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Abstract: N-functionalized imidazole compounds with linear alkyl groups have been widely utilized
precursors for imidazolium ionic liquids (ILs) while the effects of branched and cycloalkyl substituents
on properties of imidazole compounds have not been studied; however, such compounds are just as
synthetically accessible as those with linear alkyl groups. In this work, two fundamental properties,
density and viscosity, of selected N-functionalized imidazoles bearing iso-propyl, iso-butyl, sec-butyl
methylcyclopropyl, cyclopentyl, and methylcyclohexyl groups have been measured in the tempera-
ture range of 293.15–353.15 K for the guidance of molecular design for future applications. A linear
and parabolic model were used for temperature-density correlation while temperature dependence
of viscosity was summarized using the Andrade Equation and the Vogel-Fulcher-Tammann equation.
In addition to experimental data, density, viscosity, vapor pressure and vaporization of enthalpies of
target imidazole compounds were predicted using COSMOtherm calculations and compared with
experimental data. It was found that the calculated densities were quite close to the experimental
data, while viscosity data, obtained from COSMOtherm, underestimated experimental measurements
and a scaling factor provided agreement with experiments. Predictions of vapor pressure were
relatively reliable at low temperature, although the difference between experiment and prediction
tended to expand with increasing temperature. Variances of vaporization enthalpies were small upon
temperature change and a maximum error of ~12.3% was observed for all compounds studied.

Keywords: imidazole; functional groups; density; viscosity; COSMOtherm calculation

1. Introduction

Ionic liquids (ILs), a well-known class of molten salts, have attracted great research
interest and have been the subject of much study during the last 20+ years owing to their
unique combinations of properties. Among the cations that can be used for IL design, the
1-n-alkyl-3-methylimidazolium ([Cnmim]) motif is a common choice and the properties of
these ILs relating to the length of the n-alkyl substituent have been thoroughly measured
and modeled. Imidazolium ILs have been used as substitutes for conventional organic
solvents and have been successfully used in applications including polymer solvation [1],
gas separation [2–4], metal extraction [5,6], biomaterial preparation [7–9] and energy storage
including fuel cells [10,11], Li+-ion batteries [11,12] and supercapacitors [13].

While imidazolium ILs are tunable through modification of the cation and/or anion
moieties, the customizability of the imidazolium cation provides many more possibilities,
compared to a relatively limited reservoir of candidate anions. Imidazole is an excellent
building block which allows convenient grafting of functional groups to the N atoms of the
five-membered ring [14], allowing for great versatility in the design of N-functionalized
imidazoles and corresponding imidazolium ILs. Moreover, N-functionalized imidazoles
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have a plethora of other uses such as metal extraction [15,16], gas separation [17], tempera-
ture swing solvent extraction (TSSE) [18] and can provide correlations for prediction on
densities of corresponding ILs [19].

In the family of N-functionalized imidazoles, most research efforts have focused
on understanding the properties of N-alkylimidazole compounds with linear/straight
chains including density [20,21], viscosity [22], vapor pressure [23–26], heat capacity [27],
and pKa [28]. However, the properties of N-alkylimidazoles with branched or cycloalkyl
functional groups have been rarely studied, although the synthesis of such compounds
is no more difficult or expensive than the linear alkyl counterparts. The study of N-
alkylimidazoles with branched or cycloalkyl groups will further understanding of imida-
zoles and corresponding ILs.

In this work, three branched and three cycloalkyl imidazole compounds were studied
as shown in Table 1. Two fundamental properties, density and viscosity, were measured in
temperature range of 293.15–353.15 K and equations for correlation between temperature
and corresponding properties were derived from experimental data for extrapolation
and guidance for molecular design of neutral alkylimidazole analogues. In addition to
experimental data, COSMOtherm calculations were conducted and data from different
sources were compared.

Table 1. Names, formulas, and structures of imidazole compounds studied in this work.

Compound # Name/CAS # Formula Structure

1 N-isopropylimidazole
4532-96-1 C6H10N2
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N-sec-butylimidazole 

20075-29-0 
C7H12N2 

 

4 
N-cyclopropylmethylimidazole 

717908-74-2 
C7H10N2 

 

5 
N-cyclopentylimidazole 

71614-58-9 
C8H12N2 

 

6 
N-cyclohexylmethylimidazole 

71621-00-6 
C10H16N2 

 

2. Materials and Methods 

2.1. Materials 

All the N-functionalized imidazole compounds studied in this work were synthe-

sized as shown in Scheme 1, in which imidazole was deprotonated by NaOH, creating 

sodium imidazolate as an intermediate towards the formation of modified imidazoles via 

reaction with corresponding halide compounds. Detailed synthetic procedures for these 

compounds can be found in our prior works [29,30]. Compounds 1–6 used for characteri-
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ard 5890 Series II gas chromatography with a flame ionization detector. 1H NMR data 

obtained from a Bruker AVANCE 500 MHz NMR spectrometer in the Chemistry Depart-

ment at the University of Alabama showed good consistency with previously published 

spectra and can be found in our previous publication [30] as they were from the same 

2 N-isobutylimidazole
16245-89-9 C7H12N2
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2. Materials and Methods 

2.1. Materials 

All the N-functionalized imidazole compounds studied in this work were synthe-

sized as shown in Scheme 1, in which imidazole was deprotonated by NaOH, creating 

sodium imidazolate as an intermediate towards the formation of modified imidazoles via 
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obtained from a Bruker AVANCE 500 MHz NMR spectrometer in the Chemistry Depart-

ment at the University of Alabama showed good consistency with previously published 

spectra and can be found in our previous publication [30] as they were from the same 

3 N-sec-butylimidazole
20075-29-0 C7H12N2
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4 N-cyclopropylmethylimidazole
717908-74-2 C7H10N2
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5 N-cyclopentylimidazole
71614-58-9 C8H12N2
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6 N-cyclohexylmethylimidazole
71621-00-6 C10H16N2
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2. Materials and Methods
2.1. Materials

All the N-functionalized imidazole compounds studied in this work were synthesized
as shown in Scheme 1, in which imidazole was deprotonated by NaOH, creating sodium
imidazolate as an intermediate towards the formation of modified imidazoles via reaction
with corresponding halide compounds. Detailed synthetic procedures for these compounds
can be found in our prior works [29,30]. Compounds 1–6 used for characterizations
were determined to contain <5 × 10−4 mass fraction of impurities by Hewlett-Packard
5890 Series II gas chromatography with a flame ionization detector. 1H NMR data obtained
from a Bruker AVANCE 500 MHz NMR spectrometer in the Chemistry Department at
the University of Alabama showed good consistency with previously published spectra
and can be found in our previous publication [30] as they were from the same batch of
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reactions. All compounds were further purified by distillation under reduced pressure
prior to density and viscosity measurements.
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2.2. Density Measurements

Densities of imidazole compounds were measured using a Mettler Toledo DM45
DeltaRange density meter through oscillation of a U-tube induced by electromagnetic
effect. The measurements were conducted under atmosphere pressure with variations
compensated automatically. The glass U-tube was rinsed with acetone before and after
each run, followed by air flow to guarantee the dryness of the tube. A minimum volume of
1.2 mL was required for the injection of samples to fill the U-tube. Samples were loaded
at ambient temperature (~293 K) and the density meter started to collect data starting at
293.15 K, and more data were collected at different temperatures with an increment of 10 K
controlled by the preset program until it reached 353.15 K. As a result, seven data points
were collected for each compound.

2.3. Viscosity Measurements

Viscosities of imidazole compounds were measured using a Brookfield DV-II + Pro
viscometer. Viscosity was calculated automatically based on corresponding torque value
and shear rate of the “ULA” spindle. For each measurement, around 20 mL liquid was
used to fill the sample chamber such that the spindle was fully submerged. Temperature
was controlled by an external Brookfield TC-602P circulation bath, allowing viscosity data
to be collected between 273.15 and 353.15 K as programmed. The cylinder and spindle were
washed with acetone after the measurement of each sample was completed. The cylinder
and spindle were then fully dried with air flow prior to starting the next run.

2.4. Simulation Method

Thermophysical properties of the studied set of N-functionalized imidazole com-
pounds were calculated using the COSMOtherm software package (BIOVIA COSMOtherm,
Release 2020) [31], which had been shown to be a practical method of predicting the
physical properties of imidazoles [20]. Due to the absence of the molecular structures of
the selected N-functionalized imidazole compounds in the COSMObase library provided
by the software package, the necessary COSMO files were generated based on Density
Functional Theory (DFT) calculations carried out with Gaussian 16, revision A.03 [32]. The
optimized geometries of the structures were obtained using the BP86 functional [33,34]
and the TZVP basis set [35]. Single-point energy calculations were performed using the
BP86 functional and TZVP basis set with the COSMO-RS solvation model [36,37] to obtain
the necessary COSMO files. This work followed the procedure of previous studies that
utilized COSMOtherm to predict the properties of imidazole-based ILs [20,38–40]. Finally,
we performed COSMO calculations in COSMOtherm (BIOVIA COSMOtherm, Release
2020) at the TZVP level.

Densities (ρ) and dynamic viscosities (η) were calculated for each of the N-functionalized
imidazole compounds over a temperature range of 293.15–353.15 K. Enthalpy of vaporiza-
tion (∆H) and vapor pressures (P) were also calculated for each of the N-functionalized im-
idazole compounds over a temperature range of 283.4–323.0 K for N-isopropylimidazole,
289.6–326.1 K for N-isobutylimidazole, 295.7–330.2 K for N-sec-butylimidazole, 303.0–343.3 K
for N-cyclopropylmethylimidazole, 305.0–346.1 K for N-cyclopentylimidazole, and 314.0–352.8 K
for N-cyclohexylmethylimidazole. Based on a comparison of the experimental and simulated
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viscosities, we defined a correction factor of 1.3 to the viscosities calculated by COSMOtherm
as follows:

ηc
c = 1.3 ∗ ηc (1)

where ηc
c is the corrected viscosity (in mPa·s), and ηc is the viscosity (in mPa·s) calculated

in COSMOtherm.

3. Results and Discussion
3.1. Densities of Branched and Cycloalkyl Imidazole Compounds

Density values of branched and cycloalkyl imidazole compounds from measurement
and COSMOtherm calculation results over the temperature range of 293.15–353.15 K, along
with the error between computation and measurement, are shown in Table 2. Density data
for N-cyclohexylmethylimidazole were not collected as this compound is solid at room
temperature and could not be injected into the densitometer.

Table 2. Densities (ρ) of imidazole compounds from measurements and COSMOtherm calculations
at different temperatures (T) and P = 101 kPa a.

T
K

ρm
b

g·cm−3
ρc

c

g·cm−3
Error d

%
T
K

ρm
g·cm−3

ρc
g·cm−3

Error
%

(1) N-isopropylimidazole (2) N-isobutylimidazole
293.15 0.96927 0.96079 0.88 293.15 0.94471 0.93562 0.96
303.15 0.96079 0.95101 1.02 303.15 0.93675 0.92597 1.15
313.15 0.95231 0.94132 1.15 313.15 0.92879 0.91643 1.33
323.15 0.94379 0.93172 1.28 323.15 0.92081 0.90698 1.50
333.15 0.93525 0.92222 1.39 333.15 0.91280 0.89763 1.66
343.15 0.92667 0.91280 1.50 343.15 0.90476 0.88838 1.81
353.15 0.91804 0.90348 1.59 353.15 0.89678 0.87923 1.96

(3) N-sec-butylimidazole (4) N-cyclopropylmethylimidazole
293.15 0.95106 0.93546 1.64 293.15 1.02976 1.03326 −0.34
303.15 0.94302 0.92579 1.83 303.15 1.02154 1.02327 −0.17
313.15 0.93502 0.91623 2.01 313.15 1.01335 1.01332 0.00
323.15 0.92698 0.90676 2.18 323.15 1.00513 1.00344 0.17
333.15 0.91895 0.89740 2.35 333.15 0.99690 0.99361 0.33
343.15 0.91091 0.88813 2.50 343.15 0.98866 0.98385 0.49
353.15 0.90280 0.87897 2.64 353.15 0.98035 0.97415 0.63

(5) N-cyclopentylimidazole
293.15 1.04677 1.05621 −0.90
303.15 1.03893 1.04605 −0.68
313.15 1.03091 1.03594 −0.49
323.15 1.02286 1.02588 −0.30
333.15 1.01481 1.01588 −0.10
343.15 1.00677 1.00593 0.08
353.15 0.99869 0.99604 0.26

a Uncertainties are u(T) = 0.01 K and u(ρ) = 0.00001 g·cm−3; b Measured density; c COSMOtherm calculated
density; d Error = ρm − ρc

ρm
× 100.

As expected, density decreases with increasing temperature, which inversely correlates
to volume expansion caused by increased molecular motion. For branched imidazole
compounds 1, 2 and 3, the isopropyl group is denser than the iso/sec butyl group. To
explain this phenomenon, the addition of carbon from the isopropyl to iso/sec-butyl group
is regarded as a volume dilution of the imidazole ring which exhibits high density. However,
this trend does not apply to cycloalkyl imidazole compounds in that density increases from
compound 4 to compound 5 as one more carbon is incorporated to the alkyl group moiety. It
is also noted that cyclization contributes to density increment as compound 4 is denser than
compounds 2 and 3, although they share the same number of carbon atoms. To illustrate
the effect of branching and cyclization on compound density, data for corresponding linear
alkyl imidazoles published in our previous work [22] are compiled in Table S1. When
comparing alkyl compounds with the same number of carbon atoms, density of imidazole
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compounds follows the order of branched < linear < cycloalkyl. The decrease in density
from linear to branched imidazole might be attributed to the decreased packing efficiency,
in which alkyl chain is reorganized and occupies more volume. This phenomenon agrees
well with the trend of density change in isomers with different configurations (i.e., butanol
vs. isobutanol/sec-butanol) and even in polymers (i.e., HDPE vs. LDPE). However, the
density increments from linear to cycloalkyl imidazole indicate a reduction of molar volume,
which is opposite to the branching effect when carbocyles are regarded as a special form
of branching, where branches share both starting and end point. Thus, the effects of
carbocyclic substituents should be considered. Here the increase in density of cycloalkyl
imidazole can be explained as the result of reduction in degree of freedom brought by
cyclization, causing the reduction of possible conformations associated with enhanced
approachability between molecules and reduced intermolecular space.

Apart from experimental density data, results from COSMOtherm calculations in
Table 2 showed the same trend associated with changes in molecule configuration and
temperature and are close to measured values with maximum absolute percentage error as
2.64%, indicating the suitability of using COSMOtherm for density simulation.

Measured density data of imidazole compounds are presented in Figure 1, from which
a clear sequence in order of magnitude can be determined. Moreover, a linear fit model
was first applied to each compound for its simplicity, and corresponding fit parameters are
shown in Table 3. The accuracy of linear regression evaluation is reflected by coefficient
of determination (R2) value of 1.0000 for all the five compounds. However, the maximum
absolute residuals varying between 0.4 × 10−4 and 1.2 × 10−4 along with the residual sum
of squares (RSS) values between 0.486 × 10−8 and 2.825 × 10−8 show evident residual
deviations. To narrow down the prediction error, a parabolic model in the form of

ρ = A + B·(T − T0) + C·(T − T0)2 (2)

was then utilized and corresponding parameters are shown in Table 4. In comparison
with the linear model, the maximum absolute residual of the parabolic model decreases by
25–87.5% and the RSS decreases by 65.2–99.5% for compound 1–5, indicating improved
restriction on residual deviations. As a result, the parabolic equations derived are more
suitable than the linear ones for predictions of compound density ranging from 293.15 to
353.15 K.
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Figure 1. Temperature dependence of density of imidazole compounds. Circle = compound (1);
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Table 3. Parameters of linear density-temperature equation (ρ = −a·T + b) derived from measurement
data for imidazole compounds within temperature range of 293.15–353.15 K.

Compound a
g·cm−3·K−1

b
g·cm−3 R2 Maximum Absolute Residual RSS

1 8.5354 × 10−4 1.220 1.0000 0.8 × 10−4 2.030 × 10−8

2 7.9914 × 10−4 1.179 1.0000 0.4 × 10−4 0.503 × 10−8

3 8.0382 × 10−4 1.187 1.0000 0.5 × 10−4 0.486 × 10−8

4 8.2300 × 10−4 1.271 1.0000 0.6 × 10−4 0.749 × 10−8

5 8.0236 × 10−4 1.282 1.0000 1.2 × 10−4 2.825 × 10−8

Table 4. Parameters of parabolic density-temperature equation (ρ = A + B·(T − T0) + C·(T − T0)2)
derived from measurement data for imidazole compounds studied in this work within temperature
range of 293.15–353.15 K.

Compound A
g·cm−3

B
g·cm−3 ·K−1

C
g·cm−3 ·K−2

T0
K

Maximum Absolute Residual RSS

1 0.9438 −0.8535 × 10−3 −1.502 × 10−7 323.15 0.1 × 10−4 0.011 × 10−8

2 0.8968 −0.8027 × 10−3 −0.610 × 10−7 353.15 0.3 × 10−4 0.133 × 10−8

3 0.9670 −0.7964 × 10−3 −0.730 × 10−7 273.15 0.3 × 10−4 0.169 × 10−8

4 1.0379 −0.8145 × 10−3 −1.053 × 10−7 283.15 0.3 × 10−4 0.165 × 10−8

5 0.9987 −0.8116 × 10−3 −1.554 × 10−7 353.15 0.6 × 10−4 0.813 × 10−8

3.2. Viscosity of Branched and Cycloalkyl Imidazole Compounds

While COSMOtherm shows good reliability in predictions on compound density,
the agreement of viscosity calculations with experiments are not as close. As a result, a
correction factor of 1.3 was used to better approximate experimental data from computa-
tional estimates. Viscosity values of branched and cycloalkyl imodazole compounds from
measurements and corrected COSMOtherm calculations over the temperature range of
293.15–353.15 K, along with the percentage errors, are shown in Table 5 with an exception
of N-cyclohexylmethylimidazole starting from 323.15 K to 353.15 K as it melts when it’s
heated over 318.15 K. Unscaled data from the COSMOtherm calculations are provided in
Table S2.

Table 5. Viscosities (η) of imidazole compounds from measurements and corrected COSMOtherm
calculations at different temperatures (T) and P = 101 kPa a.

T
K

ηm
b

mPa·s
ηc

c
c

mPa·s
Error d

%
T
K

ηm
mPa·s

ηc
c

mPa·s
Error

%

(1) N-isopropylimidazole (2) N-isobutylimidazole
293.15 3.11 3.10 0.45 293.15 4.76 3.70 22.28
298.15 2.74 2.79 −1.71 298.15 4.08 3.31 18.84
303.15 2.46 2.52 −2.33 303.15 3.54 2.97 15.97
308.15 2.20 2.28 −3.70 308.15 3.10 2.68 13.50
313.15 1.99 2.07 −4.22 313.15 2.75 2.43 11.80
318.15 1.80 1.89 −5.07 318.15 2.45 2.20 10.18
323.15 1.64 1.73 −5.45 323.15 2.18 2.00 8.13
333.15 1.35 1.46 −7.99 333.15 1.78 1.67 6.02
343.15 1.10 1.24 −12.84 343.15 1.50 1.41 5.87
353.15 0.93 1.07 −14.68 353.15 1.21 1.20 0.56

(3) N-sec-butylimidazole (4) N-cyclopropylmethylimidazole
293.15 4.22 3.65 13.48 293.15 7.06 4.92 30.32
298.15 3.62 3.27 9.69 298.15 6.00 4.36 27.28
303.15 3.15 2.94 6.73 303.15 5.14 3.89 24.41
308.15 2.75 2.65 3.65 308.15 4.48 3.47 22.48
313.15 2.45 2.40 2.15 313.15 3.94 3.12 20.92
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Table 5. Cont.

T
K

ηm
b

mPa·s
ηc

c
c

mPa·s
Error d

%
T
K

ηm
mPa·s

ηc
c

mPa·s
Error

%

318.15 2.19 2.18 0.64 318.15 3.49 2.80 19.64
323.15 1.95 1.98 −1.59 323.15 3.12 2.53 18.83
333.15 1.60 1.66 −3.49 333.15 2.55 2.08 18.26
343.15 1.32 1.40 −5.95 343.15 2.15 1.74 19.29
353.15 0.99 1.19 −20.46 353.15 1.87 1.46 21.95

(5) N-cyclopentylimidazole (6) N-cyclohexylmethylimidazole
293.15 7.16 6.50 9.21 293.15 N/A (Solid)
298.15 6.17 5.72 7.37 298.15 N/A (Solid)
303.15 5.34 5.05 5.51 303.15 N/A (Solid)
308.15 4.68 4.47 4.42 308.15 N/A (Solid)
313.15 4.13 3.98 3.62 313.15 N/A (Solid)
318.15 3.65 3.56 2.60 318.15 N/A (Solid)
323.15 3.27 3.19 2.55 323.15 11.42 4.72 58.69
333.15 2.67 2.59 3.18 333.15 7.94 3.73 52.97
343.15 2.24 2.12 5.22 343.15 5.83 3.00 48.60
353.15 1.91 1.76 7.69 353.15 4.45 2.43 45.29

a Temperature variance is ±0.01 K. Viscosity measurements variance is ±0.1% of the reported value; b Measured
viscosity; c Corrected COSMOtherm viscosity, corrected viscosity (ηc

c ) = 1.3 × calculated viscosity by COSMOtherm
(ηc); d Error = ηm − ηc

c
ηc

c
× 100.

As shown in Table 4, almost all measured viscosities were < 10 cP with the only
exception of compound 6 at 323.15 K, the first viscosity data point obtained above the
compound’s melting point. Similar to the trend of change in density, viscosity for each
compound decreases when heated due to enhanced molecular diffusion. For all six com-
pounds shown in Table 5, viscosities of either branched or cyclized imidazoles increase
upon addition of carbon atoms and this phenomenon has also been observed for linear
alkyl imidazole analogues [22]. However, when comparing viscosity of linear (Table S3)
and branched imidazoles, there was not a certain trend of behavior as found in density
analysis. Viscosity of compound 1 is lower than its linear isomer, N-propylimidazole,
across the temperature range of measurement, while compound 2 and compound 3 are of
higher viscosity at low temperature and become less viscous than N-butylimidazole when
heated over 343.15 K and 318.15 K, respectively. Unlike branched imidazole compounds
exhibiting viscosities close to corresponding linear analogues, notable increases in viscosity
are observed for the transformation from linear to cycloalkyl imidazoles. For instance, at
323.15 K, viscosity increases by 56.8% from N-butylimidazole to compound 4, 35.1% from
N-pentylimidazole to compound 5 and 203.7% from N-octylimidazole to compound 6. As
indicated by density, N-cycloalkylimidazole molecules share less intermolecular volume
than linear alkylimidazoles, which means they are packed more closely, and thus increased
van der Waals interactions result in the increment in viscosity of cycloalkylimidazoles.
Apart from comparisons on viscosity values, it is found that viscosity of linear alkyl imida-
zoles change less with temperature. For example, viscosity of N-butylimidazole decreases
by 64.1% from 293.15 to 353.15 K, while the reductions for compounds 2, 3, and 4 are 74.6%,
76.5 and 73.5%, respectively.

To better understand the tendency of compound viscosity with respect to temperature,
experimental data are plotted in Figure 2. Unlike density, viscosity followed a non-linear
trend. Among several empirical equations that can be used to model viscosity-temperature
relationship, the Andrade Equation [41], in the form of η = a·exp·(b·T−1), was chosen first,
for its simplicity and effectiveness in our prior work [42–44]. Parameters for the Andrade
equation are presented in Table 6, coefficients of determination (R2) for all equations derived
for branched and cycloalkyl imidazoles considered in this work are >0.99 while the broad
residual deviations indicated by the maximium absolute residual and SSR values call for
model improvement. Consequently, the Vogel-Fulcher-Tammann equation [45] in the form of

η = A·exp·(B·(T − T0)−1 (3)
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was used correlating viscosity and temperature. Fit parameters can be found in Table 7.
For each imidazole compound, the maximium absolute residual value is smaller than
corresponding data in Table 6 for the Andrade Equation. Moreover, the SSR value reduced
by at least 3 orders of magnitude also indicates the superiority of the Vogel-Fulcher-
Tammann equation over Andrade Equation for predictions of compound viscosity in the
range of 293.15–353.15 K.
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Figure 2. Temperature dependence of viscosity of imidazole compounds. Circle = compound (1); square
= compound (2); cross = compound (3); triangle = compound (4); unfilled diamond = compound (5);
snowflake = compound (6).

Table 6. Andrade equation (η = a·exp·(b·T−1)) parameters derived from measurement data for
imidazole compounds.

Compound a
mPa·s

b
K R2 Maximum Absolute Residual RSS

1 0.2670 × 10−2 2.070 × 103 0.9994 0.03 0.0020
2 0.1687 × 10−2 2.320 × 103 0.9985 0.14 0.0277
3 0.1161 × 10−2 2.399 × 103 0.9972 0.06 0.0136
4 0.2619 × 10−2 2.230 × 103 0.9937 0.37 0.2178
5 0.2838 × 10−2 2.286 × 103 0.9971 0.24 0.1010
6 0.0172 × 10−2 3.584 × 103 0.9984 0.16 0.0517

3.3. Simulations on Vapor Pressure and Vaporization Enthalpy

Vapor pressures of branched and cycloalkyl imidazoles considered have been mea-
sured previously and enthalpies of vaporization were calculated accordingly [30]. COS-
MOtherm calculations were applied in the current study with the complete results shown
in Table S4 with compilation of measured values for comparison purpose. Data obtained at
relatively low temperature (283–326 K) in the whole temperature range of consideration
(280–350 K) were selected and presented in Table 8. It is noted that that COSMOtherm
results on vapor pressure are close to measured values at lower temperature (<300 K) for
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branched imidazoles while variances in percentage error are much more scattered between
cycloalkyl imidazoles. Moreover, as can be seen in Table S4, the error associated with vapor
pressure predictions for all compounds tended to expand along with increased temperature.
Unlike vapor pressure, variances in the simulation results for vaporization enthalpies
were relatively consistent and acceptable, with absolute percentage error ranging from
0.84–12.31% for all compounds considered. Among these, compound 4 exhibited the best
accuracy on vaporization enthalpy prediction (percentage error: 0.84–3.42%), despite a
considerable gap found in vapor pressure estimations.

Table 7. Vogel-Fulcher-Tammann equation (η = A·exp·(B·(T − T0)−1)) parameters derived from
measurement data for imidazole compounds.

Compound A
mPa·s

B
K

T0
K

Maximum Absolute Residual RSS

1 0.0438 × 10−1 1.786 × 103 21.01 0.02 0.069 × 10−5

2 0.3290 × 10−1 0.806 × 103 131.06 0.03 0.166 × 10−5

3 0.0470 × 10−1 1.590 × 103 59.11 0.06 2.522 × 10−5

4 1.7126 × 10−1 0.397 × 103 186.34 0.02 0.018 × 10−5

5 0.8963 × 10−1 0.605 × 103 155.13 0.02 0.018 × 10−5

6 0.8476 × 10−1 0.617 × 103 197.37 0.01 0.005 × 10−5

Table 8. Selected vapor pressure (P) and enthalpies of vaporization (∆H) of imidazole compounds
from measurements and COSMOtherm calculations at different temperatures (T) a.

Compound T
K

Pm
b

Pa
Pc

c

Pa
Error(P) d

%
∆Hm

vap
e

kJ·mol−1
∆Hc

vap
f

kJ·mol−1

Error(∆Hvap) g

%

1
283.4 5.04 5.23 −3.74 59.39 54.61 8.04
289.4 8.51 8.45 0.74 58.98 54.43 7.72

2
289.6 4.42 4.37 1.07 62.81 56.97 9.30
292.6 5.85 5.57 4.75 62.57 56.88 9.10

3
295.7 7.11 6.84 3.78 64.78 56.81 12.31
298.4 8.99 8.43 6.22 64.57 56.72 12.61

4
303.0 3.70 7.25 −95.88 59.49 57.46 3.42
305.4 4.54 8.67 −90.95 59.32 57.38 3.27

5
305.0 2.42 2.16 10.79 70.1 61.53 12.23
308.0 3.19 2.73 14.29 69.87 61.43 12.08

6
323.1 2.55 1.77 30.69 75.41 67.15 10.96
326.0 3.24 2.21 31.88 75.16 67.04 10.80

a Uncertainties are u(T) = 0.1 K and u(P) = 0.01 Pa; b Measured vapor pressure [30]; c COSMOtherm calculated va-
por pressure; d Error(P) = Pm − Pc

Pm
* 100; e Enthalpy of vaporization from measurement; f Enthalpy of vaporization

from COSMOtherm calculation; g Error(∆Hvap) =
∆Hm

vap − ∆Hm
vap

∆Hm
vap

× 100.

4. Conclusions

In this work, two fundamental properties, density and viscosity, of selected branched and
cycloalkyl imidazole compounds were characterized in temperature range of
293.15–353.15 K. Densities of alkyl imidazole compounds bearing the same number of carbon
atoms are in the order of branched < linear < cycloalkyl. It was also found that the density of
branched and linear alkyl imidazoles decrease upon addition of hydrocarbon moiety while
cycloalkyl imidazoles showed an opposite tendency. No distinct variance in viscosity was
observed for linear and branched imidazole, but cyclic groups were found to make imidazole
compounds considerably more viscous. Densities and viscosities of imidazole compounds
considered were in reasonable range. Data for density were fitted into a linear and parabolic
model. Viscosity data were summarized using the Andrade Equation and the Vogel-Fulcher-
Tammann equation for understanding the temperature dependence of imidazole compounds
on corresponding properties. Data obtained from experimental characterizations can be used
for guidance of molecular design on branched and cycloalkyl imidazole analogues. Apart
from property characterizations, COSMOtherm calculations applied for comparison showed
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excellent reliability for density simulations, while there might be more space for improvement
in predictions of viscosity and vapor pressure.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/liquids2010002/s1, Table S1: Compilation of densities (ρ) of linear alkyl imidazoles at different
temperatures (T) and P = 101 kPa, Table S2: Dynamic viscosities (η) of imidazole compounds from
measurements and COSMOtherm calculations at different temperatures (T) and P = 101 kPa, Table S3:
Compilation of viscosities (η) of linear alkyl imidazoles at different temperatures (T) and P = 101 kPa,
Table S4: Vapor pressure (P) and enthalpies of vaporization (∆H) of imidazole compounds from
measurements and COSMOtherm calculations at different temperatures (T).
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