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Abstract: In addressing the challenge of assessing healthy brain aging across diverse interventions,
this study introduces the use of MRI-derived Brain Healthcare Quotients (BHQ) for comprehensive
evaluation. We analyzed BHQ changes in 319 participants aged 24–69, who were allocated into dietary
(collagen peptide, euglena, matcha, isohumulone, xanthophyll) and physical activity (hand massage
with lavender oil, handwriting, office stretching, pink lens, clinical art) groups, alongside a control
group, over a month. These interventions were specifically chosen to test the efficacy of varying
health strategies on brain health, measured through BHQ indices: GM-BHQ for gray matter volume,
and FA-BHQ for white matter integrity. Notably, significant improvements in FA-BHQ were observed
in the collagen peptide group, with marginal increases in the hand massage and office stretching
groups. These findings highlight BHQ’s potential as a sensitive tool for detecting brain health changes,
offering evidence that low-intensity, easily implemented interventions can have beneficial effects
on brain health. Moreover, BHQ allows for the systematic evaluation of such interventions using
standard statistical approaches, suggesting its value in future brain healthcare research.

Keywords: brain healthcare; aging; MRI; Brain Healthcare Quotient; intervention

1. Introduction

As the older population increases, healthcare and social welfare burdens will rise [1], as
evidenced by projections from the United States that indicate Social Security and Medicare
deficits of at least US$52 trillion over the next 30 years due to chronic diseases of aging in the
“Baby Boom” generation [2]. In the face of the global challenges of population aging and an
unprecedented crisis from the increase in age-related neurodegenerative diseases, experts
have sought a paradigm shift in brain health, shifting from “treatment of dysfunction” to
“maintenance of health and prevention of dysfunction” [3]. Thus, health authorities have
strengthened efforts to better understand healthy brain aging and its determinants, identify
interventions that promote healthy brain aging, and translate the research to create and
disseminate sustainable public health programs [4].

Although some progress has been made in modifiable risk factors and corresponding
preventive approaches, current evidence remains modest and inconclusive [5] due to het-
erogeneity across studies of interventions (e.g., types of exposures and/or outcomes, length
of follow-ups, biases and/or confounders that were accounted for, and overall quality
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of studies) and difficulty in quantifying outcomes. This lack of standardization renders
accurate assessment of preventive interventions and comparisons of impact across studies
difficult, as well as preventing replication of previous findings [6]. For example, frequently
used exposure variables, such as body mass index, waist circumference, quantity/years
of tobacco consumption, amount of alcohol intake, blood pressure level, total cholesterol,
and fasting glucose, are often categorized differently across studies. In terms of outcome
measures, studies rarely use common variables. The World Alzheimer Report 2014 [7]
showed that the following diverse outcome measures have been used in previous studies:
cognitive outcomes, mild cognitive impairment, dementia, composite measures of cog-
nition, cognitive activity, incident dementia, activities of daily living, executive function,
memory, reasoning, processing speed, attention, memory, Alzheimer’s Disease Assessment
Scale-cognitive subscale, and hippocampal volume. The heterogeneity of these elements
prevents meta-studies of available evidence, and best-practice advisement is stalled in the
face of conflicting and imprecise data. Thus, the World Alzheimer Report 2014 called for a
consistent and standardized approach for future studies [7].

In 2017, we proposed a standardized magnetic resonance imaging (MRI)-based quo-
tient for monitoring brain health based on analyses of gray matter volume (the Brain
Healthcare Quotient based on gray matter volume [GM-BHQ]) and fractional anisotropy of
white matter (FA-BHQ). GM-BHQ represents the gray matter volume as a standardized
score, taking into account that the degree of atrophy in gray matter varies by region. Like-
wise, FA-BHQ represents the integrity of white matter considering the regional differences
of FA. We found that both GM- and FA-BHQs were highly sensitive to age-related declines
in the brain, and both were significantly associated with physical factors (e.g., obesity and
blood pressure), lifestyle factors (e.g., daily schedules), and social factors (e.g., subjective so-
cioeconomic status, subjective well-being, and post-materialism) [8]. Other studies indicate
that GM-BHQ is positively associated with curiosity [9] or motivation [10], yet it shows
negative correlations with factors like fatigue [11]. Similarly, FA-BHQ is positively linked
to subjective happiness [12], but it is inversely associated with anxiety [13]. Considering
these findings, the BHQ has the potential to serve as a marker for various interventions
due to its associations with diverse factors. Therefore, in the present study, we extend this
standardized BHQ outcome approach to evaluate the effectiveness of interventions for
brain healthcare.

2. Materials and Methods
2.1. Participants

A total of 330 healthy participants (30 participants per intervention and 30 participants
as control), aged 20–69 and with no significant medical histories or contraindications of
MRI, were recruited from local cities in Hyogo, Kyoto, and Tokyo areas in Japan between
October 2015 and December 2017. All participants gave written, informed consent prior
to participation. This study conformed to the principles of the Declaration of Helsinki
and was approved by the Kyoto University Institutional Review Board (approve number
27-P-13).

2.2. Diet and Activity Interventions

The present study focuses on evaluating the role of the following two categories of
interventions in maintaining brain health: diet/nutrition and regular physical activity. We
publicly chose brain healthcare interventions to evaluate the effectiveness of BHQs as an
assessment tool. After a number of companies and organizations were recruited, a selection
committee composed of experts in brain healthcare evaluated the feasibility and potential
of each candidate intervention. Finally, the following 5 dietary and 5 physical activity
interventions were selected based on expert analyses: collagen peptides, euglena, matcha
(powdered green tea), isohumulone, and xanthophylls for dietary interventions, and hand
massage with lavender oil, handwriting, office stretching, pink lens, and clinical art for
physical activity interventions.
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In terms of dietary interventions, the Mediterranean diet has been associated with
improved cognitive function, and studies have also explored the connection between
physical activity and dementia [14]. The participants were recruited and assigned to one of
the 10 intervention groups or a control group (See Table 1 for descriptive statistics). The
ten total intervention groups consisted of 5 dietary intervention groups (collagen peptide,
euglena, matcha, isohumulone, or xanthophyll) and 5 physical activity intervention groups
(hand massage with lavender oil, handwriting, office stretching, pink lens, or clinical art).

Table 1. Descriptive Statistics by Group.

Groups N
(Male/Female)

Age
(M ± SD)

Interval (Days)
between Pre–Post (M) Quantity/Frequency

Control 30 (15/15) 53.9 ± 9.3 28.0 -
Collagen peptide 29 (25/4) 55.6 ± 4.2 28.2 5 g/day

Euglena 30 (14/16) 47.8 ± 6.8 30.0 1 g/day
Matcha 27 (11/16) 48.1 ± 5.8 28.4 2 g/day

Isohumulone 25 (14/11) 57.3 ± 6.2 27.8 13.2 mg/day
Xanthophyll 30 (15/15) 48.8 ± 5.2 33.4 9 mg/day

Hand massage with lavender oil 30 (0/30) 35.6 ± 4.7 31.6 10 min/3 times/week
Handwriting 30 (23/7) 41.2 ± 11.0 28.0 5 min/day

Office stretching 30 (22/8) 45.6 ± 9.9 32.6 5 min/day
Pink lens 29 (0/29) 43.8 ± 6.0 35.7 3 h/day

Clinical art 39 (29/0) 48.3 ± 5.5 29.7 1 h/week

For the dietary intervention groups, all participants underwent an MRI scan, took a
specified amount of the test supplements daily for approximately a month, and then under-
went a second MRI scan. For the physical activity intervention groups, all participants also
underwent a first MRI scan, performed the assigned physical activity for specified dura-
tions of time or at specified frequencies (daily or weekly) for approximately a month, and
then underwent a second MRI scan. Participants who could not complete the intervention
were excluded. As a result, 319 participants (168 males and 151 females) were analyzed.
A summary of the experimental conditions for each of the 10 interventions is provided in
Table 1. Randomization was not performed when assigning these participants as the focus
was to evaluate the usefulness of BHQ as an assessment tool for a standardized approach
rather than to rigorously evaluate the effectiveness of each intervention.

2.3. Imaging Procedures
2.3.1. MRI Data Acquisition

All magnetic resonance imaging (MRI) data were collected using a 3-T Siemens scanner
(Verio, Siemens Medical Solutions, Erlangen, Germany or MAGNETOM Prisma, Siemens,
Munich, Germany) with a 32-channel head array coil at Kyoto University, the University of
Tokyo, and RIKEN.

High-resolution structural images were acquired using a three-dimensional (3D), T1-
weighted, magnetization-prepared, rapid-acquisition gradient echo (MP-RAGE) pulse
sequence using the following parameters for Kyoto University and the University of Tokyo
(Verio): repetition time (TR), 1900 ms; echo time (TE), 2.52 ms; inversion time (TI), 900 ms;
flip angle, 9◦; matrix size, 256 × 256; field of view (FOV), 256 mm; and slice thickness,
1 mm. For RIKEN (Prisma), parameters were the following: repetition time (TR), 2000 ms;
echo time (TE), 2.13 ms; inversion time (TI), 952 ms; flip angle, 9◦; matrix size, 256 × 256;
field of view (FOV), 230 mm; and slice thickness, 0.9 mm.

DTI data were collected via spin-echo echo-planar imaging (SE-EPI) with GRAPPA
(GeneRalized Autocalibrating Partially Parallel Acquisitions). The image slices were par-
allel to the orbitomeatal (OM) line. The parameters were as follows for Kyoto University
and the University of Tokyo (Verio): TR, 141,00 ms; TE, 81 ms; flip angle, 90◦; matrix size,
114 × 114; FOV, 224 mm; and slice thickness, 2 mm. A baseline image (b = 0 s/ mm2) and
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30 different diffusion orientations were acquired with a b value of 1000 s/mm2. For RIKEN
(Prisma), parameters were the following: TR, 3700 ms; TE, 82 ms; flip angle, 90◦; matrix
size, 118 × 118; FOV, 200 mm; and slice thickness, 1.7 mm. Data was acquired in two shells
as follows: six baseline images (b = 0 s/ mm2) and 54 different diffusion orientations were
acquired with b values of 1000, 2000, and 3000 s/mm2.

2.3.2. Image Preprocessing

T1-weighted images were preprocessed and analyzed using Statistical Parametric
Mapping 12 (SPM12; Wellcome Trust Centre for Neuroimaging, London, UK) running on
MATLAB R2020b (Mathworks Inc., Sherborn, MA, USA). Gray matter (GM) images were
extracted, spatially normalized using the diffeomorphic anatomical registration through
exponentiated lie algebra (DARTEL) algorithm [15], and then smoothed with an 8-mm full
width at half-maximum (FWHM) Gaussian kernel. Intracranial volume (ICV) was also
calculated from the results of segmentation. Proportional GM images were generated by
dividing smoothed GM images by ICV to control for differences across participants. Using
these proportional GM images, mean and standard deviation (SD) images were generated
from all participants. We calculated the GM-BHQ images using the following formula for
each voxel: 100 + 15 × (individual proportional GM − mean)/SD. Regional GM quotients
were then extracted using an automated anatomical labeling (AAL) atlas [16] and averaged
across regions to produce participant-specific GM-BHQs.

Diffusion data were preprocessed using the FMRIB Software Library (FSL) 6.0.4 [17].
First, all diffusion images were aligned with the initial b0 image, and motion correction
and eddy current distortion correction was performed using eddy_correct. Following
these corrections, FA images were calculated using dtifit. FA images were then spatially
normalized into the standard Montreal Neurological Institute (MNI) space using FLIRT and
FNIRT. Normalized data were smoothed with an 8-mm FWHM. Mean and SD images were
generated from all the FA images. Individual FA quotient images were calculated using
the following formula for each voxel: 100 + 15 × (individual FA − mean)/SD. Regional
FA quotients were extracted using Johns Hopkins University (JHU) DTI-based white-
matter atlases [18] and averaged across regions to produce participant-specific FA-BHQs.
Nemoto et al. [13] showed that both GM-BHQ and FA-BHQ reflect age-related declines
in GM volume and WM integrity, verifying BHQ as a highly sensitive tool for evaluating
intervention outcomes. After carrying out GM-BHQ and FA-BHQ for pre-treatment (Pre)
and post-treatment (Post) tests, GM-BHQ and FA-BHQ gain scores were computed by
subtracting GM-BHQ pre-treatment scores from GM-BHQ post-treatment scores and by
subtracting FA-BHQ pre-treatment scores from FA-BHQ post-treatment scores.

Note that as each participant used the same MRI scanner twice and we measured only
differences between the two timepoints, MRI machine differences were judged to have no
impact on the results.

2.4. Statistical Analyses

We employed R 3.6.0 [19] for the statistical analysis. The current study employed analysis
of covariance (ANCOVA) of gain scores to compare changes in GM- and FA-BHQ from
pre-intervention to post-intervention between the experimental conditions. As mentioned, 10
experimental conditions (interventions) were divided into two groups (i.e., dietary component,
physical activity), and compared separately within each group. Age and the duration of
time between Pre and Post were included in all analyses as control variables. Post hoc
pairwise comparisons were performed by adjusting p-values using the Benjamini–Hochberg
procedure [20] to control the False Discovery Rate (FDR) for multiple comparisons.

Removal of Outliers

The original data appeared to be non-normal due to a few extreme outliers. Thus, we
performed outlier analyses using the median absolute deviation (MAD). The MAD has
been suggested as an alternative to and the most robust measure of dispersion compared
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to more popular methods, such as mean plus or minus a coefficient (2, 2.5, or 3) times
standard deviations and the classical interquartile range [21].

We calculated the MADs (1.539 and 1.162, respectively for GM- and FA-BHQ gain
scores) and the decision criteria for both GM-BHQ (−4.754, 4.478) and FA-BHQ (−3.470,
3.502) gain scores following the procedure proposed by Leys et al. [21]. Thus, all GM-BHQ
gain score values smaller than −4.754 and greater than 4.478, plus all FA-BHQ gain score
values smaller than −3.470 and greater than 3.502, were removed as outliers. The normality
checks after removing these outliers show that the distributions for both GM-BHQ gain
and FA-BHQ gain scores were normalized.

3. Results
3.1. One-Way ANCOVA on GM-BHQ Gain Scores for Dietary Components

A one-way, between-participants ANCOVA was conducted to compare the effect of
dietary components on GM-BHQ gain scores, controlling for the effect of age and the
duration of time between Pre and Post. There were no significant differences in the effects
of any dietary components on GM-BHQ gain scores, F (5, 159) = 1.114, p = 0.355 (Figure 1a).
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3.2. One-Way ANCOVA on FA-BHQ Gain Scores for Dietary Components

A one-way, between-participants ANCOVA was conducted to compare the effect
of dietary components on FA-BHQ gain scores, controlling for the effect of age and the
duration of time between Pre and Post. There was a statistically significant difference
between the effect of dietary components on FA-BHQ gain scores: F (5, 156) = 3.195,
p = 0.009 after controlling for the effect of age and the duration of time between Pre and
Post. Both age and the duration of time between Pre and Post were not significant covariates:
F (1, 156) = 0.653, p = 0.420, and F (1, 156) = 0.010, p = 0.921, respectively.

Post hoc tests showed that the collagen peptide group had significantly higher FA-BHQ
gain scores than the euglena (Benjamini–Hochberg adjusted p = 0.008) and isohumulone
groups (Benjamini–Hochberg adjusted p = 0.028) (Figure 1b).

3.3. One-Way ANCOVA on GM-BHQ Gain Scores for Physical Activities

A one-way, between-participants ANCOVA was conducted to compare the effect of
physical activities on GM-BHQ gain scores, controlling for the effect of age and the duration
of time between Pre and Post. There were no significant differences in the effects of any
physical activities on GM-BHQ gain scores, F (5, 166) = 0.799, p = 0.552 (Figure 2a).
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Figure 2. (a) GM-BHQ gain scores for physical activity groups. (b) FA-BHQ gain scores for physical
activity groups. Values are expressed as estimated marginal means ± standard errors. † Benjamini–
Hochberg adjusted p < 0.10 compared to handwriting group. ‡ Benjamini–Hochberg adjusted p < 0.10
compared to pink lens group.
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3.4. One-Way ANCOVA on FA-BHQ Gain Scores for Physical Activities

A one-way, between-participants ANCOVA was conducted to compare the effect of
physical activities on FA-BHQ gain scores, controlling for the effect of age and the duration
of time between Pre and Post. There was a statistically significant difference in the effect of
physical activities on FA-BHQ gain scores: F (5, 163) = 2.752, p = 0.020, controlling for the
effect of age and the duration of time between Pre and Post. Both age and the duration of
time between Pre and Post were not significant covariates: F (1, 163) = 3.188, p = 0.076, and
F (1, 163) = 2.511, p = 0.115, respectively.

Post hoc tests showed that no significant differences between groups after adjusting
p-values for multiple comparison though the differences between the following groups
remained marginally significant (Figure 2b): hand massage with lavender oil and hand-
writing groups (Benjamini–Hochberg adjusted p = 0.081), hand massage with lavender
oil and pink lens groups (Benjamini–Hochberg adjusted p = 0.081), office stretching and
handwriting groups (Benjamini–Hochberg adjusted p = 0.081), and office stretching and
pink lens groups (Benjamini–Hochberg adjusted p = 0.081) (Figure 2b).

4. Discussion

In this study, we showed that different interventions could be evaluated if we use
BHQ. Though the differences between physical activities were only marginally significant,
FA-BHQ values for the hand massage with lavender oil group and office stretching group
did increase while FA-BHQ values for three of the other four groups, including the control
group, decreased. Therefore, it may be possible that the differences between the former two
groups and the latter three groups would increase to the extent that differences in imaging
results would become significant if participants continued for longer periods of time or
performed these activities more frequently or at greater intensity.

On the other hand, there were no significant differences between both dietary and
physical activity groups for GM-BHQ values. It is difficult to determine the possible reasons
why these dietary components and physical activities appear to work somewhat better
on FA-BHQ than GM-BHQ. However, one possible explanation may be the fact that GM-
BHQ tends to deteriorate faster as we age than FA-BHQ, as previously demonstrated by
the stronger correlation between GM-BHQ and age compared to the correlation between
FA-BHQ and age [13]. If GM-BHQ values typically decrease faster than FA-BHQ as we age,
dietary components and physical activities with a greater effect in slowing or warding off
age-related decline may compensate for the decline. Another possible explanation may
be that dietary components and physical activities may have a different effect on different
parts of the brain. Further studies that elucidate these fine details will add resolution to the
overall brain health picture regarding BHQ measurements.

We believe that BHQs have several advantages over common measures used in re-
search in this arena. First, the use of measures of brain structure and/or integrity is essential
in brain healthcare or dementia prevention research, as previous longitudinal studies have
shown that brain alterations may be present long before cognitive decline and/or neurode-
generative disorders are clinically expressed [22–30]. Second, as progression from normal
state to mild cognitive impairment (MCI) to full-blown dementia is a steady and slow pro-
cess that can extend over decades [31], measuring the intervention effect may be difficult.
By using BHQs, even early and silent stages of age-related brain alterations and/or brain
diseases may be identified, and the effect of interventions more rapidly evaluated. Third,
conventional MRI techniques typically rely on visual analysis and require considerable
expertise to accurately identify abnormalities in the brain. Even for trained experts, subtle
changes in the brain can be overlooked until the changes are discernible to the human
eye [32]. On the other hand, by using standardized BHQs, even subtle changes across time
could be more easily identified and systematic comparisons between patients, facilities,
and/or organizations would be possible using common statistical techniques [32]. Accumu-
lation of such large-scale data would also prove invaluable for training artificial intelligence
to support diagnoses and evaluations. Fourth, BHQ scores are simple to understand, even
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for lay people, and could become a popularly known criterion for public health agencies to
use in promoting preventative care programs.

Despite strenuous efforts to develop countermeasures for neurodegenerative dis-
eases, the impact of simple, short-term, inexpensive, and easy-to-implement low-intensity
interventions cannot currently be fully evaluated. The effects of these low-intensity inter-
ventions may be relatively small compared to moderately intense, expensive, or complex
medical/surgical interventions; however, frequency and intensity may compensate for
lower impact. Thus, BHQ is a crucial tool for evaluating interventions, regardless of par-
ticipant age and intervention complexity, and the standardized data will allow for direct
comparison. This will potentially save on healthcare costs due to encouraging the early
adoption of simple interventions (as is currently done with heart disease and stroke), as
well as simplify a complex concept to facilitate public education. Moreover, utilizing a
standardized numerical index, such as BHQ, may help strengthen evidence-based practices
by allowing accumulation of big data that can be analyzed (i.e., through meta-analysis) to
detail the relationships between frequencies and degrees of intensity of interventions and
resulting effects. This could apply to the development of both treatment and preventive
interventions and lead to best practice development in clinical and public health sectors.

It is important to note that the current study was conducted using a non-randomized,
controlled design. Though each ANCOVA was controlled for the effect of age and the
duration of time between Pre and Post, other unknown confounding factors (e.g., current
health status, regular dietary intake, regular physical activity, socio-economic status) may
still have been present, limiting the conclusions regarding the true relationship between
these interventions and brain alterations. Therefore, cause–effect relationships cannot be
established based solely on the results of this study, and the results must be interpreted with
caution. Longitudinal, randomized, controlled trials are needed to confirm the findings
of this study and to find the true relationships between various interventions for brain
healthcare and subsequent brain changes. However, the present study contributes to the
literature on brain healthcare by showing that the recently developed, standardized index,
BHQ, is useful as it catalogs subtle changes in the brain and distinguishes slight differences
between interventions in terms of those changes.
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