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Abstract: Rare and vulnerable endemic plants represent different evolutionary units that occur at
different times, and protecting these species is a key issue in biological protection. Understanding
the impact of the history of endangered plant populations on their genetic diversity helps to reveal
evolutionary history and is crucial for guiding conservation efforts. Saussurea involucrata, a perennial
alpine species mainly distributed in the Tianshan Mountains, is famous for its medicinal value but has
become endangered due to over-exploitation. In the present study, we employed both nuclear and
chloroplast DNA sequences to investigate the genetic distribution pattern and evolutionary history of
S. involucrata. A total of 270 individuals covering nine S. involucrata populations were sampled for the
amplification and sequencing of nrDNA Internal Transcribed Spacer (ITS) and chloroplast trnL-trnF,
matK and ndhF-rpl32 sequences. Via calculation, we identified 7 nuclear and 12 plastid haplotypes.
Among the nine populations, GL and BA were characterized by high haplotype diversity, whereas
BG revealed the lowest haplotype diversity. Molecular dating estimations suggest that divergence
among S. involucrata populations occurred around 0.75 Ma, coinciding with the uplift of Tianshan
Mountains. Our results reveal that both isolation-by-distance (IBD) and isolation-by-resistance (IBR)
have promoted genetic differentiation among populations of S. involucrata. The results from the
ecological niche modeling analyses show a more suitable habitat for S. involucrata in the past than
at present, indicating a historical distribution contraction of the species. This study provides new
insight into understanding the genetic differentiation of S. involucrata, as well as the theoretical basis
for conserving this species.

Keywords: Saussurea involucrata; Tianshan Mountains and Altai Mountains; chloroplast and nuclear
regions; conservation

1. Introduction

The Tianshan Mountains and the Altai Mountains, located in the arid periphery of
the Junggar Basin in northwestern China, are part of the Central Asian and High Asian
Mountain systems [1,2]. The Qinghai–Tibet Plateau is the highest plateau in the world.
It has undergone complex geological events and environmental fluctuations, especially
the rapid uplift since the late Pliocene and subsequent Quaternary climate oscillations.
Climate change in the history of the Tibetan Plateau has also affected the structure and
evolution of its flora and fauna [3–6]. It can be reflected in the spatial diversity based on
the genetic structure and evolutionary process of plants, along with Qinghai–Tibet Plateau
uplift and climate change, especially in studying the geographical distribution pattern and
genetic structure of endemic plants in the Qinghai–Tibet Plateau, allowing us to explore the
effects of Qinghai–Tibet Plateau uplift and climate change on the spatial genetic structure
and evolution of plants [7,8]. As a part of the flora of the Qinghai–Tibet Plateau, this area
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is rich in endemic species, but there are relatively few studies on species in this area [9].
There are four stages of the initial uplift of the Tianshan Mountains and the subsequent
major uplifts along with the uplift of the Qinghai–Tibet Plateau, which affected the genetic
diversity of plants in the regions significantly. The uplift of these mountains is the result of
the Cenozoic India–Asia collision and the rise of the Qinghai–Tibet Plateau [10,11]. Plant
genetic diversity is the ability to maintain adaptability and respond to environmental
changes. It is the main concern of conservation genetics. To protect endangered species,
the main geographical lineages should be protected [12]. It is very important to study the
conservation genetics of endangered plants for the formulation of protection strategies and
protection management [13]. The protection of rare and endangered species should focus
on endemic species with limited geographical distribution [14]. Through the study of the
conservation genetics of endangered plants endemic to the Qinghai–Tibet Plateau, effective
protection strategies can be proposed [15,16]. Based on the systematic geographical study
of endangered plants endemic to arid northwestern China, we can better understand
the evolution history of species in this area and put forward protection strategies [8,17].
The Tianshan Mountains and the Altai Mountains are important parts of the arid region
in northwestern China. However, there are few studies on the conservation genetics of
endangered alpine endemic species in this region. Saussurea involucrata is only distributed
in the Tianshan Mountains and Altai Mountains in China. The study of conservation
genetics can provide a reference for its protection research.

Saussurea involucrata is an endemic alpine plant, just distributed in the Tianshan
Mountains and Altai Mountains with an altitude of about 2400–4100 m. It has been listed
as a national secondary protected plant [18,19] (http://www.Iplant.cn/bhzw/info/1102
(accessed on 7 September 2021)). As a traditional medicinal plant, S. involucrata has been
used for dispelling wind to eliminate dampness, eliminating inflammation, promoting
blood circulation and relieving pain [20,21]. In recent years, the pharmacological activity
of S. involucrata in anti-cancer has been gradually discovered and deeply explored by
researchers [22,23]. Saussurea involucrata has suffered from excessive excavation and habitat
destruction for a long time and has not been effectively and reasonably protected, resulting
in a sharp decline in its resources [24]. In order to avoid resource depletion or even
extinction, it is urgent to formulate appropriate protection strategies to reduce resource
plunder and habitat destruction caused by human activities. By analyzing the genetic
diversity and population differentiation of five populations of S. involucrata distributed in
the western Tianshan Mountains, we should protect them in situ and give priority to the
protection of S. involucrata in the Bayinbuluke area [25].

In order to further analyze the distribution pattern and population history of S. in-
volucrata, in this study, we increased the sampling points of S. involucrata to cover the
Tianshan Mountains and Altai Mountains. We comprehensively analyzed the population
structure, population history, ancestral population reconstruction, isolation-by-distance
(IBD) and isolation-by-resistance (IBR). Our analyses reveal the differentiation process of S.
involucrata across and within geographic regions. This study provides new insights into the
differentiation of S. involucrata and the theoretical basis for the establishment of effective
protection strategies for this species.

2. Materials and Methods
2.1. Population Collection and DNA Data Generation

Nine populations of S. involucrata were sampled. A total of 270 samples were collected
from each population in the Tianshan Mountains and Altai Mountains. The longitude,
latitude and altitude were recorded during collection. Fresh leaves were collected, immedi-
ately dried on silica gel and stored at room temperature for DNA extraction. DNA was
extracted from silica gel dried leaves via the CTAB method [26].

Initially, ten plastid DNA segments (trnS-trnG, atpB-rbcL, trnQ-rps16, rpl32-trnL,
psbK-psbI, psbA-trnH, rps16, rps12-rpl20 and ycf 6-psbM) were screened for genetic vari-
ations [25,27], but only trnL-trnF, matK and ndhF-rpl32 were found to have effective levels
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of variation. For the amplification of nuclear regions, we selected the gene ITS1–4. ITS1–4
was successfully amplified and exhibited sufficient variation in preliminary experiments.
PCR amplification and sequencing of both strands were performed using previously pub-
lished methods for these regions. PCR amplification and sequencing of the ITS region were
implemented with ITS1-4 primers. All PCR products were stained with SYBR on 1.5%
agarose gel electrophoresis to check the amplification. PCR amplification and sequencing
of cpDNA were performed using three primers: trnL-trnF, matK and ndhF-rpl32. In addition
to the annealing temperature of 55 °C and the total volume of 50 µL, the PCR protocol was
the same as the ITS amplification protocol.

2.2. Population Structure and Diversity

DNA sequences were aligned using ClustalX and manually checked in Bioedit. DnaSP
v 5 was used to calculate haplotypes, haplotype diversity (Hd) and nucleotide diversity
(π) [28]. Haplotypes defined by DnaSP were used to construct a media-joining network
under default parameters in NETWORK. ArcMap 9.3 software in the ArcGIS v 9.3 software
package, combined with sample collection information, was used to draw a haplotype map.

A haplotype network and unrooted and statistical parsimony figure were drawn using
TCS version 1.21. These analyses showed the genealogical relationships of haplotypes for
cpDNA (Figure 1) and nrDNA (Figure 2).
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S. involucrata populations in the Tianshan Mountains and Altai Mountains, with their haplotype
networks (H1–H12) constructed by using TCS 1.21.
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2.3. Divergence Time of Haplotypes

To estimate the divergence times of phylogenetic lineages, the differentiation of time
estimation for cpDNA haplotypes and nrDNA haplotypes was performed. According to
Emkeetal’s research settings, the base exchange rate of trnL-trnF, matK and ndhF-rpl32
was 1.45 × 10−9 s/s/y, and the base exchange rate of ITS was 6.1 × 10−9 s/s/y. Using
Tracer1.7.2 to check the output log file to check whether the ESS is greater than 200. Using
TreeAnnotator 1.5.4 to burn the top 20 % unstable tree final file [29].

Bayesian skyline analysis was performed in the BEAST 1.7.0 version to show the
population status of the population and estimate past population dynamics [30]. the BSP
was analyzed and plotted in the R language.

2.4. Isolation-by-Distance (IBD) and Isolation-by-Resistance (IBR) Analyses

In order to study the role of geography and environment in shaping spatial genetic dif-
ferentiation, we tested spatial isolation (IBD) and isolation resistance (IBR). The normalized
pairwise genetic distance FST/(1-FST) between populations was calculated using ‘hierfstat’.
The geographical distance was calculated by using the R package ‘land boundary’ [31]
according to the latitude and longitude information of the population. Using topo Dist
in the R package topo Dist, the resistance distance was calculated based on the elevation
grid layer and the latitude and longitude information of the site. The number of moving
directions between units was set to 8 [32].

2.5. Population Historical Developments

DnaSP v 5 was used to construct the mismatch distribution curve of S. involucrata [33]
to test historical demographic expansion. If a unimodal curve appeared in the mismatch
distribution analysis, it was considered that the overall had recently expanded; if the curve
was bimodal or multimodal, it was considered that the population had not expanded
recently but was in a dynamic equilibrium state [34].

3. Results
3.1. Population Structure and Diversity

A total of 12 chloroplast haplotypes (Figure 1) and 7 nuclear haplotypes (Figure 2)
were detected in nine S. involucrata populations. The chloroplast haplotype H1 was the
most widely distributed haplotype, which was found in seven S. involucrata populations
(Figure 1). Each haplotype of chloroplast genes is related to at least another haplotype, and
haplotype H1 revealed the highest number of connections. Nuclear haplotypes H4 and H3
are widely distributed haplotypes, where haplotype H4 is distributed in eight populations,
and H3 is distributed in six populations. Among the seven haplotypes probed by the nuclear
ITS1-4 gene, two haplotypes, H6 and H7, are rare haplotypes, and these two haplotypes
are only distributed in three populations: Altai (AT), Bogda (BG) and Haxionggou (HX)
(Figure 2). Each of the nuclear haplotypes is related to the other haplotypes. Saussurea
involucrata showed high levels of haplotype (Figure 3a) and nucleotide diversity (Figure 3b).
According to the cpDNA data of S. involucrata, the Narat (NL) population had the highest
Hd value (Figure 3a), and the Sclerophore (GL) population had the highest nucleotide
diversity (π) value (Figure 3b). Based on the analyses of the nuclear ITS1-4 gene, the
Bayinbuluke (BA) population had the highest Hd values (Figure 3a), and the Chasi (Q X)
population had the highest nucleotide diversity (π) values (Figure 3b). The total haplotype
diversity (Hd) of cpDNA was 0.895, ranging from 0.886 to 0.904, and the total nucleotide
diversity (π) of cpDNA was 1.26, ranging from 1.24 to 1.28. The haplotype diversity (Hd)
in the ITS1-4 region was 0.813, ranging from 0.804 to 0.822, and π was 6.13, ranging from
5.98–6.28, which was much higher than that of the chloroplast genes.
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3.2. Genetic Divergence History

Based on the analyses of chloroplast gene mismatch distribution (Figure 4a) and
nuclear gene mismatch distribution (Figure 4b), the results show that the mismatch distri-
bution curve was the multi-peak type, and the expected value was inconsistent with the
observed values and the species expansion model, indicating that there was no significant
population expansion or bottleneck effect. In recent years, S. involucrata has not experienced
rapid expansion. The neutral test results show that the population of S. involucrata had a
history of a stable population size and had not experienced population expansion and a
continuous growth pattern (Figure 5).
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3.3. Isolation-by-Distance (IBD) and Isolation-by-Resistance (IBR) Analyses

By quantifying the contribution of IBD (Figure 6a) and IBR (Figure 6b) to the spatial and
genetic distribution of S. involucrata, the genetic differentiation pattern among S. involucrata
populations was explained. The Mantel test results show that the genetic structure of the
population could be explained by IBD. Compared with IBR, IBD can explain the spatial
genetic differentiation of S. involucrata more effectively. This result is also quite consistent
with the distribution space of S. involucrata in reality. The existing S. involucrata populations
are limited to fragmented habitats at a certain altitude, and the geographical distance
between populations is large. This distribution pattern can easily cause a sharp decrease in
gene flow between groups, thereby increasing the genetic distance between groups.
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4. Discussion
4.1. High Genetic Diversity

Based on the cpDNA intergenic spacers (trnL-F, matK and ndhF-rpl32) and nrDNA
(ITS1-4) of S. involucrata, our results show that the nine natural populations of S. involucrata
had high haplotype diversity (Figure 3a) and nucleotide diversity (Figure 3b) at the species
level, but there were some differences in haplotype diversity and nucleotide diversity
among different populations. Habitat fragmentation usually leads to a decrease in genetic
diversity among populations and a huge difference in genetic diversity among popula-
tions [35]. The difference in genetic diversity among different populations of S. involucrata
may be related to the habitat fragmentation of S. involucrata as a typical alpine plant. High
genetic diversity may be related to its reproductive system, biological characteristics, seed
dispersal ability, geographical distribution and population size [36]. In general, widely
distributed species that are perennial with a high outcrossing rate and diverse seed dis-
persal methods have a high level of genetic diversity. Saussurea involucrata is a perennial
plant, and its florets have male pre-maturation and herkogamy. This spatial structure is
conducive to cross-pollination [37]. Saussurea involucrata has a variety of diffusion methods
based on wind media, water media and animal transmission. Its seeds have long crown
hairs that can be spread by wind and can be spread far away. The biological characteris-
tics of S. involucrata reproductive systems can also explain the high genetic diversity of
S. involucrata natural populations adapting to extreme alpine environments. The genetic
diversity of S. involucrata is higher than that of other alpine plants occurring in this area
and adjacent areas, such as Saussurea obvallata (Ht = 0.454, Hs = 0.275) [38] and Saussurea
medusa (He = 0.2757) [39]. Different physiological characteristics and habitats of the species
may cause these results.

4.2. The Conserved Center of S. involucrata

The refuge is less affected by climate fluctuations and can maintain rich genetic diver-
sity among populations. Sites with high levels of genetic variation and special haplotypes
may be refuges for this species [40]. The genetic diversity of the wild apricot population
in the Tianshan area remained at a high level (He = 0.6109, I = 1.2208), which confirmed
that the Tianshan wild apricot was the origin center of the cultivated apricot [41]. In this
study, nine populations of S. involucrata were collected from the Tianshan Mountains and
Altai Mountains. The genetic diversity of S. involucrata in the western Tianshan Mountains
was higher and had special haplotypes. Specifically, the S. involucrata population in the
Bayinbuluke area in the western Tianshan Mountains had higher genetic diversity and had
special haplotypes (i.e., H5–H8) (Figure 1). Therefore, we speculate that the Bayinbuluke
area may be the genetic differentiation center of S. involucrata. Notably, the area is also
identified as a refuge for Iris tectorum [42]. Based on the founder effect, the genetic diversity
of the original population was higher than that of the population formed by migration
and diffusion, and there were more unique haplotypes [43]. Due to water vapor from
westerly airflow into the valley, the species in the northwest arid area are less affected by
the barrier of the Qinghai–Tibet Plateau and its surrounding mountains, and the western
Tianshan Mountains and Altai Mountains are more humid than the east [9]. In this study,
the results of chloroplast genes and ribosomal genes show that the genetic diversity of
S. involucrata in the western Tianshan Mountains was higher (Figure 3) and had special
haplotypes (Figures 1 and 2). Therefore, this area may be the origin center of S. involucrata.

Our data show that the cpDNA and nrDNA mismatch distribution curves of S. in-
volucrata were multi-peak (Figure 4), and the neutral test results show that S. involucrata
conformed to the neutral evolution model (Figure 5), suggesting that the S. involucrata
population had a history of a relatively stable population size. The mismatch distribution
curve and neutral test of S. involucrata showed that the population size of S. involucrata
was relatively stable and did not expand in the near future, which was similar to the
results of the study in the western Tianshan Mountains of S. involucrata [25]. This may
be related to the high level of genetic diversity, the fragmentation of habitat range, or the
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distance isolation of S. involucrata, thus maintaining the balance of the population. There is
a general lack of phytogeographical studies in the Tianshan and Altai Mountains [9], but
the region’s flora is mainly affected by Pleistocene glacial-dry glacial to interglacial-wet
period changes [44]. In this study, the nuclear haplotypes from the nine populations of S.
involucrata from the Tianshan and Altai Mountains showed two independent lineages. The
H6 and H7 haplotypes were only distributed in the Altai and eastern Tianshan Mountains
(HX, BG and AT), and another lineage was mainly distributed in the western Tianshan
Mountains (Figure 2). The population structure of S. involucrata is similar to that of Clematis
sibirica [45] and has independent lineages in the Altai and western Tianshan Mountains.
Based on the rooted phylogenetic network, the nrDNA haplotype of S. involucrata was
missing during the evolutionary process (Figure 2).

The Cenozoic intracontinental orogeny in the Tianshan Mountains and Central Asia
was affected by the Himalayan collision and the uplift of the Qinghai–Tibet Plateau [46].
The rapid uplift of the Tianshan Mountains not only changed the topography but also led
to the intensification of drought in the surrounding areas [47]. Geology and climate change
have influenced the genetic structure differentiation of plants in this region [48,49]. The
populations of S. involucrata in the eastern Tianshan Mountains and Altai Mountains have
special nuclear gene haplotypes H6 and H7 (Figure 2), which were differentiated from
the S. involucrata population distributed in the western Tianshan Mountains during the
Pleistocene period (0.75 Ma) (Figure 7a). The recent uplift time of the Tianshan Mountains
can be traced back to the Pleistocene (0.73 Ma) [11]. We estimate that the time of the
haploid differentiation of the S. involucrata nuclear gene was consistent with the time of the
Tianshan uplift. It shows that, after the early spread of S. involucrata to the Altai Mountains
and eastern Tianshan Mountains, the uplift of the Tianshan Mountains changed the terrain,
and geographical isolation promoted the early differentiation of nuclear gene haplotypes
H6 and H7.
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The arrival of glaciers during the Pleistocene (0.01–2.59 Ma) made the geological
age officially enter the cold Quaternary. Large-scale iceberg movements occurred in the
high, middle and low latitudes of the Northern Hemisphere. The alternation of glacial
and interglacial cycles accelerated the intraspecific differentiation of plants [43,50–52].
The largest glaciation in the Tibetan Plateau and adjacent areas began at about 1.2 Ma
and reached a maximum between 0.8 and 0.6 Ma [53,54]. The nuclear gene haplotype
differentiation (0.47 Ma) and chloroplast haplotype differentiation (0.48 Ma) of S. involucrata
began in the Middle Pleistocene. The estimated differentiation time of its lineage is later
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than the maximum glacial period. The extremely low temperature during the glacial period
may have caused obstacles to gene flow between geographically isolated S. involucrata
populations, and gene flow was cut off or restricted. It promoted the generation of regional
special haplotypes [55]. We believe that the intraspecific haplotypes of S. involucrata rapidly
diversified, and the divergence time was roughly the same as that of many plants, such as
Cyananthus delavayi (0.49 Ma) and Pomatosace filicula (0.53 Ma), affected by the Qinghai–Tibet
Plateau glacial period [52,56]. In the Pleistocene, the Tianshan Mountains experienced
three different glacial and interglacial cycles caused by climate turmoil, which played an
important role in the distribution and genetic differentiation of species in this area [57–59],
which also profoundly affected the genetic structure differentiation of S. involucrata. Many
studies on the phylogenetic structure differentiation of alpine plant populations have
proved that the uplift of the Qinghai–Tibet Plateau and Quaternary glacial oscillation have
had a great impact on the distribution and evolution history of plant species [60,61]. We
speculate that S. involucrata survived in the eastern Tianshan Mountains, Altai Mountains
and western Tianshan Mountains when the Quaternary glacial climate repeatedly oscillated.
At the same time, the uplift of Tianshan Mountains seriously hindered gene exchange
between populations, resulting in the fragmentation of the distribution of S. involucrata in
the current habitat.

4.3. Protection Recommendations

In order to develop targeted conservation management strategies, it is necessary to
understand the genetic structure of threatened species [62]. Maintaining genetic diversity is
a key issue in protecting and managing the long-term survival of endangered species [12].
With global warming, the Tianshan snowline rises, and the growth area of S. involucrata
also shrinks sharply. Due to excessive excavation and the destruction of the natural
environment, the distribution area and population size of S. involucrata have decreased
sharply, resulting in the loss of the germplasm resources of S. involucrata. In view of the fact
that S. involucrata is a perennial one-time flowering and fruiting plant, it is difficult to restore
its genetic diversity after it is disturbed by human activities. The protection of S. involucrata
germplasm resources are important. Habitat reduction and human destruction will cause
population fluctuations, and ultimately showing a low level of diversity, high population
differentiation and a high level of inbreeding in genetics. Inbreeding in small-scale and
fragmented populations may lead to the loss of genetic variation, which seriously affects the
adaptability of threatened species to environmental changes [63]. Therefore, maintaining
an effective population size and genetic diversity of S. involucrata should be a priority
in the conservation plan. This study increases our understanding of the possible main
factors affecting the genetic composition of the S. involucrata population, thus benefiting
its population protection. The cpDNA haplotypes of S. involucrata were closely related,
but some haplotypes were missing, indicating that there may be a loss of genetic diversity.
Due to geographical isolation, each S. involucrata population should be protected as an
independent unit. Among the nine populations of S. involucrata in the Tianshan and Altai
Mountains, the genetic diversity of S. involucrata in the Bayinbuluke area is high, and there
are many special haplotypes that should be given priority protection. Based on in situ
conservation, seed preservation can also be carried out, and a few individuals in the unique
haplotype population and plants with special traits can be collected and transferred to the
resource nursery for protection. The natural growth cycle of S. involucrata is 5–6 years. The
devastating root digging and flowering of the snow lotus has seriously affected its natural
reproduction. We need a comprehensive artificial propagation strategy for S. involucrata,
including seed germination, large-scale seedling production, grafting and tissue culture
(i.e., somatic embryogenesis) programs, to avoid collecting plants from natural populations.
Finally, all the protection work is inseparable from the support of the residents‘ community,
and it is also necessary to enhance residents’ awareness of natural protection.
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5. Conclusions

In this study, the effective protection of S. involucrata is proposed by exploring the
factors affecting the population history and genetic structure of S. involucrata. The strong
uplift of the Tianshan Mountains in the Pleistocene and the alternation of the Quaternary
glacial and interglacial periods played an important role in the genetic differentiation of S.
involucrata populations. The results of the niche model analysis show that geographical
isolation could promote the genetic differentiation of S. involucrata compared with IBR.
The geographical distance between populations of S. involucrata is far, which can easily
lead to a sharp decrease in gene flow between populations, thus increasing the genetic
distance between populations. The S. involucrata distributed in the Tianshan Mountains
and Altai Mountains is affected by the uplift of the Tianshan Mountains, resulting in the
fragmentation of its distribution in the current habitat. Saussurea involucrata is divided into
two lineages, the Tianshan Mountains and Altai Mountains, which seriously hinders gene
exchange between populations. The study of the gene differentiation and genetic structure
of S. involucrata provides evidence for future research on the response of alpine endemic
plants to Quaternary geological and climatic events in the Tianshan and Altai regions. The
population of S. involucrata distributed in the western Tianshan Mountains has high genetic
diversity. In order to avoid the loss of endangered species of S. involucrata germplasm
resources, priority should be given to the protection of S. involucrata in this area. In order
to further protect S. involucrata effectively, S. involucrata in the Bayinbuluke area deserves
further study.
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