1 simple (Figures 3 and S13). The exceptions
to this were several counties in eastern Texas where there was greater proportions ofocal
transmission predicted by scenarios run with USAMMv2.1 refined. This result held across
the base scenarios and all of the scenarios with control, though it is more apparent in the
base scenarios which do not have shipment bans in place.
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(a) Base scenario run with USAMM2.1 simple. (b) Base scenario run with USAMM2.1 refined.

(c) IP cull, 3 km ring vacc. scenario run with
USAMM2.1 simple.

(d) IP cull, 3 km ring vacc. scenario run with
USAMM2.1 refined.

Figure 3. Counties colored by the proportion ofocal (non-shipment) transmission for base scenarios
(a,b) and cull and 3 km ring vaccination scenarios (c,d) run with USAMMv2.1 simple (a,c) and
USAMMv2.1 refined (b,d).

The predicted differences between USDOS scenarios run with USAMMv2.1 simple
and refined for other outbreak metrics were more subtle, particularly compared with the
differences seen above with the addition of partial transition. Nationally, the differences
between scenarios run with USAMMv2.1 simple or refined are so small that it would be
difficult to separate true differences from stochastic variation (Figures S14 and S15, Table
S5). Spatially, there are very few differences between the median predictions from the
scenarios using USAMMv2.1 simple and refined but there are more pronounced differences
whenooking at the upper 97.5th percentile of outbreaks (Figures S16 and S17). As with the
results from partial transition, the major spatial patterns do not change. However, scenarios
run with USAMMv2.1 refined predicts that the number of counties where theargest out-
breaks are predicted to start increases. This is particularly apparent in Montana, Wisconsin
and New York (Figures S16 and S17). The control strategy predicted to reduce the outbreak
metrics the most was IP cull and DC vaccination. This result was consistent between the
scenarios run with the simple and refined models and is also consistent with previously
published results from USDOS [10].

3.3. Sensitivity Analysis

The results of our sensitivity analysis demonstrated which characteristics were im-
portant in determining outbreak metrics across aarge number of simulations. Number
of premises infected, number of counties infected, duration of infection and probability
of outbreak takeoff had virtually identical patterns across covariates (Figures 4 and S18).
These four metrics were significantly positively associated with increases in the size of
the initial seed premises and in-shipments, along with its interaction with density and
clustering. They were significantly negatively associated with increases in density and its
interaction with the number ofarge premises, as well as out-shipments and its interactions
with the number ofarge premises and clustering. In addition, the interaction of clustering
and number ofarge premises also had a significantly negative relationship with these four
metrics. The probability of outbreak fade-out had a significant negative association with
the interaction of the size of the initial seed premises with the number ofarge premises. All
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of the metrics were relatively insensitive to our new parameters, shipment scale and market
within scale. All of the covariates that had an effect size of greater, or equal to 0.25 in the
regression (p ≤ 0.01) were demographic or shipment attributes or interactions between
these (Figure 4). The interactions between demographic and shipment covariates show
that these attributes are not acting independently in theivestock industry with respect to
disease outbreaks.

Figure 4. Scaled regression results for two-way interaction models of each outbreak metric including
only covariates whose effect size is ≥| 0.25 |. All covariates with an effect size ≥| 0.25 | are significant
at a p = 0.001evel.

The shipment scale and market within parameters had a much smaller impact on
determining outbreak metrics than the demographic and shipment covariates discussed
above (Figure S18). Theargest impact was a slight positive association between increasing
the shipment scale parameter and the number of premises and counties infected. This
suggests that uncertainty in the number of shipments predicted by USAMM is ofess
importance to outbreak predictions than the structure of the shipment network. The
interactions between these parameters and the other covariates in the analysis also had a
small impact on the results. The interaction between market within and the seed premises
size had a slight positive association with number of premises and counties infected.
Together these results suggest that shipment scale and market within areess important than
demographic and shipment characteristics in driving outbreak behavior.

4. Discussion

With new formulations of USDOS and USAMM, we investigated some of the most
important assumptions in models of the spatio-temporal spread of TADs: premises having
partial transition of disease states, transmission behavior of premises, and the accuracy
ofivestock movement, while these may appear to be very technical issues within the realm
of modeling, they represent different ideas about the ecology of TADs, what drives the be-
havior of their spatio-temporal spread, and which drivers are most important. Interestingly,
we find that these assumptions have a strong effect on the overall size or intensity of the out-
break, butittle impact on the geographic patterns that results from spatio-temporal spread.
The behavior of within-herd spread, heterogeneity of transmission from different types of
premises, and reasonable variation inong distance transmission viaivestock movement all
have relativelyittle impact on the patterns formed by the spatio-temporal dynamics of FMD.
Overall, we see that the details of structural assumptions in TAD models as shown here and
even parameter values within reason [10], haveess impact than the underlying demography
of the cattle industry at the scale of the U.S. Premises sizes, density, spatial clustering, and
shipping behavior play an outsized role in the spatio-temporal patterns of FMD at thearge



Life 2022, 12, 1604 14 of 18

scale of the U.S. Likely because of this, we also do not see that differences in these types of
model structural choices or parameter variation within biological reason (as in Tsao et al.
[10]) result in differences in the behavior of different control strategies, e.g., the relative
ranking of control strategies remains despite differences in the types of model structures
investigated here and across different biologically appropriate parameterizations.

Including partial transition of disease states allowed FMD outbreaks to progress more
realistically through a premises. Theonger outbreak duration in scenarios that included par-
tial transition are a result ofonger infectious times for a given premises,eaving more time for
FMD to spread to other susceptible premises. This effect on individual premises scales up to
increase the outbreak duration overall and to a smaller increase in outbreak size. However,
there wasittle change geographically in where theargest outbreaks originated. Including
partial transition or a within-herd model in aarge outbreak model should be considered
when predictions about duration and trade restrictions are important. Approximating the
impact of within-herd dynamics by increasing theength of time herds are infectious without
partial transition would increase the outbreak duration and the size but wouldikelyead
to a major overestimation because the entire herd would be infectious for the infectious
period, while the partial transition function considered here is also an approximation of a
full within-herd model, it provides a good estimate for how smaller-scale dynamics impact
broader outbreak patterns for a fast spreading infectionike FMD and does not present
the same overestimation problem. The partial transition approximation of within-herd
dynamics would not be as appropriate if the disease of interest was slower spreading or
had more complex transmission dynamics. In such cases, a full within-herd model may be
needed.

We sawittle impact of variation in the transmission behavior of premises impacting
USDOS predictions. Outbreak metrics were relatively insensitive to the new parameter
we introduced to allow greater heterogeneity in transmission between markets and other
premises types. Markets are important premises for the mixing and moving ofivestock,
but the speed of FMD transmission and the number of markets relative to beef and dairy
premises in this system accounts for why the within-market transmission behavior does
not have much impact on predicted dynamics. The impact on variation in transmission
behavior due to differences in the versions of USAMM, one of which included greater
premises detail, is discussed in detail below, but it appears that differences in the two
versions are due more to the inclusion of industry covariates than the effect of including
premises size and type information.

Uncertainty inivestock movement potentially has consequences for predictions of
disease spread because differences in connectivity can alter risk of transmission [29]. Data
on intrastate shipments in the U.S. are scarce and incomplete at the national-level, making
these shipments a key unknown in understanding shipment patterns in the contiguous
U.S. In other countries, shipment data may exist, but they have been used from a historic
perspective. Thus, the issue of uncertainty in knowingivestock shipments that are relevant
to an outbreak is a common one globally. The effects of premises size and type as well
as industry covariates, which are contained in the refined version of USAMM, all were
estimated to affect shipment rates and provided added value in the accuracy of predictions.
We suspect that the information on industry covariates helps to more accurately capture
the heterogeneity in county shipmentevels. Based on our experience, it is particularly
difficult to capture a few important counties that act as "super shippers" with more extreme
values of in-shipments and out-shipments. The refined model allows forarger shipping
parameters for super shipper counties,eading to more shipment-based disease spread in
USDOS. The counties where we see a change in shipment-based spread are in areas known
to have the most beef and dairy infrastructure, which is consistent with the super shipper
interpretation.

The differences inivestock movement predictions from the two versions of USAMMed
to some differences in USDOS predictions, such as more shipment-based transmission in
USDOS, using the refined version of USAMM. However, the relative effectiveness of the
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three control scenarios remained the same despite differences in the underlyingivestock
movement modeling. We also saw the the outbreak metrics were relatively insensitive to
the parameter we introduced to up and down regulate the number of shipments. We added
this parameter because withivestock shipments not being tracked there is uncertainty in the
total number of shipments occurring. The insensitivity of USDOS predictions to changes
in numbers of shipments, suggest that predicted shipment patterns are more important
to driving outbreak dynamics. Overall, this suggests that while there is some sensitivity
toivestock movement predictions, particularly in the counties that are predicted to have
aarge proportional difference between the two sets of predictions, the USDOS predictions
are robust to uncertainty in the shipment patterns.

Because of the relatively small differences we observed in USDOS in the structural sen-
sitivity analysis, we argue that demographics are an important driver of spatial-temporal
spread and geographic patterns of outbreaks. We can also observe this through the sensitiv-
ity analysis of county demographic characteristics and their impacts on outbreak metrics.
We generally observearger outbreaks in counties witharger numbers of in-shipments such
as in the Midwest or other areas with concentrations of industry infrastructure, which
may be further accentuated in counties that additionally have higher density and premises
clustering. The super shipper counties observed in the USAMM analysis are also wherearge
outbreaks occur,ikely due to their demographic characteristics. We observe smaller out-
breaks in counties with aarger number of out-shipments and density, for example counties
in the eastern U.S. We also observe smaller outbreaks in counties with aarger number
ofarge premises, but only when those counties also have high density, clustering, and/or
out-shipments. One possible interpretation, is that these may be areas that are somewhat
industry intensive yet also somewhat isolated from thearger network of the cattle industry.
We can use these characteristics to identify regions of interest where it is moreikely thatarge
outbreaks could be seeded.

Livestock demographic data in the U.S. is only available in an aggregated form due
to data privacy issues. The placement of cattle premises and sizes used in this study were
disaggregated and verified by Burdett et al. [18]. To account for the uncertainty in the
premisesocations we used 10 realizations of the demographic data for every USDOS model
scenario [10,18]. If demographic data withess uncertainty should become available in the
future, it would improve model predictions by reducing uncertainty in a key driver of
outbreak dynamics. However, in the absence of fully accessible data the disaggregated
demographic data used in these model simulations gives the most accurate understanding
of the spatial structuring of the U.S. cattle population.

From the perspective of understanding FMD in the U.S., it is important to underscore
that the results we presented focused on thearge outbreaks resulting from our simulations,
but that most simulations faded out and did not result in an outbreak at all. We focused
on the upper 97.5th percentile of simulated outbreaks in order to understand how aarge
outbreak would behave in the U.S. should one occur. We also do not incorporate any
other species susceptible to FMD in our models, they are exclusively beef and dairy disease
models. Including other species may change our predictions, and we are currently exploring
the use of USDOS in multispecies outbreaks. Our outcomes may also be affected by our
choice to use the same parameter values for both beef and dairy transmission dynamics.
Additional caveats to USDOS are discussed in Tsao et al. [10].

Perhaps most importantly, the dominance of demographics versus the importance
of these types of model structural assumptions depends on the type of question that
needs to be addressed. For some questions, the intensity of the outbreak does matter,
and in these cases accurate data, the structural details and exact parameter values also
then matter. For example, these details matter when estimating outbreak duration in
order to more accurately understand how trade will be impacted. However, simpler
simulation assumptions together with accurate demographic data may be enough when
questions are more impacted by spatial spread processes and geographic patterns. For
example, simpler simulations may be appropriate when trying to understand spatial
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risk, investigating preferred control options, or planning where to stockpile resources.
These simpler approaches are also more computationally efficient, which is an important
consideration when timely results are needed for decision-support. Before determining
model specifications, it is important to have a clear management objective to tailor your
simulations to fit. This will allow for a more useful and efficient process when decisions
need to be made quickly [40].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12101604/s1. The supplementary materials pdf contains
supplementary methods and results for USAMM and USDOS.
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