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Abstract: Dendrimer molecules and aggregates are chemical structures with regular branching that
underlies their physicochemical properties. Regular dendrimers have been studied both theoretically
and experimentally, but the irregular intermediate structures between the dendrimers of neighboring
generations have not. In the present work, dendrimer aggregates, both regular and intermediate, are
investigated in terms of the information entropy approach. As found, the information entropy of the
regular dendrimer asymptotically increases with the generation number; herewith, its maximal value
equals 2. The intermediate structures have been studied for the growing dendrimer G1→ G2→ G3
→ G4 with the tricoordinated building block. The plot of the information entropy of the growing
dendrimer on the size has the frontier consisting of the lowest values that correspond to the regular
and irregular structures described with the symmetrical graphs. Other intermediate structures have
information entropies higher than the regular dendrimers. Thus, to move the system from one
informationally stable state to another, its information capacity must be temporarily increased.

Keywords: dendrimer; regular dendrimer; intermediate structure; aggregation; information entropy

1. Introduction

Fractals are mathematical objects made up of patterns manifesting self-similarity [1].
Ideal fractals exist only in the mind, but the concept provides useful approaches for
describing real chemical objects with a highly branched structure. Chemical fractals are
regular molecules or supramolecular species with repeated patterns, usually synthesized
in solutions or precipitated from them [2]. The repeated nature comes from the chemical
features of their building blocks (chemical groups or molecules), which associate in line with
strict rules, viz., each block is coordinated (or chemically bonded) with the constant number
of other blocks, and this coordination number is reproduced at each step of aggregation.
Branched colloid and surface aggregates (e.g., colloid nanoaggregates of gold [3,4] and
fullerenes [5,6], electrochemically generated ammonia amalgam [7], dendrites grown
on inorganic templates [8,9]) or dendrimer molecules (multi-cage fullerene-containing
branched molecules [10–12] or single-cage fullerene derivatives structuring surrounding
molecules [13], branched organic [14,15], and organoelement [16,17] polymers etc.) are
typical examples of chemical fractals. Currently, the concepts of fractals and dendrimers
are used in synthetic chemistry for the structural design of novel substances and materials
with tunable properties (see the relevant reviews [18–22]).

Chemical fractals and dendrimers have become the objects of theoretical research,
including their treatment in terms of the graph and information theories [23–29]. Typically,
rationalizing their topology is based on the calculations of structural descriptors. Branching
is usually considered as a kind of order that could be described with entropy values associ-
ated with the graph relevant to the chemical structure [23,24]. Notably, information entropy
in its simple form (or Shannon entropy) is the kernel for other entropy descriptors [30–34].
On the other hand, it may relate to real processes occurring in chemical systems, including
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the processes of self-assembly [35–38]. Therefore, in our work [39–44], we focus on the
information entropies of chemical particles.

Mathematical properties of the information entropies of dendrimers have been deeply
studied by Chen et al. [23] and Ghorbani et al. [24], focusing on symmetric graphs corre-
sponding to dendrimers with a regular topology.

We briefly note that other theoretical approaches that are invoked to scrutinize the
dendrimer growth and molecular dynamics techniques are some of the most efficient tools
for this purpose [45,46].

In the present work, we use a simple dendrimer model to rationalize its information
entropy in the context of physicochemical properties and, for the first time, consider
imperfect dendrimers, intermediates between two generations of regular dendrimers.

2. Description of the Mathematical Model
2.1. Basic Definitions

We consider the dendrimer aggregate formed with identical building blocks, which
are chemically indistinguishable and have the same coordination number, b. This means
that, in the corresponding graph, each block is connected to other b blocks. We exemplify
this model with the graph corresponding to the dendrimer with b = 3 (Figure 1). This is
the minimal b value when the dendrimer model is meaningful. The dendrimer is divided
into n shells, where n is called the generation number in synthetic chemistry [14–22] (in
some theoretical works, it is also called a radius of the graph [23]). Note that the free blocks
are identical but they become different when included in the dendrimer, depending on
the number of shells they belong to. Within i-th shells, all blocks are identical and their
number equals bai−1 (except for the 0-th shell, which consists of a single block). Hence, the
total number of blocks in the dendrimer of generation n is:

N = 1 + ∑n
i=1 bai−1 = 1 +

b(an − 1)
a− 1

. (1)

Each block of the i-th shell is connected to one block of the (i− 1)-th shell, and a = b− 1
blocks belonging to the (i + 1)-th shell. The prevalence of connecting with outer shells
underlies the branched structure, and we call a the parameter of branching. Notably, in
real chemical systems, both fractal aggregates and dendrimer molecule, b and n, values are
not large numbers due to the steric hindrances [14–22].
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2.2. Information Entropy of Dendrimer

According to the original Shannon approach, we select the particle n types of identical
building blocks (atoms, monomer units, etc.), and the information entropy of the particle is
defined as:

h = −∑n
i=1

Ni
N

log2
Ni
N

, (2)

where Ni denotes the number of building blocks of the i-th type and N is their total number
(N = ΣNi). In the dendrimer structure introduced in Section 2.1 (Figure 1), we select one
vertex of the 0-th shell (the starting point of the dendrimer growth), N1 vertices of the 1st
shell, N2 vertices of the 2nd shell, and . . . Nn atoms of the n-th shell. The conventional
designation of such partition is: 1× 1 + 1× N1 + 1× N2 + . . . + 1× Nn (that corresponds to
[number of types]× [number of blocks within the type]; see [39,40]). Applying Equation (1)
to this partition provides the information entropy, h, of the dendrimer as a sum of the
logarithms of the weights:

h = − 1
N

log2
1
N
−∑n

i=1
bai−1

N
log2

bai−1

N
. (3)

The weights of the blocks from each shell (Ni/N, i = 0, . . . , n) may be interpreted as
the probabilities to find the block of the i-th type in the structure, and

∑n
i=0

Ni
N

= 1. (4)

To apply this approach to routinized calculations, expression (3) should be simpli-
fied to be more convenient. We present it in the following form (the transformation of
Equation (3) is shown in Supplementary Materials, Section A):

h = hmax + h f ract, (5)

where
hmax = log2 N (6)

and

h f ract =
N − 1

N
log2

a
b
− b

N
nan+1 − (n + 1)an + 1

(a− 1)2 log2 a (7)

Two terms of the derived Equation (5) have a physicochemical (structural) interpreta-
tion. The term hmax is positive and corresponds to the highest information entropy value
that could be achieved if N blocks are united randomly, so that all units of the formed
aggregate differ. The second term, hfract < 0, is the information entropy of fractalization
that shows the decrease in the information entropy of the system due to the formation
of a fractal pattern. Note that the model is relevant to both dendrimer molecules and
fractal aggregates; i.e., it works regardless of the type of the bonds (chemical bonds or
intermolecular interactions, respectively) connecting the units of the particle.

In the case of b = 2, we obtain a linear structure instead of a dendrimer. This linear
polymer contains N = 2n + 1 building blocks, as follows from Equation (1). According to
Equations (6) and (7), the hmax and hfract values equal:

hmax = log2(2n + 1) (8)

and
h f ract = −

2n
2n + 1

(9)

Two latter equations are the same as the expressions obtained for the linear polymer
with the odd number of building blocks in terms of the general definition of information
entropy and Equation (2) (Supplementary Materials, Section B).
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3. Results and Discussion
3.1. Upper Bound of the Information Entropy of Dendrimer at the Infinite Generation Number

We used Equations (5)–(7) to scrutinize the behavior of the information entropy of the
dendrimer upon the infinitely increasing generation number. As mentioned above, the
generation numbers of the synthesized dendrimer molecules are not large, so assessing
the upper bounds, h∞, primarily relates to the theoretical interest. On the other hand, the
potential applications of dendrimers include information storage with nanopatterned ma-
terials [21]. As information entropy of a material is relevant to its information capacity [45],
the limit values, h∞, may also be used as waymarks in this direction.

We found that dependences, h = f (n) with b as a parameter, are increasing asymptotic
curves (Figure 2). We were able to determine the corresponding limit values, h∞, only
numerically: 2 (b = 3), 1.377 (b = 4), 1.082 (b = 5), and 0.902 bits (b = 6). Thus, h∞ decreases
with increasing b (Figure 3), and this behavior is explainable. Indeed, each next shell of the
dendrimer contains a higher number of similar building blocks. It makes the dendrimer
structure more homogeneous at each next generation, and the homogeneity is reached
faster with higher b values, which is reflected with h values. Interestingly, the highest
possible information entropy in the class of dendrimers corresponds to the simplest case of
b = 3; i.e., it corresponds to the structures with minimal branching.

The asymptotic behavior of functions h = f (n) indicates that the information entropy
becomes independent of the generation number upon the dendrimer growth (Figure 2). The
existence of the asymptotic values (h∞) qualitatively relates to the experimental results. For
example, the regularities of the processes of dendrimer formation have similar asymptotic
behaviors such as velocity of the growth of silver dendrites upon precipitation [9] and
dependence of the fractal dimension of the epitaxially grown fullerene nanoaggregates on
the number of layers [8]. Additionally, the electro-optical properties of organic dendrimers
with rigid structures are almost independent of the generation number (e.g., dendrimers
from bithiophenesilane [14] and fulleropyrrolidine-containing poly(benzyl ether) [11]). At
the same time, if the chemical structure of a dendrimer is conformationally flexible, the
generation number defines the properties [14].
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3.2. Imperfect Dendrimers and Infromation Entropy of Intermediate States

Previous works on the topology of dendrimers have been devoted to the structures
with fulfilled shells. However, the next generation of a dendrimer is not produced in
one step, so that intermediate imperfect structures are formed when filling the shells. We
consider, in general, the issue of intermediate structures between generations Gn and G
(n + 1). For this purpose, we introduce the rules of filling the shells relating to the chemical
features of the aggregation process and consider its two modes.

According to path I, the filling starts from any building block (due to their equiva-
lence) of the outer shell number n. The blocks of outer shells are able to attach a novel
blocks, which will form the shell number (n + 1). First, the coordination number of this
block is completely saturated and then the same processes start via the neighboring block
(neighboring means that both blocks of shell n are coordinated with the same block of the
shell (n – 1). This aggregation mode implies that the new shell is completed in the first
dendron and only then starts growing in the next one. According to this mode, building
blocks with a lower number of uncompensated valences have higher reactivity toward free
blocks. As an example, we consider such a process for dendrimer growth G1→ G2→ G3
→ G4 with b = 3 (Figure 4).
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Figure 4. Schematic of two paths of transformation G1→ G2 (new added blocks are shown in red
hereinafter, and the blocks are lettered according to the equivalence of their positions).

Path II corresponds to another reactivity ratio; building blocks with a lower number
of uncompensated valences have lower reactivity toward free blocks. Therefore, free blocks
are attached to “bare” blocks of the outer shell (Figure 4). In line with both modes, we fill
the growing shells traversing clockwise the terminal vertices of the dendrimer graph.

Figure 4 demonstrates that discriminating the blocks according their equivalence
does not coincide with their belonging to the shells. Hence, to calculate the information
entropies of the intermediate structures, we use the expression for information entropy in
a general view (Equation (2)). The obtained numerical results for the dendrimer growth,
G1→ G2→ G3→ G4, with b = 3 are collected in Supplementary Materials (Sections D–I),
and here we present their graphical representations as the function h = f (N) (Figure 5). In
general, the plots associated with the two paths differ. Only the points corresponding to
regular structures G1, G2, G3, and G4 (dendrimers with completely fulfilled outer shells)
take the same positions on the plots.
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I (a) and II (b). Blue dotted lines show the stepwise h change; red solid lines correspond to the
frontier of lower values hfront upon the growth. The points of the frontier are labeled with the codes
of the structures shown in Figures 6 and 7. Numerical data associated with the plots can be found in
Supplementary Materials (Sections D–I).

The frontiers of lower h values (hfront) can be selected in the plots of h as a function
of the number of building blocks, N, in the growing structures (Figure 5). The frontiers
involve the values corresponding to regular dendrimers and intermediates with incomplete
outer shells, which manifest the symmetry of their graphs (Figures 6 and 7). We should
note that we distinguish these points, not in a strict mathematical manner, but in a chemical
sense: the h values of these symmetric structures are substantially lower compared with
other intermediates. The frontiers of the two modes of the dendrimer growth differ. In the
case of mode I, the information entropy monotonously increases all the way, G1→ G2→
G3→ G4. In the case of the alternative mode II, the frontier has the minima corresponding
to the regular dendrimers and is separated by other points meeting the criteria hi > hGn,
hi > hG(n + 1) for NGn < Ni < NG(n+ 1). Function hfront = f (N) is not monotonous due to the
latter values attributed to the intermediate structures.

Thus, the different reactivity of the terminal building blocks of the dendrimer is
reflected with the type of the functions, h = f (N) and hfront = f (N). In general, the transit
between the neighboring generations of the dendrimer proceeds through the intermediate
structures, which mostly have higher information entropies than the regular structures.
This means that we must temporarily increase the information capacity of the system
to move the system from one informationally stable state to another (or in terms of the
information theory [47], the description of at least one intermediate between two stable
states requires larger information resources compared with the stable states themselves).



Liquids 2021, 1 32Liquids 2021, 1, FOR PEER REVIEW 8 
 

 

 
Figure 6. The regular and intermediate structures, in which h values form lower frontier hfront = f(N →) upon G1  G4 trans-
formation via path I. 

 
Figure 7. The intermediate structures, in which h values form lower frontier hfront = f(N →) upon G1  
G4 transformation via path II. 

4. Prospective 
We propose that our theoretical findings will stimulate further studies of dendrimers 

in the aspects of their numerical modeling and material science. Symmetrical and homo-
geneous chemical systems manifest low information entropies, and vice versa [39–44]. The 
information entropy of fractal structures, according to Equations (5)–(7), represents the 
balance between order (hfract < 0) and disorder (hmax > 0) and may be used in structural 
design for numerical assessment of this balance. This could be useful in the context of 
using dendrimers as energy-storage materials [48] or within the conception of meso-en-
tropic materials [49]. This additionally requires scrutinizing the correlations between the 
h values and other branching parameters [50]. 

Thermodynamic entropy becomes a part of molecular dynamics studies on complex 
chemical systems; e.g., thermodynamic entropy of enzyme–substrate complexations [51,52] 

Figure 6. The regular and intermediate structures, in which h values form lower frontier hfront = f (N) upon G1 → G4
transformation via path I.

Liquids 2021, 1, FOR PEER REVIEW 8 
 

 

 
Figure 6. The regular and intermediate structures, in which h values form lower frontier hfront = f(N →) upon G1  G4 trans-
formation via path I. 

 
Figure 7. The intermediate structures, in which h values form lower frontier hfront = f(N →) upon G1  
G4 transformation via path II. 

4. Prospective 
We propose that our theoretical findings will stimulate further studies of dendrimers 

in the aspects of their numerical modeling and material science. Symmetrical and homo-
geneous chemical systems manifest low information entropies, and vice versa [39–44]. The 
information entropy of fractal structures, according to Equations (5)–(7), represents the 
balance between order (hfract < 0) and disorder (hmax > 0) and may be used in structural 
design for numerical assessment of this balance. This could be useful in the context of 
using dendrimers as energy-storage materials [48] or within the conception of meso-en-
tropic materials [49]. This additionally requires scrutinizing the correlations between the 
h values and other branching parameters [50]. 

Thermodynamic entropy becomes a part of molecular dynamics studies on complex 
chemical systems; e.g., thermodynamic entropy of enzyme–substrate complexations [51,52] 

Figure 7. The intermediate structures, in which h values form lower frontier hfront = f (N) upon G1→ G4 transformation via
path II.

4. Prospective

We propose that our theoretical findings will stimulate further studies of dendrimers
in the aspects of their numerical modeling and material science. Symmetrical and homoge-
neous chemical systems manifest low information entropies, and vice versa [39–44]. The
information entropy of fractal structures, according to Equations (5)–(7), represents the
balance between order (hfract < 0) and disorder (hmax > 0) and may be used in structural
design for numerical assessment of this balance. This could be useful in the context of using
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and other branching parameters [50].
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or configuration entropy of glass-forming liquids [53]. Analogous simulations, with the
information entropy as a critical structural criterion, could be a new step in this direction.

5. Conclusions

We have used analytical expressions h = f (n) to demonstrate numerically that the in-
formation entropy of a dendrimer approximates to the limit value at the infinite generation
number. The limit value is maximal and equal to 2 in the case of tricoordinated building
blocks (b = 3).

For the first time, we have studied the irregular intermediates between the dendrimers
of stepwise generations. We have found that size-dependencies, h = f (N), are defined
with the rules of filling the dendrimer shells (deduced from the reactivity of its terminal
building blocks). In h = f (N), we select the frontier of the lowest h values corresponding to
the regular dendrimer and irregular structures, which are described with the symmetrical
graphs. Other intermediate structures have information entropies higher than the values
of the regular dendrimers; hence, additional information capacity is required to switch the
system between the informationally stable states.

We propose that the theoretical findings of this work will stimulate further studies of
dendrimers regarding their material science applications [21,46].
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